
BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS SYSTEMS : A METHODOLOGY

Joseph Okito DEDOU - Daniel CHILLET - Olivier SENTIEYS

LAST1 - ENSSAT - UniversitC de Rennes I,
6 rue de KCrampont,

BP 447,22305 Lannion, France,
Tel: +33 2-96-46-50-30; fax: +33 2-96-46-66-75

e-mail: dedou @enssat.fr

ABSTRACT

In asynchronous system, initiation and completion of opera-
tions are events that can occur at any instant and the execution
time is data dependent. Thus if an asynchronous timing model
is considered, we can provide scheduling and resource allocation
methods which will have a significant impact on the performance
and the area of the final implementation. Until now the different
methods proposed for High-Level Synthesis (HLS) do not apply
to the above topics. This paper proposes a methodology for the
scheduling of asynchronous systems. It is based on the average
delay.

or the delay as a function of the inputs or even a probL.dlity distri-
bution of the delay. Thus, a statistical methodology to estimate the
average computation time of operators such as adder, substractor
or multiplier have been proposed in a previous paper [3]. As can be
seen in Table 1, the estimated values (ignoring the control delay)
of this method are similar to the results given by the probabilistic
methods proposed in [4, 51. The aim of this paper is to propose

Nbr of bits

relative error %
I I I I

1. INTRODUCTION

For a few years, there has been a revival of interest in asynchronous
system design. This is due to the fact that it has been presented as
an alternative to synchronoussystems. They can be loosely viewed
as systems with no global clock. In the aspect of the consumption,
the main advantage of these circuits is the elimination of all the
useless consumption in synchronous circuits. Notably, it provides
the elimination of the power consumption of the clock buffers and
of the logic gate commutations that do not contain useful infor-
mation. This consumption is approximatively 30 % of the total
consumption of the circuit. A comparative study between syn-
chronous logic and asynchronous techniques in term of consump-
tion and area have been realized by Kim and Sridhar [l]. They
have shown that the use of asynchronous techniques allows us to
improve the consumption of a factor of 2.5 to 10 even with an in-
crease of the area in the same proportions.

In “the previous work” section, we will see that different meth-
ods have been proposed to design asynchronous systems. Un-
fortunately, these methods do not deal with High-Level Synthesis
(HLS) issues such as scheduling, resource-allocation etc. Indeed,
with no clock-controlled time step, the scheduling problem in an
asynchronous system can not be viewed as a partitioning of opera-
tions into steps as i t has been defined for the synchronous systems
in [2].

In an asynchronous system, operations have delays which are
data-dependent and time is considered as a continuous variable.
Therefore, we have to consider a new timing model to find a schedul-
ing strategy. Since one of their main features is to exhibit average
computation time, it will be an excellent opportunity to use it as a
timing model.

For this purpose, it is necessary to build a library of compo-
nents including parameters such as the average computation time

Table 1: average delays of ripple carry adder: statistic vs proba-
bilistic method

a methodology for behavioral synthesis of asynchronous systems.
I t is organized as follows. Section 2 reviews related works on the
asynchronous systems design. Section 3 presents our scheduling
strategy based on average computation time for High-Level Syn-
thesis of Asynchronous Systems.

2. PREVIOUS WORKS

Recent works in asynchronous synthesis can be roughly classified
into two categories. The first approach is analogous to the logic
synthesis in the synchronous systems terminology. These meth-
ods are based on the manipulation of formal specifications such as
signal transition graphs (STG) and Petri nets. In [6], [7] and [8]
several algorithms have been proposed for the synthesis of asyn-
chronous circuits from behavior description using signal transition
graphs (STG). Indeed, an STG is a form of interpreted Petri nets
where the transitions in the nets are used as transitions of signals in
the control circuits. Several CAD tools based on this specification
have been made available. The most well known is PETRIFY. It is
used for manipulating concurrent specifications and asynchronous
controllers synthesis [9].

The second category focuses on the synthesis of asynchronous
systems by the interconnection of pre-defined asynchronous mod-
ules. These methods attempt to compile behavioral descriptions
in a high-level language like CSP and deriving a structural netlist
in terms of asynchronous blocks [lo]. In [l 11, an integrated de-
sign environment called SHILPA, for the specification, simula-
tion, analysis and synthesis of self-timed asynchronous circuits

0-7803-5471-0/99/$10.00O1999 IEEE

VI-370

mailto:enssat.fr

has been presented. Others methods proposed to use TANGRAM
(language for concurrent systems specification) for the behavioral
specification [12].
Unfortunately, these methods do not deal with High-Level Syn-
thesis issues such as scheduling and resource allocation. To our
knowledge, despite the two algorithms presented in [131, there is a
lack of research in this area.

3. ARCH1"URAL SYNTHESIS : A METHODOLOGY

In a general manner, the goal of the architectural synthiesis is to
generate automatically a structural description of an architecture
from a behavioral specification of an application in a high level
language. First, the specification is compiled into a Data Flow
Graph (DFG) that represents the operations and the dependencies
between the data. Then, it is divided into four main phases: selec-
tion, allocation, scheduling and binding.

0 Selection: its goal is to select from a complete library of
operators, the components whose characteristics satisfy the
application, time and cost constraints.

0 Allocation : it consists in determining the exact quantity of
operators and the intervals of time where they axe usable.
So to satisfy the imposed constraints, it has to take into ac-
count temporal and spatial parallelism. It enables the han-
dling of the hardware components to implement [:L4].

0 Scheduling: it is defined as the allocation of a daite of exe-
cution to each operation in the data flow graph.

0 Binding : it consists in allocating each operation to an op-
erator. This task has also the responsibility of the allocation
of data to registers or memory banks.

J CIRCUIT

Figure 1 : Our Design Flow for Asynchronous High-Level Synthe-
sis

The aim of our research, is to propose a complete method
for high-level synthesis of asynchronous systems (see ligure 1).
Therefore, we must have another definition for several classical
concepts in HLS such as :

0 Operators timing model ;
Asynchronous scheduling;

0 Asynchronous architecture model (binding).
Interface with logic synthesis

In this paper, we put the emphasis on scheduling and binding
concepts. Tlhus, at the architectural level, we take an asynchronous
model of the circuit architecture. For the algorithmic level, we
decided to have a natural specification like for the synchronous
systems since there is no necessity for an1 asynchronous concept at
this level.

3.1. Scheduling

As we have: mentioned, scheduling is the allocation of a date of
execution to each operation of the application. In the synchronous
systems, this execution date corresponds with the control step, and
in the majority of cases, it depends on the slowest operation (worst-
case delay). Therefore, asynchronous systems present two signif-
icant differences. Indeed, the time is a continuous variable, the
operation beginning and its completion are events that can occur
at any instant. Moreover, the execution dlelay of the operations are
data dependent. Consequently, in asynchronous systems, with no
global clock, the scheduling problem can not be viewed as the par-
titioning of operations in discreet time, but rather as the definition
of a partial order of operation execution.

Thus the problem that we will seek (asynchronous scheduling)
to solve can1 be defined as follows :

From a library of components including their average compu-
tation delays, for a dataflow graph (DFG) and a cost constraint,
define a partial order of the diflerent operations execution in order
to minimize the average delay estimation of the global system rep-
resented by the DFG so as to obtain an optimal behavior.

Thus, at the beginning, the algorithm is compiled into an acyclic
graph G(N, A) where N represents the set of nodes and A the set
of arcs.

Each nlode N , of N represents an operation realized by the
application, and an arc at3 from N , to N 3 , denotes that N3 suc-
ceeds N, in the DFG. For each node, we are going to determine its
Startt,,, and its Completzonttme.

0 Starttcne: It is defined as the minimal date from which an
operation can be executed.
CompZetzont,,,: It is defined as the completion date of a
given operation. An estimation OF this CompZetiontZme is
given by the following expression.

Completiontime = Startt;,, + cTrnoy

where Gmoy represents the average delay of the operation
realized by the corresponding node.

Thus, if a node N , precedes a node N3 then :

Startti,,,(Nj) = MAXNicPr\I (Comple t ion t i rne(Nj))

We denote :
SN, : the set of nodes successors of N,.
PN, : the set of nodes predecessors of N ,

Firstly, we are going to define two d e s of priority which will
be used to elaborate the strategy aiming to de temne the partial

VI-37 1

order of execution of the DFG. a: synchronous version
I I I I I
I , I I I I

Priority 1 :
The goal is to determine the order in which, "ready" nodes ,i.e

whose predecessors have been scheduled, have to be scheduled.
For this purpose, it is necessary to evaluate the length of the DFG
critical path L,. Then we define for each node N, its depth in the
graph L(N,) with the following expression:

L(Ni) = Lcp - Ls(Ni)

where L,(N,) represents the length of the path formed by N,'s
successors i.e SN, .

Thus the priority is given to the node that will have the small-
est depth L(N,) .

N.B : Ifa node N; belongs to severalpaths, L(N,) will be de-
termined according to the longest path among the former.

Priority 2 :
Its goal is to allow the choice between two nodes using the

same operators and which have the same priority according to pri-
ority 1. In this case, the priority is granted to the node that will
have the smallest Startttme.

The proposed algorithm is described below :

1. Calculate the critical path length Lee.
2 . Calculate the depth L N , of each node.

3. For each operation type, establish an ordered list of ready
node (Le those whose predecessors have been scheduled)
according to the rules of priority defined above.

4. Scheduleeach node of each list: from the Sturtt,, , of the
node concerned, find an available operator during a period
at least equal to the average delay of the operation repre-
sented by this node. In other words, find an interval of du-
ration greater than or equal to smoy whose minimal bound
would be at least equal to the Starttrme of the node.

5. Determine the ready nodes and return to step 3.

N.B If the minimal bound found differsfrom Star t t tme, then
Stur t t ,me will take this value. So it is necessaryto evaluate a new
Star t t tme for the successornodes.

As an example we take a Finite Impulse ResponseFilter which
equation is given below :

The ordering and allocation result is given in figure2. In asyn-
chronous systems, the operation control is not centralized and their
delays are not fixed. In order to exploit this potential for optimiza-
tion, we will define two notions. The idea behind these definitions,
is to increase the speed of the systems :

e Fixed sequence: two operations are in fixed sequence, if
they are linked by a precedence constraint.

e Variable sequence : two operations are in variable sequence
if they have no precedenceconstraint.The control for a vari-
able sequence is similar to a First In First Out.

I

cycle-6Ons -mull delay

b: asynchronous version

Mull 2

Mull 1

Add I

0 40% 8090100

Figure 2: Asynchronous vs Synchronous scheduling

Consequently, the execution order of two operations which are in
fixed sequence will be that given by the scheduling task. In the
case of a variable sequence, the execution order depend on the data
processed by those operations. In this way, if an operation can be
allocated to several operators, then his execution will be done by
the operator which is available at the moment where his data are
valid. The advantage of having a variable sequence is to optimize
the use of the different operators and the increasing of the circuit
speed.

3.2. Binding

Binding consists of allocating each operation to an operator. This
task is also in charge of the allocation of data to registers or mem-
ory banks. For this task, we will use a similar approach to syn-
chronous systems. But, in comparison to the synchronous binding
(static), asynchronous systems give the possibility to have a dy-
namic binding. This is possible since the operation delays depend
on the data processed. To achieve this, we define the resource mo-
bility as the number of the same operator. Therefore we say that :

- if the resource of the same type mobility is greater than one,
we will have operations with dynamic binding (see figure 4.a).

- if the resource mobility is equal to one, we will have static
binding (see figure 4.b).

NB : In figure 4, selectors are used to select the operation
which must be executed and the distributors for the operator which
will execute the operation selected and also the specijied output.
Controllers served to ensure the different types of sequences (con-
trol)

To illustrate that, we take the example of the FIR-4. In this ex-
ample (see figure 2), operation 3 (N3) is executed by multiplier I .
Supposing that, the delay needed for operation 1 (NI) for a given
data is greater than the average delay of the multiplier and the one
needed for operation 2 (N z) is smaller than 6moy (NB : delay are
data dependent). In this case the multiplier 2 will be available be-
fore multiplier l . Since operations l, 2, 3 and 5 (NI, Nz, N3
and N5) are in variable sequence, i.e there are no precedence con-
straint between them therefore, operation Ns can be executed by
the multiplier I , as well as the multiplier 2. In this particular case,

VI-372

5. REFERENCES

Figure 3: Static and dynamic binding

the best choice is to execute this operation by the multiplier 2 in
order to increase the speed of the circuit. This can be realized by
using the architecture presented in figure 4. Selection and distri-
bution are used, the former to select the best operation to execute,
and the latter to select the correct output.

In the example proposed, the estimated average computation
time given by the asynchronous scheduling is about 100 ns. In
comparison to the result given by synchronous scheduling (fig-
ure 2), the gain in term of speed is about 40%. However asyn-
chronous components lead to an increased area in the same pro-
portion. To reach an equivalent speed, synchronous systems will
use more components.

I 4 J I
Selection Selection

I I

Figure 4: Model for dynamic binding : FIR-4 example

4. CONCLUSION

In this paper we have presented a method for schedulin,g and bind-
ing asynchronous systems based on the average delay of the op-
erators. This method is integrated in the BSS framework (Breizh
Synthesis System http://archi.enssat.fr/bss). In compaiison to the
synchronous method, where the allocation of operations to opera-
tor is static, we can have dynamic allocation. However, the draw-
back is the increasing of the interconnection complexity. There-
fore, if we want to overcome this problem, we must introduce
a new constraint at the interconnection level. We have also dis-
cussed about an asynchronous binding allowing us to 1, Tenerate an
architecture using dynamic or static scheduling. This work is in
progress by the automatic generation of a VHDL mo'del for the
simulation of the complete architecture and also an intierface with
the PETRIFY [9] synthesis tools.

[l] S. Kim and R. Sridhar. Comparison of Power Consumpi-
tion amoung Asynchronous Design Styles with their Syn-
chronous Counterpartsaeuss con. IEEE, pages 7-10,1995.

[2] D. Ciajski et al. High-Level Synthesis - introduction to chip
and Systems Design. kluwer Aca'demic Publishers, 1992.

[3] 0. J. Dedou, D. Chillet, and 0. Sentieys. AsynchronousTim,-
ing Model for High Level Synthesis for DSP Applications. Iin
SIGNAL PROCESSJNG IX: Theories and applications, vol-
ume 1, pages 475-478. EUSIPCO-98, September 1998.

[4] Alessandro De Gloria and Mauro Olivieri. Statistical carry
lookahead adders. IEEE Trans. on Computers, 45(3):340-
347, March 1996.

[5] V. Vmharvsky, V. Marakhovsky, and M. Tsukisaka. Data
controlled delays in the asynchronous design. In In Proc.
International Symposium on Circuits and systems, volume 4,
pages 153-155, May 1996.

[6] T.A Chu. Synthesis of Self-Timed VLSI Circuits frorn
Graph-theoritic Specifications. I n Proc. international Con,(
Computer Design, pages 220-22:3. IEEE Computer Society
Press, 1987.

[7] L. Lavagno, K. Keutzer, and AS . Vincentelli. Algorithms
for synthesis of hazard-free asynchronous circuits. In 28th
ACMLEEE Design Automation Conference, pages 302-3011,
199.L.

[8] K.J. Lin and C.S. Lin. A realization algorithm of asyn-
chronous circuits from STG. IEEE, pages 322-326,1992.

[9] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. IE-
ICE Transaction on information and systems, E80-D(3):3 15-
325, March 1997.

[101 A.J..Martin. Programming in vlsi: From communicating pro-
cess to delay-insentive circuits. Caltech-cs-tr-89-1, Departe-
ment of Computer Science, California Institut of Technolo-
gie, 1989.

[I 11 V. Akella and G Gopalakrishnan. SHILPA: A High-Level
Synthesis System for Self-Timed Circuits. In Int. Cor$
on Computer-Aided Design, pages 587-591. IEEE Society
Press, November 1992.

[12] C van Berkel, J. Kessel, M. Roncken, R. Saeijs, and
E Schaiij. The vlsi-programming langage tangram and it.s
translating into handshake circuits. pages 384-389, 1991.

[13] R.M. Badia and J. Cortadella. High-Level Synthesis of Asyn-
chronous Degital Circuits: Scheduling Strategies. Techni-
cal report, Architectural of computer departemend Catalunya
Polytechnic University, November 1992.

[141 0. Sentieys, J.Ph. Diguet, J.L. Philippe, and E. Martin. Harcl-
ware module selection for real time pipeline architectures U:;-
ing probabilistic cost estimation. In IEEE ASIC conference,
Rochester, USA, September 1996.

VI-373

http://archi.enssat.fr/bss

