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ABSTRACT. On domains with conical points, weighted Sobolev spaces with powers of

the distance to the conical points as weights form a classical framework for describing

the regularity of solutions of elliptic boundary value problems, cf. papers by Kondrat’ev

and Maz’ya-Plamenevskii. Two classes of weighted norms are usually considered: Ho-

mogeneous norms, where the weight exponent varies with the order of derivatives, and

nonhomogeneous norms, where the same weight is used for all orders of derivatives. For

the analysis of the spaces with homogeneous norms, Mellin transformation is a classical

tool. In this paper, we show how Mellin transformation can also be used to give an optimal

characterization of the structure of weighted Sobolev spaces with nonhomogeneous norms

on finite cones in the case of both non-critical and critical indices. This characterization

can serve as a basis for the proof of regularity and Fredholm theorems in such weighted

Sobolev spaces on domains with conical points, even in the case of critical indices.
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1. INTRODUCTION

When analyzing elliptic regularity in the neighborhood of a conical point on the bound-

ary of an otherwise smooth domain, one is faced with a dilemma:

Near the singular point, the conical geometry suggests the use of estimates in weighted

Sobolev spaces with homogeneous norms, and a well-known tool for analyzing them and

for obtaining the estimates is the Mellin transformation. This analysis is carried out in the

classical paper [3] by Kondrat’ev.

On the other hand, since this analysis corresponds to a blow-up of the corner, that is a

diffeomorphism between the tangent cone and an infinite cylinder, the conical point moves

to infinity, and therefore functions in this class of spaces always have trivial Taylor expan-

sions at the corner. Depending on the weight index, they either have no controlled behavior

at the corner at all or they tend to zero. If one wants to study inhomogeneous boundary
1
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2 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

value problems, then smooth right hand sides and the corresponding solutions will require

spaces that allow the description of non-trivial Taylor expansions at corner points.

Appropriate spaces have been analyzed using tools from real analysis by Maz’ya and

Plamenevskii [6]. Such spaces can be defined by nonhomogeneous weighted norms, where

the weight exponent is the same for all derivatives. The simplest examples are ordinary,

non-weighted Sobolev norms. As presented in detail in the book [4] by Kozlov, Maz’ya

and Rossmann, the analysis of these spaces with nonhomogeneous norms shows several

peculiarities:

1. For a given space dimension n and Sobolev order m, there is a finite set of exceptional,

“critical” weight exponents β, characterized in our notation by the condition

−β − n
2

= η ∈ N ; 0 6 η 6 m − 1 ,

such that for the non-critical case, the space with nonhomogeneous norm splits into the

direct sum of a space with homogeneous norm and a space of polynomials, corresponding

to the Taylor expansion at the corner. In the critical case, the splitting involves an infinite-

dimensional space of generalized polynomials. The study of the critical cases is of practical

importance, because for example in two-dimensional domains, the ordinary Sobolev spaces

with integer order are all in the critical case η = m − 1.

2. The relation of the spaces with nonhomogeneous norms with respect to Taylor expan-

sions at the corner is somewhat complicated, depending on the weight and the order: For

η < 0, the space with nonhomogeneous norm coincides with the corresponding space with

homogeneous norm and contains all polynomials, but has no controlled Taylor expansion.

For 0 6 η < m, the nonhomogeneous norm still allows all polynomials and controls the

Taylor expansion of order [η] at the corner. If η > m, then the space with nonhomogeneous

norm again coincides with the corresponding space with homogeneous norm and has van-

ishing Taylor expansion of order m−1. Thus there are two (non-disjoint) classes of spaces

involved, and the weighted Sobolev spaces with nonhomogeneous norms fall into one or

the other of these classes, namely the class of spaces with homogeneous norms on one hand

and a class of spaces with weighted norms and nontrivial Taylor expansion on the other

hand.

3. Whereas the definition of the non-homogeneous norms is simple, it turns out that

for the analysis of the spaces one also needs descriptions by more complicated equivalent

norms, where the weight exponent does depend, in a specific way, on the order of the

derivatives. Such “step-weighted” Sobolev spaces have been studied by Nazarov [7, 8].

In [4], the analysis of the weighted Sobolev spaces with nonhomogeneous norms is

presented using real-variable tools, in particular techniques based on Hardy’s inequality.

In this paper, we present an analysis of the spaces with nonhomogeneous norms based

on Mellin transformation. We show how the three points described above can be achieved

in an optimal way. In particular,

1. we characterize the spaces with nonhomogeneous norms via Mellin transformation in

the non-critical and in the critical case;

2. we give a natural definition via Mellin transforms of the second class of spaces men-

tioned in point 2 above, namely the spaces with weighted norms and nontrivial Taylor

expansions;
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES3

3. we show how the question of equivalent norms can be solved via Mellin transforma-

tion.

The analysis in this paper is a generalization of the Mellin characterization of standard

Sobolev spaces that was introduced in [2] for the analysis of elliptic regularity on domains

with corners. For the case of critical weight exponents, we give a Mellin description of

the generalized Taylor expansion that was introduced and analyzed with real-variable tech-

niques in [4]. Based on our Mellin characterization, one can obtain Fredholm theorems and

elliptic regularity results, in particular analytic regularity results, on domains with conical

points. This is developed in the forthcoming work [1].

2. NOTATION: WEIGHTED SOBOLEV SPACES ON CONES

A regular cone K ⊂ Rn, n > 2 is an unbounded open set of the form

(2.1) K =
{
x ∈ R

n \ {0} :
x

|x|
∈ G

}
,

where G is a smooth domain of the unit sphere S
n−1 called the solid angle of K. Note that

if n = 2, this implies that K has a Lipschitz boundary (excluding domains with cracks),

which is not necessarily the case if n > 3. Note further that our analysis below is also valid

in the case of domains with cracks.

The finite cone S associated with K is simply

(2.2) S = K ∩ B(0, 1).

In the one-dimensional case, we consider K = R+ and S = (0, 1), which corresponds to

G = {1}.

For k ∈ N, ‖ · ‖
k;O

denotes the standard Sobolev norm of Hk(O).

2.1. Weighted spaces with homogeneous norms. The spaces on which relies a large part

of our analysis are the “classical” weighted spaces of Kondrat’ev. The “originality” of our

definition is a new convention for their notation.

Definition 2.1. ⋆ Let β be a real number and let m > 0 be an integer.

⋆ β is called the weight exponent and m the Sobolev exponent.

⋆ The weighted space with homogeneous norm Km
β (K) is defined by

(2.3) K
m
β (K) =

{
u ∈ L

2
loc

(K) : rβ+|α|∂α
x
u ∈ L

2(K), ∀α, |α| 6 m
}

and endowed with semi-norm and norm respectively defined as

(2.4) |u|
2

Km
β

(K)
=

∑

|α|=m

‖rβ+|α|∂α
x
u‖

2

0;K
and ‖u‖

2

Km
β

(K)
=

m∑

k=0

|u|
2

Kk
β
(K)

.

The weighted spaces introduced by Kondrat’ev in [3] are denoted by
◦

W m
α (K). The

correspondence with our notation is

◦
W m

α (K) = K
m
α
2
−m(K) i.e. K

m
β (K) =

0

Wm
2β+2m(K).
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4 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

These spaces are also of constant use in related works by Kozlov, Maz’ya, Nazarov, Plame-

nevskii, Rossmann, see the monographs [9, 4, 5] for example. They are denoted by V m
β (K)

with the following correspondence with our spaces

V m
β (K) = K

m
β−m(K) i.e. K

m
β (K) = V m

β+m(K).

We choose the convention in (2.3) because it simplifies some statements: An obvious, but

fundamental property of the scale Kβ is its monotonicity with respect to m

K
m+1
β (K) ⊂ K

m
β (K), m ∈ N.

This allows a simple definition of C ∞ and analytic functions with weight, see Defini-

tion 4.1. Also, in mapping properties of differential operators with constant coefficients,

as well as in elliptic regularity theorems (“shift theorem”), the shift in the weight expo-

nent β is independent of the regularity parameter m, in contrast to what happens with the

Kondrat’ev or the V m
β spaces.

The space Km
β (S) with its semi-norm | · |Km

β
(S) and norm ‖ · ‖Km

β
(S) is defined similarly

by replacing K by S.

2.2. Weighted spaces with nonhomogeneous norms.

Definition 2.2. ⋆ Let β be a real number and m > 0 be an integer.

⋆ The weighted space with non-homogeneous norm Jm
β (S) is defined by

(2.5) J
m
β (S) =

{
u ∈ L

2
loc

(S) : rβ+m∂α
x
u ∈ L

2(S), ∀α, |α| 6 m
}

with its norm

‖u‖
2

Jm
β

(S)
=

∑

|α|6m

‖rβ+m∂α
x
u‖

2

0;S
.

The semi-norm of Jm
β (S) coincides with the semi-norm of Km

β (S):

(2.6) |u|
2

Jm
β

(S)
= |u|

2

Km
β

(S)
=

∑

|α|=m

‖rβ+|α|∂α
x
u‖

2

0;S
.

⋆ The space Jm
β (K) with its norm and semi-norm is defined in the same way.

Our space Jm
β (S) is the same as the space denoted by W m

2,β+m(S) in [4].

The following properties are obvious consequences of the definitions:

Lemma 2.3. a) For all β < β ′ we have the embedding Jm
β (S) ⊂ Jm

β′(S).

b) We have the embeddings for all β ∈ R and m ∈ N

(2.7) K
m
β (S) ⊂ J

m
β (S) ⊂ K

m
β+m(S).

c) Let α ∈ Nn be a multi-index of length |α| = k 6 m. Then the partial differential

operator ∂α
x

is continuous from Jm
β (S) into J

m−k
β+k (S).

In contrast to the scale Km
β , we do not necessarily have the inclusion of the space Jm

β (S)

in J
m−1
β (S). We will see (Corollary 3.19) that such an inclusion does hold when m is large

enough, which allows the definition of J∞β (S) and of the corresponding analytic class.

A remarkable and unusual property of the spaces Jm
β (S) is that we do not, in general,

obtain an equivalent norm for J
m
β (S) if we retain in (2.5) only the semi-norm (|α| = m)
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES5

and the L
2 norm (|α| = 0). A counter-example for such an equivalence is obtained with the

following choice

(2.8) m > 2, m < η = −β − n
2

< m + 1, u = x1 .

Then the function rβ+m∂α
x
u is square integrable for |α| = 0 and for |α| > 2, but not for

α = (1, 0, . . . , 0). See §3.4 for further details.

We shall need more precise comparisons between the K and J spaces than the embed-

dings (2.7). As we will show later on, the space Km
β (S) may be closed with finite codimen-

sion in Jm
β (S) (non-critical case), or not closed with infinite codimension (critical case).

In the following lemma we compare the properties of inclusion of the space C ∞(S) of

smooth functions:

Lemma 2.4. Let β ∈ R and m ∈ N. Let η = −β − n
2
.

a) The space C ∞(S) is embedded in K
m
β (S) if and only if η < 0.

b) The space C ∞(S) is embedded in Jm
β (S) if and only if η < m.

Proof. Using polar coordinates and the Cauchy-Schwarz inequality, we see that

L
∞(S) ⊂ L

2
β(S) ⇐⇒ β > −n

2
.

The sufficiency follows by using this for all derivatives of u ∈ C ∞(S).
We find the necessity of the conditions on η by considering the constant function u = 1

in both cases. �

Concerning spaces of finite regularity, it follows from the definition that the standard

Sobolev space Hm without weight coincides with Jm
−m. For the Sobolev spaces Hm we

have the embeddings corresponding to (2.7), namely

(2.9) K
m
−m(S) ⊂ H

m(S) ⊂ K
m
0 (S).

In addition we know from the Sobolev embedding theorem that if k is a non-negative

integer such that k < m − n
2
, we have the embeddings

H
m(S) ⊂ C

k(S) ⊂ H
k(S).

In particular, for elements of Hm(S) all derivatives of length |α| 6 k have a trace at the

vertex 0. On the other hand, by density of smooth functions which are zero at the vertex,

the elements of Km
β (S), as soon as they have traces, have zero traces at the vertex.

One can expect that the spaces J have vertex traces similar to the standard Sobolev

spaces. The investigation of this question will be the key to the comparison between the J

spaces and the K spaces.

Using the same simple argument as in the proof of Lemma 2.4, we find the conditions

for the inclusion of polynomials in the weighted Sobolev spaces.

We denote by P
M(S) the space of polynomial functions of degree 6 M on S and by

PM(S) the space of homogeneous polynomials of degree M .

Lemma 2.5. Let β ∈ R and m, k ∈ N. Let η = −β − n
2
.

a) Pk(S) ⊂ Km
β (S) ⇐⇒ P0(S) ⊂ Km

β (S) ⇐⇒ η < 0.

b) P
k(S) ⊂ J

m
β (S) ⇐⇒ P

0(S) ⊂ J
m
β (S) ⇐⇒ η < m.
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6 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

This complete similarity between the K spaces and the J spaces is no longer present if

we refine the probe by considering the space of homogeneous polynomials. Still using the

same simple argument based on finiteness of norms, we now get

Lemma 2.6. Let β ∈ R and m, k ∈ N. Let η = −β − n
2
.

a) Pk(S) ⊂ Km
β (S) ⇐⇒ η < k.

b) If k > m, then Pk(S) ⊂ Jm
β (S) ⇐⇒ η < k.

c) If k 6 m − 1, then Pk(S) ⊂ Jm
β (S) ⇐⇒ P0(S) ⊂ Jm

β (S) ⇐⇒ η < m.

As we will show in the following, the question of inclusion of polynomials completely

characterizes the structure of the spaces Jm
β (S) and their corner behavior.

3. CHARACTERIZATIONS BY MELLIN TRANSFORMATION TECHNIQUES

The homogeneous weighted Sobolev norms can be expressed by Mellin transforma-

tion, which is the Fourier transformation associated with the group of dilations. We first

recall this characterization from Kondrat’ev’s classical work [3]. Then we generalize it

to include non-homogeneous weighted Sobolev norms, based on the observation that the

non-homogeneous norms are defined by sums of homogeneous semi-norms.

3.1. Mellin characterization of spaces with homogeneous norms. In this section, we

recall the basic results from [3].

For a function u in C ∞
0 ((0,∞)) the Mellin transform M [u] is defined for any complex

number λ by the integral

(3.1) M [u](λ) =

∫ ∞

0

r−λu(r)
dr

r
.

The function λ 7→ M [u](λ) is then holomorphic on the entire complex plane C. Note that

M [u](λ) coincides with the Fourier-Laplace transform at iλ of the function t 7→ u(et).
Now any function u defined on our cone K can be naturally written in polar coordinates

as

R+ × G ∋ (r, ϑ) 7−→ u(x) = u(rϑ).

If u has a compact support which does not contain the vertex 0, the Mellin transform of u
at λ ∈ C is the function M [u](λ) : ϑ 7→ M [u](λ, ϑ) defined on G by

(3.2) M [u](λ, ϑ) =

∫ ∞

0

r−λu(rϑ)
dr

r
, ϑ ∈ G.

If we define the function ũ on the cylinder R × G by ũ(t, ϑ) = u(etϑ), we see that the

Mellin transform of u at λ is the partial Fourier-Laplace transform of ũ at −iλ.

Hence the Mellin transform of a function u ∈ C ∞
0 (K) is holomorphic with values in

C ∞
0 (G). On the other hand, if u is simply in L2(K), the function e

n
2

tũ belongs to L2 on the

cylinder R×G and λ 7→ M [u](λ) therefore defines an L2 function on the line Re λ = −n
2
,

with values in L2(G).
More generally, the Mellin transformation extends to functions u given in a weighted

space K0
β(K) with a fixed real number β: Since rβu belongs to L2(K), the function ũ in

turn satisfies that e(β+ n
2
)tũ belongs to L2(R × G). Therefore λ 7→ M [u](λ) defines an L2
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES7

function on the line Re λ = −β − n
2
. If u belongs to K

m
β (K), then there appear parameter-

dependent Hm norms for its Mellin transform, which motivates the following definition.

Definition 3.1. Let G be the solid angle of a regular cone K. Let m ∈ N.

⋆ For λ ∈ C, the parameter-dependent Hm norm on G is defined by

(3.3) ‖U‖
2

m; G;λ
=

m∑

k=0

|λ|2m−2k‖U‖
2

k; G
.

⋆ Let λ 7→ U(λ) be a function with values in Hm(G), defined for λ in a strip b0 <
Re λ < b1. Then for any b ∈ (b0, b1), we set

(3.4) Nm
G (U, b) =

{∫

Re λ=b

‖U(λ)‖
2

m; G;λ
d Im λ

} 1

2

,

and

Nm
G (U, [b0, b1]) = sup

b∈(b0,b1)

Nm
G (U, b).

Later on, we will use the following observation: Let λ 7→ U(λ) be meromorphic for

b0 < Reλ < b1 with values in Hm(G). If Nm
G (U, [b0, b1]) is finite, then U is actually

holomorphic. In fact, if U has a pole in λ0, then Nm
G (U, b) is bounded from below by

C |b − Reλ0|
−1.

As a consequence of the isomorphism between Km
β (K) and Hm

β+ n
2

(R × G), one gets:

Theorem 3.2. Let β be a real number and m ∈ N. Let

η := −β − n
2

and R[η] :=
{
λ ∈ C : Reλ = η

}
.

The Mellin transformation (3.2) u 7→ M [u] induces an isomorphism from K
m
β (K) onto the

space of functions U : R[η] × G ∋ (λ, ϑ) 7→ U(λ, ϑ) with finite norm Nm
G (U, η). The

inverse Mellin transform can be written as:

(3.5) u(x) =
1

2iπ

∫

Re λ=η

rλ
M [u](λ)(ϑ) dλ, x = rϑ.

From this Theorem, we see immediately that if u belongs to the intersection of two

weighted spaces K
m
β (K) and K

m
β′(K) with β < β ′, the Mellin transform of u is defined on

two different lines in C. Since u belongs also to all intermediate spaces Km
β′′(K) for β 6

β ′′ 6 β ′, the Mellin transform is defined in a complex strip. In fact, the Mellin transform

of u is holomorphic in this strip, and this characterizes the intersection of weighted spaces

with different weights, as stated in the following theorem.

Theorem 3.3. Let β < β ′ two real numbers and m ∈ N. Let

η := −β − n
2

and η′ := −β ′ − n
2
.

a) Let u ∈ Km
β (K) ∩ Km

β′(K). Then the Mellin transform U := M [u] of u is holo-

morphic in the open strip η′ < Re λ < η with values in Hm(G) and satisfies the

following boundedness condition:

(3.6) Nm
G (U, [η′, η]) 6 C

(
‖u‖

Km
β

(K)
+ ‖u‖

Km
β′

(K)

)
.
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8 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

b) Let U be a holomorphic function in the open strip η′ < Reλ < η with values in

Hm(G), satisfying Nm
G (U, [η′, η]) < ∞. Then the mapping

(3.7) b 7−→
(
(ξ, ϑ) 7→ U(b + iξ, ϑ)

)

has limits as b → η and b → η′, and the inverse Mellin transforms

(3.8) u′ =
1

2iπ

∫

Re λ=η′

rλ U(λ) dλ and u =
1

2iπ

∫

Re λ=η

rλ U(λ) dλ,

coincide with each other and define an element of Km
β (K) ∩ Km

β′(K).

In the following theorem, we recall the close relation between asymptotic expansions

and meromorphic Mellin transforms.

Theorem 3.4. Let β < β ′ be two real numbers and set

η = −β − n
2

and η′ = −β ′ − n
2
.

Let λ0 be a complex number such that η′ < Re λ0 < η. Let q be a non-negative integer and

ϕ0, . . ., ϕq be fixed elements of L2(G).

a) Let u′ ∈ K0
β′(K) such that the identity

(3.9) u(x) = u′(x) + rλ0

q∑

j=0

1

j!
logj r ϕj(ϑ)

defines a function u in K0
β(K). Then the Mellin transform U of u′, defined for

Re λ = η′, has a meromorphic extension to the strip η′ < Re λ < η such that the

function V defined as

(3.10) V (λ) := U(λ) −

q∑

j=0

ϕj

(λ − λ0)j+1

is holomorphic in η′ < Re λ < η with values in L2(G) and satisfies the bounded-

ness condition

(3.11) N 0
G(V, [η′, η]) < ∞.

b) Conversely, let U be a meromorphic function with values in L
2(G), such that V

defined by (3.10) is holomorphic in the strip η′ < Re λ < η and satisfies the

boundedness condition (3.11). Then, like in the holomorphic case, the mapping

(3.7) has limits at η and η′, and the inverse Mellin formulas (3.8) define u ∈ K0
β(K)

and u′ ∈ K0
β′(K). They satisfy the relation (3.9), which can be also written in the

form of a residue formula:

(3.12) u(x) − u′(x) =
1

2iπ

∫

C

rλ U(λ) dλ,

for a contour C surrounding λ0 and contained in the strip η′ < Re λ < η.
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES9

3.2. Mellin characterization of semi-norms. The principle of our Mellin analysis is to

apply to a function u and some of its derivatives ∂α
x
u the Mellin characterization of K-

weighted spaces from Theorems 3.2, 3.3, and 3.4.

Definition 3.5.

⋆ For any α ∈ Nn, we denote by Dα the differential operator in polar coordinates

satisfying

(3.13) r|α|∂α
x

= D
α(ϑ; r∂r, ∂ϑ).

⋆ For any m ∈ N and λ ∈ C, let the parameter dependent semi-norm | · |
m; G;D(λ)

be

defined on Hm(G) by

(3.14) |V |
2

m; G;D(λ)
=

∑

|α|=m

‖Dα(ϑ; λ, ∂ϑ)V ‖
2

0; G
.

Lemma 3.6. Let β < β0 be two real numbers. We set η = −β − n
2

and η0 = −β0 −
n
2
. Let

m ∈ N. Let u ∈ K0
β0

(K) with support in B(0, 1) such that its Km
β (K) semi-norm is finite.

Then the Mellin transform of u is holomorphic for Re λ < η0 and has a meromorphic

extension U to the half-plane Reλ < η. Its poles are contained in the set of integers

{0, . . . , m − 1} ∩ (η0, η)

and U satisfies the estimates, with two constants c, C > 0 independent of u

(3.15) c |u|
Km

β
(K)

6 sup
b∈(η0,η)

(∫

Re λ=b

|U(λ)|
2

m; G;D(λ)
d Im λ

) 1

2

6 C |u|
Km

β
(K)

.

Proof. As u ∈ K
0
β0

(K), by Theorem 3.2 its Mellin transform λ 7→ M [u](λ) is defined for

all λ on the line Re λ = η0. We set

vm := rm∂m
r u and wα := rm∂α

x
u, |α| = m.

By assumption, the functions wα for |α| = m all belong to K
0
β(K). Using the identity

rk∂k
r =

∑
|β|=k

k!
β!

x
β∂β

x
, we obtain

vm =
∑

|α|=m

m!

α!
ϑαwα , with ϑα =

x
α

rm
,

hence vm belongs to K
0
β(K) too. Therefore the Mellin transforms λ 7→ M [vm](λ) and

λ 7→ M [wα](λ) are defined for all λ on the line Re λ = η, and we have the estimates

(3.16a) c |u|
2

Km
β

(K)
6

∫

Re λ=η

(
‖M [vm](λ)‖

2

0; G
+

∑

|α|=m

‖M [wα](λ)‖
2

0; G

)
d Im λ

and

(3.16b)

∫

Re λ=η

(
‖M [vm](λ)‖

2

0; G
+

∑

|α|=m

‖M [wα](λ)‖
2

0; G

)
d Im λ 6 C |u|

2

Km
β

(K)
.

Since u, and thus vm and wα, have compact support, their Mellin transforms extend holo-

morphically to the half-planes Re λ < η0 for u, and Re λ < η for vm and wα. Moreover,
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10 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

due to the condition of support, estimate (3.16b) holds with the same constant C if we

replace the integral over the line Reλ = η with the integral over any line Re λ = b,

η0 < b < η:

(3.17) sup
b∈(η0,η)

∫

Re λ=b

(
‖M [vm](λ)‖

2

0; G
+

∑

|α|=m

‖M [wα](λ)‖
2

0; G

)
d Im λ 6 C|u|

2

Km
β

(K)
.

Using the identity

(3.18) rm∂m
r = r∂r(r∂r − 1) · · · (r∂r − m + 1) ,

we find for all λ, Reλ 6 η0, the following relation between Mellin transforms:

M [vm](λ) = λ(λ − 1) · · · (λ − m + 1)M [u](λ).

Hence we define a meromorphic extension U of M [u] by setting

(3.19) U(λ) =
M [vm](λ)

λ(λ − 1) · · · (λ − m + 1)
for Reλ 6 η.

Since M [wα](λ) = Dα(ϑ; λ, ∂ϑ)M [u](λ) for Re λ 6 η0, by meromorphic extension

we find that

(3.20) M [wα](λ) = D
α(ϑ; λ, ∂ϑ)U(λ), for Re λ 6 η.

Putting (3.16a), (3.17), (3.20) together and using the semi-norm |·|
m;G; D(λ)

we have proved

the equivalence (3.15). �

In Theorem 3.12 below we will see that under the conditions of the Lemma, the poles

of the Mellin transform of u are associated with polynomials, corresponding to the Taylor

expansion of u at the origin.

If λ is not an integer in the interval [0, m−1], the semi-norm |V |m;G;D(λ) defines a norm

on H
m(G) equivalent to the parameter dependent norm ‖V ‖m; G;λ introduced in Defini-

tion 3.1. In order to describe this equivalence in a neighborhood of integers, we need to

introduce a projection operator on polynomial traces on G:

Definition 3.7. Let k ∈ N.

⋆ By Pk(G) we denote the space of restrictions to G of homogeneous polynomial

functions of degree k on K.

⋆ Let
(
ϕk

γ

)
|γ|=k

be the basis in Pk(G) dual in L2(G) of the homogeneous monomials(
ϑα/α!

)
|α|=k

(ϑ = x

|x|
), i.e.:

(3.21)

∫

G

ϑα

α!
ϕk

γ(ϑ) dϑ = δαγ , |α| = |γ| = k.

By Pk we denote the projection operator L2(G) → Pk(G) defined as

(3.22) PkU =
∑

|α|=k

〈
U, ϕk

α

〉
G

ϑα

α!
.

Lemma 3.8. Let m ∈ N and η0, η real numbers such that η0 < 0 6 m < η. Let

δ ∈ (0, 1
2
). Then there exist two constants C, c > 0 such that for all V ∈ Hm(G) the

following estimates hold:
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES11

a) For λ satisfying Re λ ∈ [η0, η] and |λ − k| > δ for all k ∈ {0, . . . , m − 1}:

(3.23) c|V |
m; G;D(λ)

6 ‖V ‖
m; G;λ

6 C|V |
m;G; D(λ)

.

b) For λ satisfying |λ − k| 6 δ for a k ∈ {0, . . . , m − 1}:

(3.24) c|V |
m;G; D(λ)

6 ‖V − PkV ‖
m; G

+ |λ − k| ‖PkV ‖
m;G

6 C|V |
m;G; D(λ)

.

Proof. Let A be an annulus of the form {x ∈ K, 1
R

< |x| < R} for a R > 1. It is

not hard to see that one has the following equivalence of the norm ‖ · ‖m; G;λ and semi-

norm | · |m;G;D(λ) with the norm and semi-norm of Hm(A) on its closed subspace Sλ
m(A)

of homogeneous functions of the form rλV (ϑ):

c ‖rλV ‖
m; A

6 ‖V ‖
m; G;λ

6 C ‖rλV ‖
m;A

c |rλV |
m; A

6 |V |
m; G;D(λ)

6 C |rλV |
m;A

.

Here the equivalence constants can be chosen uniformly for λ in the whole strip η0 6

Re λ 6 η.

• The well-known Bramble-Hilbert lemma implies that the semi-norm | · |m;A is equiv-

alent to the norm ‖ · ‖m; A on Sλ
m(A) if and only if Sλ

m(A) does not contain any non-zero

polynomial of degree 6 m − 1: Thus for all λ 6∈ {0, . . . , m − 1} there exists Cλ such that

‖rλV ‖
m; A

6 Cλ|r
λV |

m; A
,

and Cλ can be chosen uniformly on the set Re λ ∈ [η0, η] with |λ − k| > δ for all k ∈
{0, . . . , m − 1}; whence estimates (3.23) in case a) of the lemma.

• Let λ be such that |λ − k| 6 δ for a k ∈ {0, . . . , m− 1}. The left inequality in (3.24)

is easy to prove with the help of the estimate

(1) |PkV |
m; G;D(λ)

6 C|λ − k| ‖PkV ‖
m; G

,

which is follows from |PkV |
m; G;D(k)

= 0.

Concerning the right-hand-side estimate of (3.24), the Bramble-Hilbert lemma argument

implies the equivalence of the semi-norm with the norm for functions V such that PkV =
0: For all V ∈ Hm(G) there holds

(2) ‖V − PkV ‖
m; G

6 C|V − PkV |
m; G;D(λ)

.

On the other hand, the operator rm∂m
r is a linear combination of the operators rm∂α

x
, |α| =

m, with coefficients bounded on G. Therefore

‖rm∂m
r (rλV )‖

0; A
6 C|rλV |

m;A
.

From (3.18) we get |λ(λ − 1) · · · (λ − m + 1)| ‖V ‖
0; G

6 C‖rm∂m
r (rλV )‖

0; A
, hence

|λ − k| ‖V ‖
0; G

6 C‖rm∂m
r (rλV )‖

0; A
6 C ′|V |

m;G; D(λ)
.

From the continuity of Pk in L2(G), we deduce

|λ − k| ‖PkV ‖
0; G

6 C|V |
m;G; D(λ)

.
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12 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

The equivalence of norms in L2(G) and H
m(G) on the finite dimensional range of Pk

yields finally

(3) |λ − k| ‖PkV ‖
m; G

6 C|V |
m; G;D(λ)

.

It remains to bound ‖V − PkV ‖
m; G

. Using (1), (2) and (3) we find

‖V − PkV ‖
m; G

6 C |V − PkV |
m; G; D(λ)

6 C
(
|V |

m; G;D(λ)
+ |PkV |

m; G;D(λ)

)

6 C
(
|V |

m; G;D(λ)
+ |λ − k| ‖PkV ‖

m; G

)

6 C |V |
m; G;D(λ)

,

which completes the proof of the lemma. �

Putting the norm equivalences (3.23) and (3.24) together, one is led to the following

definition of norms of meromorphic Hm(G)-valued functions.

Definition 3.9. Let λ 7→ U(λ) be a meromorphic function with values in Hm(G) for λ in a

strip b0 < Re λ < b1.

⋆ For b ∈ (b0, b1) and k ∈ N, and with Pk
G the projection operator (3.22) we set

(3.25a) Nm
G (U, b, k) =

{∫

| Im λ|61
Re λ=b

‖(I − Pk
G)U(λ)‖

2

m; G
d Im λ

+

∫

| Im λ|61
Re λ=b

|λ − k|2‖Pk
GU(λ)‖

2

m; G
d Imλ

+

∫

| Im λ|>1
Re λ=b

‖U(λ)‖
2

m; G;λ
d Im λ

} 1

2

.

⋆ For N = {k1, . . . , kj} ⊂ N ∩ [b0, b1], and using the norm (3.4), we introduce

(3.25b) Nm
G (U, [b0, b1], N) =

max
{

sup
b∈B0

Nm
G (U, b), sup

b∈B1

Nm
G (U, b, k1), . . . , sup

b∈Bj

Nm
G (U, b, kj)

}
,

with the sets Bℓ = (kℓ −
1
2
, kℓ + 1

2
) ∩ (b0, b1) for ℓ = 1, . . . , j and

B0 = (b0, b1) \ ∪
j
ℓ=1Bℓ.

⋆ If N = ∅, the definition (3.25b) becomes, compare Definition 3.1,

(3.25c) Nm
G (U, [b0, b1], ∅) = sup

b∈(b0,b1)

Nm
G (U, b) = Nm

G (U, [b0, b1]).

Using the continuity of Pk
G on Hm(G), we obtain the estimate

(3.26a) Nm
G (U, b, k) 6 Cb,m,k N

m
G (U, b)
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES13

where the constant Cb,m,k does not depend on U . On the other hand, the definition imme-

diately implies the estimate

(3.26b) Nm
G (U, b) 6 (b − k)−1 Nm

G (U, b, k), if b 6= k.

A consequence of the latter two inequalities is that for any fixed real number ρ ∈ (0, 1
2
],

we would obtain an equivalent norm to (3.25b) by defining Bℓ as (kℓ − ρ, kℓ + ρ)∩ (b0, b1)
instead of (kℓ −

1
2
, kℓ + 1

2
) ∩ (b0, b1).

3.3. Spaces defined by Mellin norms. The norms defined in (3.25b) suggest the intro-

duction of a class of Sobolev spaces Nm
β,β0;N with Mellin transforms meromorphic in a strip

η0 < Re λ < η and a fixed set of poles N.

Definition 3.10. Let m ∈ N and β, β0 ∈ R such that β 6 β0 and as usual, η = −β − n
2
,

η0 = −β0 −
n
2
. Let N be a subset of N ∩ [η0, η].

⋆ The functions u ∈ Nm
β,β0;N

(K) with support in B(0, 1) are the functions whose

Mellin transform M [u] is holomorphic in the half-plane Re λ < η0 and has a

meromorphic extension U to the half-plane Reλ < η satisfying the estimate

(3.27) Nm
G (U, [η0, η], N) < ∞ .

Let χ ∈ C ∞(Rν) be a cut-off function with support in B(0, 1), equal to 1 in a

neighborhood of the origin. The elements u of Nm
β,β0;N(S) are defined by the two

conditions that χu ∈ Nm
β,β0;N

(K) and (1 − χ)u ∈ Hm(S).
⋆ In the case when η0 = min{0, η} and N = N ∩ [η0, η], the space Nm

β,β0;N
(K) will

alternatively be denoted by Jm
max,β(K).

Note that in this definition, the set of poles N is contained in the interval [η0, η] deter-

mined by the weight exponents, but N has no relation with the regularity order m. Thus the

residues at the poles which, according to Theorem 3.4, give an asymptotic expansion at the

origin, can only be identified with the terms of a Taylor expansion in a generalized sense,

in general, because the corresponding derivatives need not exist outside of the origin. With

m = 0, for example, one gets weighted L2 spaces with detached asymptotics.

For the maximal J-weighted Sobolev spaces Jm
max,β, the definition immediately yields

the following properties.

Proposition 3.11. a) For all m > 0, β < β ′ implies Jm
max,β(S) ⊂ Jm

max,β′(S).

b) For all β ∈ R, 0 6 m′ < m implies Jm
max,β(S) ⊂ Jm′

max,β(S).

c) ∂α
x

is continuous from Jm
max,β(S) into J

m−|α|
max,β+|α|(S) for any α ∈ Nn, any m > |α|,

and any β.

d) The multiplication by x
α is continuous from Jm

max,β(S) into Jm
max,β−|α|(S) for any

α ∈ Nn.

From Definition 3.10 follows that the poles of the Mellin transform of elements of

Nm
β,β0;N

are associated with polynomials and that Nm
β,β0;N

can be split into a sum of a space

with homogeneous norm and a space of polynomials.
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14 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

Theorem 3.12. Let m ∈ N and β, β0 ∈ R such that β 6 β0 and as usual, η = −β − n
2
,

η0 = −β0−
n
2
. Let N be a subset of N∩ [η0, η]. Let u ∈ Nm

β,β0;N(K) with support in B(0, 1)
and let U be its Mellin transform. Then for b ∈ (η0, η] \N, the inverse Mellin transform u′

of U on the line Reλ = b belongs to Km
−b−n

2

(K) and there holds

(3.28) u′ − u =
∑

k ∈N∩(η0,b)

Res
λ = k

{
rλ U(λ)

}
is a polynomial.

The coefficients of the polynomial in (3.28) depend continuously on u in the norm of

Nm
β,β0;N

(K).

Proof. Let b ∈ (η0, η] \ N. By definition of Nm
β,β0;N

(K), we have in particular

Nm
G (U, b) =

( ∫

Re λ=b

‖U(λ)‖
2

m; G;λ
d Im λ

) 1

2

< ∞.

Theorem 3.2 then provides the existence of a function u′ ∈ Km
−b−n

2

(K) such that

M [u′](λ) = U(λ), ∀λ, Re λ = b,

and according to Theorem 3.4, there holds

u′ − u =
1

2iπ

∫

C

rλ U(λ) dλ =
∑

k ∈N∩(η0,b)

Res
λ = k

{
rλ U(λ)

}
.

Here C is a contour surrounding the poles of U in N ∩ [η0, b].
It remains to show that the residual at k ∈ N∩(η0, b) is a polynomial. From the finiteness

of Nm
G (U, [η0, η], N) follows in particular that

sup
|b−k|<1/2

Nm
G (U, b, k) < ∞

and therefore that both (I − Pk
G)U(λ) and (λ − k)Pk

GU(λ) are holomorphic at k. Hence

Res
λ = k

{
rλ U(λ)

}
= Res

λ = k

{
rλ Pk

GU(λ)
}

= rkPk
G Res

λ = k
U(λ) ,

which is a polynomial in x of degree k. �

We can now complete the characterization of the Km
β semi-norm that was begun in

Lemma 3.6.

Theorem 3.13. Let β < β0 be two real numbers. We set η = −β − n
2
, η0 = −β0 −

n
2

and

Nm = {0, . . . , m − 1} ∩ (η0, η]. Let u ∈ K0
β0

(K) with support in B(0, 1). Let U be its

Mellin transform.

(1) Then the following two conditions are equivalent

a. The semi-norm |u|
Km

β
(K)

is finite.

b. u ∈ Nm
β,β0;Nm

(K).
(2) Moreover we have the equivalence of norms

(3.29) c
(
‖u‖

K0
β0

(K)
+ |u|

Km
β

(K)

)
6 Nm

G (U, [η0, η], Nm)

6 C
(
‖u‖

K0
β0

(K)
+ |u|

Km
β

(K)

)
.
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES15

Proof. a. ⇒ b. and equivalence (3.29). Let u ∈ K
0
β0

(K) with finite K
m
β (K) semi-norm

and support in B(0, 1). According to Lemma 3.6 its Mellin transform is defined for Re λ 6

η0 and has a meromorphic extension U to the half-plane Re λ < η satisfying estimates

(3.15), i.e., the semi-norm |u|
Km

β
(K)

is equivalent to the norm

(1) sup
b∈(η0,η)

(∫

Re λ=b

|U(λ)|
2

m; G;D(λ)
d Im λ

) 1

2

.

But Lemma 3.8 reveals that the norm (1) is equivalent to

(2) Nm
G (U, [η0, η], Nm) with Nm = {0, . . . , m − 1} ∩ [η0, η].

Hence Lemma 3.6 yields the equivalence of the norm (2) with the semi-norm |u|
Km

β
(K)

.

On the other hand, the norm ‖u‖
K0

β0
(K)

is equivalent to N 0
G(U, η0). Therefore the norm

(3) ‖u‖
K0

β0
(K)

+ |u|
Km

β
(K)

present in (3.29) is equivalent to

(4) N 0
G(U, η0) + Nm

G (U, [η0, η], Nm).

It remains to prove that (4) is equivalent to Nm
G (U, [η0, η], Nm).

• If Nm = Nm (this occurs if η0 6∈ {0, . . . , m − 1}), we have the equality of norms

Nm
G (U, [η0, η], Nm) = Nm

G (U, [η0, η], Nm). Moreover N 0
G(U, η0) is bounded by the quan-

tity Nm
G (U, [η0, η], Nm). Hence the desired equivalence.

• If Nm 6= Nm, then η0 ∈ {0, . . . , m − 1} and

(5) Nm = Nm ∪ {η0}.

Since all norms are equivalent on the range of Pk
G, we find the estimate

(6) Nm
G (U, η0) 6 C

(
N 0

G(U, η0) + Nm
G (U, η0, η0)

)
6 C · norm (4).

Let us choose b ∈ (η0, η0 + 1
2
). We have

(7) Nm
G (U, b) 6 C(b)Nm

G (U, [η0, η], Nm),

where C(b) means that this constant depends on b (and would blow up if b approaches

η0, cf. (3.26b)). The finiteness of Nm
G (U, η0) and Nm

G (U, b) implies that u ∈ Km
β0

(K) ∩
Km

−b−n
2

(K) and by Theorem 3.3:

(8) Nm
G (U, [η0, b], ∅) 6 C

(
Nm

G (U, η0) + Nm
G (U, b)

)
.

(6)-(8) gives that Nm
G (U, [η0, b], ∅) is bounded by norm (4), which, in association with (5)

implies that Nm
G (U, [η0, η], Nm) is bounded by (4). The converse estimate is obvious.

b. ⇒ a. Let u ∈ K0
β0

(K) ∩ Nm
β,β0;Nm

(K) with support in B(0, 1). Since η0 6∈ Nm, we

have in particular, cf. (3.26b)

Nm
G (U, η0) 6 C Nm

G (U, [η0, η], Nm).
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16 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

Hence we obtain that u belongs to K
m
β0

(K). Therefore, for all α, |α| = m, the function

wα = rm∂α
x
u belongs to K

0
β0

(K). Let Wα be its Mellin transform. By construction, and

thanks to Lemma 3.8, we find

N 0
G(Wα, [η0, η], ∅) 6 C Nm

G (U, [η0, η], Nm).

Hence wα ∈ K0
β(K), and therefore the Km

β (K) semi-norm of u is finite. �

3.4. Spaces defined by weighted semi-norms. We have seen in Theorem 3.13 how a

space defined by two weighted seminorms | · |K0
β0

and | · |Km
β

has a Mellin characterization

described by the space Nm
β,β0;Nm

. We are now generalizing this to the case of spaces given

by several weighted semi-norms, and this will eventually lead to the Mellin characterization

of the space Jm
β , which is defined by the m + 1 semi-norms | · |Kℓ

β+m−ℓ
, 0 6 ℓ 6 m, see

Definition 2.2.

Definition 3.14. Let L be a subset of N that includes 0: For each ℓ ∈ L let βℓ be a weight

exponent such that

βℓ decreases as ℓ increases ,

and denote B = {βℓ : ℓ ∈ L}. We define the associated norm

(3.30) ‖u‖
JL

B
(S)

=
( ∑

ℓ∈L

∑

|α|=ℓ

‖rβℓ+ℓ∂α
x
u‖

2

0;S

) 1

2

≡
(∑

ℓ∈L

|u|
2

Kℓ
βℓ

(S)

) 1

2

.

The Hilbert space defined by this norm is denoted by JL

B
(S).

This definition includes the weighted Sobolev spaces with homogeneous norms and

those with non-homogeneous norms as obvious special cases:

• We obtain the norm in Km
β by choosing βℓ = β for all ℓ and L any arbitrary subset

contained in {0, . . . , m} and containing 0 and m.

• According to Definition 2.2, we obtain the norm in Jm
β by choosing

L = {0, . . . , m} , βℓ = β + m − ℓ .

• Finally, the space defined by the norm K0
β0

and the seminorm Km
β simply corre-

sponds to L = {0, m} and B = {β0, β}.

We can use Theorem 3.13 to obtain a first Mellin characterization of the space JL

B
(S).

We set, as usual, ηℓ = −βℓ −
n
2
. Then we have

(3.31) J
L

B
(S) =

⋂

ℓ∈L

N
ℓ
βℓ,β0;Nℓ

(S) with Nℓ = {0, . . . , ℓ − 1} ∩ (η0, ηℓ] .

This can be simplified with the following result.

Lemma 3.15. Let L, B and Nℓ be as above. Let m = maxL. Then there exists a unique

subset N ⊂ Nm = {0, . . . , m − 1} ∩ (η0, η] such that there is a norm equivalence

(3.32) cNm
G (U, [η0, η], N) 6 max

ℓ∈L

N ℓ
G(U, [η0, ηℓ], Nℓ) 6 C Nm

G (U, [η0, η], N).
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES17

This set N is given by

(3.33) N = Nm \
( ⋃

ℓ∈L

[ℓ, ηℓ]
)
.

Proof. Assume that N is such that the norm equivalence (3.32) holds. Then any pole k ∈ N

that lies in an interval (η0, ηℓ] must appear as a pole in the corresponding set Nℓ and vice

versa. This means

(3.34) N ∩ (η0, ηℓ] ⊂ {0, . . . , ℓ − 1} ∀ℓ ∈ L .

In other words, for k ∈ Nm there holds k 6∈ N if and only if there exists ℓ ∈ L such that

ℓ 6 k 6 ηℓ.

This implies the formula (3.33) for N. Conversely, it is not hard to see that if we define the

set N by (3.33), then the norm equivalence (3.32) holds. �

Combining (3.31) with Lemma 3.15, we obtain the Mellin characterization of the space

J
L

B
(S).

Proposition 3.16. Let L and B satisfy the conditions in Definition 3.14. Let m = max L,

β = βm and define N by (3.33). Then

(3.35) J
L

B
(S) = N

m
β,β0;N

(S) .

We have seen that with each set of semi-norms given by L and B there is a unique

associated set of poles N that characterizes the space Nm
β,β0;N

(S) and therefore the space

JL

B
(S). The converse is not always true, that is, the spaces Nm

β,β0;N
cannot always be defined

by a set of weighted Sobolev semi-norms. A necessary condition is that N ⊂ Nm. But this

is also sufficient:

For fixed m and β, let N be a given subset of Nm. We can construct indices L and

weight exponents B such that the formula (3.33), and therefore the equality of spaces

(3.35) in Proposition 3.16 holds. This can be done by setting

(3.36) L = {0} ∪
(
Nm \ N

)
∪ {m},

and for all ℓ ∈ L, ℓ 6= 0, m,

(3.37) βℓ = −ηℓ −
n
2

with ηℓ = ℓ,

and η0 = 0 if 0 6∈ N, η0 < 0 arbitrary if 0 ∈ N.

In this context, the counter-example (2.8), for instance, corresponds to the choice of

m > 2, L = {0} ∪ {2, . . . , m}, and ηℓ = η − m + ℓ with m < η < m + 1, so that

ηℓ ∈ (ℓ, ℓ + 1). From these informations one obtains N = {1}.

From the equality (3.35), we conclude that the space J
L

B
(S) depends only on m, β = βm

and on the set of integers N. Several different choices of L and B can therefore lead to the

same space. We have already seen this for the space Km
β , where the choice of L is arbitrary,

as soon as it includes 0 and m. This observation expresses the fact that for the spaces

with homogeneous norms, the intermediate semi-norms are bounded by the two extreme

semi-norms. The set of poles N is empty in this case.

Also for the space with non-homogeneous norm Jm
β , several different choices of sets of

semi-norms are possible, as we will discuss now.
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18 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

3.5. Mellin characterization of spaces with non-homogeneous norms. For the weight-

ed Sobolev space with non-homogeneous norm Jm
β , several different choices of sets {L, B}

of semi-norms are possible that lead to the same set of poles N and define therefore, ac-

cording to Proposition 3.16, the same space. The original definition of Jm
β corresponds to

the choice L = {0, . . . , m} and βℓ = β +m− ℓ, ℓ ∈ L, which implies ηℓ+1 = ηℓ +1. From

this information and formula (3.33) one easily deduces that N is either empty or a set of

consecutive integers starting with 0. It is non-empty if and only if 0 < η < m, and in this

case

(3.38) N = {0, . . . , m − 1} ∩ (η − m, η] = {0, . . .M} with M = [η] .

Since N = ∅ corresponds to the space Km
β and N = {0, . . . , [η]} to the space Jm

max,β, we

have found the following classification of the space Jm
β .

Proposition 3.17. Let m ∈ N, β ∈ R and η = −β − n
2
.

a) If η < 0, then Jm
β (S) = Jm

max,β(S) = Km
β (S).

b) If 0 6 η < m, then Jm
β (S) = Jm

max,β(S).

c) If η > m, then Jm
β (S) = Km

β (S).

The set N of integers (3.38) that characterizes Jm
β can also be obtained by other choices

for the weight indices: We start again with 0 < η < m and L = {0, . . . , m}, but now we

fix some integer ℓ0 in the interval (η, m]. Then we define the weight indices βℓ in such a

way that

ηℓ = η − ℓ0 + ℓ for 0 6 ℓ 6 ℓ0 and ηℓ = η for ℓ > ℓ0

Since η0 < 0 and ℓ0 − 1 > M , we easily see that this set of weight indices defines the

same set of degrees N = {0, . . .M} as in (3.38). In this way, we have proved the “step-

weighted” characterization of Jm
β :

Proposition 3.18. Let β ∈ R and m ∈ N such that m > η = −β − n
2
. Let ρ be any real

number in the interval (−n
2
, β + m]. Then the norm in the space Jm

β (S) is equivalent to

(3.39)
( ∑

|α|6m

‖rmax{β+|α|, ρ}∂α
x
u‖

2

0;S

) 1

2

.

Corollary 3.19. Let β ∈ R. Set η = −β − n
2
. Let m be a natural number, m > η. Then

J
m+1
β (S) ⊂ Jm

β (S).

Proof. Using Proposition 3.18, we note that we can choose the same ρ for Jm
β (S) and

J
m+1
β (S). The embedding J

m+1
β (S) ⊂ Jm

β (S) follows. �

Still another choice giving the same result is possible. When 0 < η < m, it suffices to

take L = {0, m}, ηm = η, and any η0 < 0. In this case,

N = Nm = {0, . . .M},

which corresponds to the identity Jm
β (S) = Jm

max,β(S). We obtain the corollary that when

0 < η < m, the intermediate semi-norms in the definition of Jm
β (S) are indeed bounded by

the sum of the two extreme semi-norms. This is not the case, as we have seen, if η > m.
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES19

Let us mention another identity that can be obtained from these purely combinatorial

arguments, namely

K
m
β (S) = J

m
β (S) ∩ K

0
β(S) .

This can be seen as follows: The intersection Jm
β (S) ∩ K0

β(S) is included in the space

JL

B
(S) with L = {0, m} and β0 = βm = β. Then N = ∅ and we find that this latter space

coincides with Km
β (S).

Remark 3.20. Corollary 3.19 gives a partial response to the question of how to define

spaces Js
β with non-integer Sobolev index s. If [s] > η, the natural idea is to define the

space of index s by Hilbert space interpolation between spaces with integer indices [s] and

[s] + 1. The same possibility exists if [s] + 1 6 η, since for m + 1 6 η the inclusion

J
m+1
β (S) ⊂ Jm

β (S) holds, too, because according to Proposition 3.17 c) the J-weighted

spaces coincide with the K-weighted spaces in this range.

For fixed weight β, both scales of spaces
(
Km

β (S)
)

m∈N
and

(
Jm
max,β(S)

)
m∈N

can be ex-

tended in a natural way by interpolation to scales with arbitrary real positive index. This

definition, when extended by analogy to the n−1-dimensional conical manifold ∂K, is then

also compatible with the trace operator, that is, the trace space of Km
β (K) is K

m− 1

2

β+ 1

2

(∂K)

and similarly for the Jmax scale.

There is, however, no natural definition of J
s
β for the remaining non-integer indices s for

which [s] 6 η < [s]+1. The problem is that if m > η, so that Jm
β (S) = Jm

max,β(S), then the

trace space is also of the Jmax class, because it contains non-zero constant functions. But if

m − 1
2

< η, then the candidate for the trace space would be J
m− 1

2

β+ 1

2

and should be of the K

class, which does not contain non-constant functions.

As a further corollary of the Mellin description of the space Jm
β , we give an equivalent

definition by derivatives in polar coordinates that is valid when η < 1 and will be useful

later on:

Lemma 3.21. Let β ∈ R, η = −β − n
2

and m ∈ N, m > 1. We assume that η < 1. Then

(3.40)
{ ∑

1 6ℓ+|γ|6m

‖rβ(r∂r)
ℓ∂γ

ϑu‖
2

0;S
+ ‖rβ+1u‖

2

0,S

} 1

2

defines a norm on Jm
β (S), equivalent to its natural norm.

Proof. If η < 0, the statement is clear because, in that case, Jm
β (S) coincides with Km

β (S).
Let us suppose that 0 6 η < 1 and let u be such that its norm (3.40) is finite. Using

a cut-off, we can assume that u has the same regularity on K, with support in S. Let

M [u] =: U be the Mellin transform of u. By the Parseval identity we have the equivalence

(1)
∑

16ℓ+k 6m

∫

Re λ=η

|λ|2ℓ|U(λ)|
2

k;G
d Im λ ≃

∑

1 6ℓ+|γ|6m

‖rβ(r∂r)
ℓ∂γ

ϑu‖
2

0;S
.

It is easy to see that we have the uniform estimate
m∑

k=1

|U(λ)|
k;G; D(λ)

6 C
∑

16ℓ+k 6m

|λ|ℓ|U(λ)|
k;G

.
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20 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

We deduce that u ∈ J
m
β (S).

Conversely, let u ∈ Jm
β (S). We apply Lemma 3.8. Outside a neighborhood of 0, we have

the uniform estimate:

(2) ‖U(λ)‖
m; G;λ

6 C|U(λ)|
m; G; D(λ)

,

and in a bounded neighborhood of 0

(3) ‖U(λ) − P0U(λ)‖
m; G

+ |λ|‖U(λ)‖
m; G

6 C|U(λ)|
m;G; D(λ)

.

Since P0U(λ) is a constant, there holds

(4)

m∑

k=1

|U(λ)|
k;G

6 C‖U(λ) − P0U(λ)‖
m; G

.

We deduce from (2)-(4) that
∑

16ℓ+k 6m

|λ|ℓ|U(λ)|
k;G

6 C|U(λ)|
m;G; D(λ)

.

The boundedness of norm (3.40) follows from (1) and Lemma 3.6. �

We can now collect the informations about the Mellin description of the space J
m
β . For

this, we introduce some notation concerning the Taylor expansion at the origin:

For u ∈ C ∞(S) and M ∈ N, we write TMu ∈ P
M(S) for the Taylor part of u of degree

M at 0:

(3.41) TMu =
∑

|α|6M

∂α
x
u(0)

x
α

α!
.

By continuity, the coefficients of the Taylor expansion and therefore the corner Taylor

operator TM can be defined on the space Nm
β,β0;N

(S), as soon as {0, . . . , M} ⊂ N ⊂
(η0, η), see Theorem 3.12.

The proofs of the following two theorems are contained in the results of the preceding

section.

Theorem 3.22. Let K be a regular cone in Rn. Let β ∈ R. We set, as usual

η = −β − n
2

and M = [η].

Let N = {0, . . . , M} if M > 0 and m > η, and N = ∅ in the other cases (either M < 0
or m 6 η). Let u ∈ K0

β+m(K) with support in B(0, 1). Let U be its Mellin transform. Set

η0 = η − m and β0 = η0 −
n
2

= β + m.

a) Then u ∈ Jm
β (K) if and only if u ∈ Nm

β,β0;N
(K). Moreover we have the equivalence

of norms

(3.42) c ‖u‖
Jm
β

(K)
6 Nm

G (U, [η − m, η], N) 6 C ‖u‖
Jm
β

(K)
.

Furthermore U is meromorphic in the half-plane Re λ < η with only possible poles

on natural numbers and the residues of rλU(λ) are polynomials.
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES21

b) Let M∗ = M if η 6= M and M∗ = M − 1 if η = M . Let b ∈ (M∗, η] with b 6= η if

η = M . Then the inverse Mellin transform u′ of U on the line Re λ = b belongs to

Km
−b−n

2

(K) and there holds, with notation (3.41)

(3.43) u′ − u =

M∗∑

k=0

Res
λ = k

{
rλ U(λ)

}
= −TM∗

u.

When M < 0 or m 6 η, the sum of residues collapses to 0, and u belongs to

Km
β (K).

We will call the case η ∈ N critical.

In the non-critical case, we can take b = η in the previous result, and we obtain therefore

the following relations between the space Jm
β (S) with non-homogeneous norm and the

space K
m
β (S) with homogeneous norm:

Theorem 3.23. Let K ⊂ Rn be a cone and S = K ∩ B(0, 1). Let β ∈ R. We set

η = −β − n
2

and M = [η].

Let m ∈ N. Then there holds:

a) If η < 0, the spaces Jm
β (S) and Km

β (S) coincide.

b) If η > 0 and m 6 η, the spaces Jm
β (S) and Km

β (S) coincide.

c) If η > 0 and m > η, then Jm
β (S) and Jm

max,β(S) coincide and there are two cases:

• The non-critical case η 6∈ N: The corner Taylor operator TM defined in (3.41)

is continuous from Jm
β (S) to PM(S) and I − TM is continuous from Jm

β (S) to

Km
β (S).

The decomposition u = (u − TMu) + TMu gives the direct sum

(3.44) J
m
β (S) = K

m
β (S) ⊕ P

M(S) .

• The critical case η ∈ N: The operator TM−1 is continuous on Jm
β (S), but TM

is not. The space Jm
β (S) contains Km

β (S) ⊕ PM(S) as a strict subspace of

infinite codimension.

The structure of J
m
β in the critical case, and the generalization of the Taylor expansion in

that case, is the subject of the following section.

4. STRUCTURE OF SPACES WITH NONHOMOGENEOUS NORMS IN THE CRITICAL CASE

4.1. Weighted Sobolev spaces with analytic regularity. Using the monotonicity of em-

beddings K
m+1
β (S) ⊂ Km

β (S) for all m and β and J
m+1
β (S) ⊂ Jm

β (S) if M > η = −β − n
2
,

we introduce corresponding weighted spaces with infinite and with analytic regularity:

Definition 4.1. Let β ∈ R and η = −β − n
2
.

⋆ K
∞
β (K) =

⋂

m∈N

K
m
β (K).
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22 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

⋆ We denote by Aβ(K) the subspace of the functions u ∈ K
∞
β (K) satisfying the

following analytic estimates for some C > 0

(4.1) ∃C > 0, ∀k ∈ N, |u|
Kk

β
(K)

6 Ck+1k! .

⋆ J
∞
β (S) =

⋂

k∈N , k>η

J
k
β(S).

⋆ The analytic weighted class Bβ(S) with non-homogeneous norm is the space of

functions u ∈ J∞β (S) such that there exists a constant C > 0 with

(4.2) ∀k ∈ N with k > η, |u|
Kk

β
(K)

6 Ck+1k!.

Note that in (4.2) the estimates are the same as in (4.1) but only for k > η. This suggests

that for η < 0, we have Bβ(S) = Aβ(S), which will be proved below.

For generalization of the Taylor expansion in the critical case, we develop the Mellin-

domain analogue of an idea from [4], based on the splitting of uM provided by the decom-

position

U(λ) = (I − PM)U(λ) + PMU(λ).

The first part is the Mellin transform of a function in Km
β (K) and the second one has

essentially a one dimensional structure – that is, the most important features of its structure

are described by the behavior of functions of one variable – and it can be regularized in

such a way that it splits again into two parts, one in the analytic class Bβ(K), and the

remaining part in Km
β (K).

4.2. Mellin regularizing operator in one dimension. The main tool of the following

analysis is a one-dimensional Mellin convolution operator:

Definition 4.2. We denote by K : v 7→ Kv be the Mellin convolution operator defined by

(4.3) M [Kv](λ) = eλ2

M [v](λ).

Owing to the strong decay properties of the kernel eλ2

in the imaginary direction, the

operator K has analytic regularizing properties in the scales Km
β and Jm

β .

Proposition 4.3. Let β ∈ R and m > 1. There holds:

a) If v ∈ Km
β (R+), then Kv ∈ Aβ(R+).

b) If v ∈ Jm
− 1

2

(R+) with support in I := [0, 1], then Kv|I belongs to the analytic class

B− 1

2

(I), and v − Kv ∈ K
m
− 1

2

(R+).

c) If v ∈ J
m
β (R+) with support in I := [0, 1], and if β < −1

2
so that v is continuous in

0, then Kv is continuous in 0 as well, and Kv(0) = v(0).

The proof of this proposition is based on the following characterization of analytic

classes by Mellin transformation:

Lemma 4.4. Let β ∈ R and η = −β − 1
2
. We set I = (0, 1). There holds
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES23

a) Let v ∈ K
1
β(R+). Then v belongs to Aβ(R+) if and only if V := M [v] satisfies

(4.4) ∃C > 0, ∀k > 1,

{∫

Re λ=η

|λ|2k |V (λ)|2 d Im λ

} 1

2

6 Ck+1k!

b) Let v ∈ J1
− 1

2

(R+). Then v|I belongs to B− 1

2

(I) if (4.4) is satisfied with η = 0 and

V (λ) := λ−1M [r∂rv](λ).

Proof. a) According to Definition 4.1, v ∈ Aβ(R+) if and only if

∃C > 1, ∀k > 0, ‖rβ+k∂k
r v‖

0;R+

6 Ck+1k!

Using (3.18), one can see that this is equivalent to

∃C > 1, ∀k > 0, ‖rβ(r∂r)
kv‖

0;R+

6 Ck+1k!

Then a) is a consequence of the Parseval equality.

b) Let v ∈ J1
− 1

2

(R+). With V (λ) = λ−1M [r∂rv](λ), for any k > 1 the function λkV (λ) is

the Mellin transform of (r∂r)
kv on the line Re λ = 0. Thus, (4.4) with η = 0 implies the

analytic estimates

∃C > 0, ∀k > 1, ‖r−
1

2 (r∂r)
kv‖

0;R+

6 Ck+1k!

Restricting this to I , and using Definition 4.1, we find that v|I ∈ B− 1

2

(I). �

Proof of Proposition 4.3. a) Let v ∈ Km
β (R+) and let V be the Mellin transform of v. It is

defined for Re λ = η and, in particular, the norm

N0 :=

{ ∫

Re λ=η

|V (λ)|2 d Im λ

} 1

2

is finite. The Mellin transform of Kv is λ 7→ eλ2

V (λ). We have for any k > 1

{ ∫

Re λ=η

|λ|2k |eλ2

V (λ)|2 d Imλ

} 1

2

6 N0 sup
Re λ=η

|λ|k|eλ2

|

6 C(η)N0 sup
ξ>0

ξke−ξ2

= C(η)N0

(
k

2e

)k
2

.

Therefore condition (4.4) is satisfied for the Mellin transform of Kv. By Lemma 4.4 a), Kv
belongs to Aβ(R+).

b) Let v ∈ Jm
− 1

2

(R+) with support in I . By Corollary 3.19, v ∈ J1
− 1

2

(R+). Now, V is

defined as the Mellin transform of r∂rv divided by λ. Thus V coincides with M [v] where

M [v] is well defined, and the Mellin transform of Kv is given by eλ2

V (λ). With the same

arguments as above, we prove that Kv satisfies the assumptions of Lemma 4.4 b), hence

Kv|I ∈ B− 1

2

(I).
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24 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

The Mellin transform of v − Kv is (1 − eλ2

)V (λ). Since r−
1

2 (r∂r)
kv ∈ L

2(R+) for

k = 1, . . . , m we have

(1)

m∑

k=1

{∫

Re λ=0

|λ|2k |V (λ)|2 d Im λ

} 1

2

< ∞.

The function λ 7→ (1 − eλ2

) is bounded on the line Re λ = 0 and has a double zero at

λ = 0. Hence we deduce from (1) that

m∑

k=0

{∫

Re λ=0

|λ|2k |(1 − eλ2

)V (λ)|2 d Im λ

} 1

2

< ∞.

Therefore v − Kv ∈ Km
− 1

2

(R+).

c) Let v ∈ Jm
β (R+) with support in I , β < −1

2
. It is sufficient to consider the case m = 1

and −3
2

< β < −1
2
. With η = −β − 1

2
we then have 0 < η < 1. Let V be the Mellin

transform of v, and set w = v − Kv. As above we have

M [w](λ) = (1 − eλ2

)V (λ) =
1 − eλ2

λ
U(λ), where U = M [r∂rv] .

Since the function u = r∂rv belongs to K0
β(R+) and has support in I , U is holomorphic

for Reλ < η, and M [w](λ) has the same property. It follows that w ∈ K1
β(R+), which

implies that w is continuous at 0 and w(0) = 0. �

4.3. Generalized Taylor expansions. We are now ready for the definition of the splitting

which replaces the Taylor expansion in the critical case: Let us assume that the natural

number M is critical. We are going to replace the homogeneous part

TMu =
∑

|α|=M

∂α
x
u(0)

x
α

α!
,

of the corner Taylor expansion with a new operator u 7→ KMu for which the point traces

∂α
x
u(0) are replaced by moments defined thanks to the the dual basis (3.21)

(
ϕM

γ

)
|γ|=M

.

Let us recall that:

(4.5)

∫

G

ϑα

α!
ϕM

γ (ϑ) dϑ = δαγ , |α| = |γ| = M, ϑα = r−M
x

α ,

and this dual basis served to define the projection operator PM : L
2(G) → P

M(G) as

(4.6) PMU =
∑

|α|=k

〈
U, ϕM

α

〉
G

ϑα

α!
.

Definition 4.5. Let M ∈ N. For u ∈ C ∞(K), let TM−1u be its Taylor expansion at 0 of

order M − 1, and uM = u − TM−1u its Taylor remainder of order M , considered in polar

coordinates (r, ϑ). With the dual basis (4.5), we define the moments of uM :

(4.7) ∀α, |α| = M, dα(r) =
〈
r−MuM(r, ·), ϕM

α

〉
G

, r > 0.
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MELLIN ANALYSIS OF WEIGHTED SOBOLEV SPACES WITH NONHOMOGENEOUS NORMS ON CONES25

Let us fix a cut-off function χ ∈ C ∞
0 ((−1, 1)), χ ≡ 1 on [−1

2
, 1

2
]. Then, using (4.3), the

regularizing operator KMu is defined by

(4.8) KMu =
∑

|α|=M

K
(
χdα

) x
α

α!
.

Remark 4.6. For M = 0, dα ≡ d0 is the mean value of u(r, ·) over G and K0u = K
(
χd0

)
.

In particular, if u is continuous in 0, then both d0 and K
(
χd0

)
are continuous in 0, and

K0u(0) = u(0), see Proposition 4.3 c). More generally, for sufficiently smooth u, one has

dα(0) = K
(
χdα

)
(0) = ∂α

x
u(0).

The moments dα are well-defined in the critical case and have the following properties:

Proposition 4.7. Let β be real such that −β − n
2

coincides with a non-negative integer M .

For m > M , let u ∈ Jm
β (K) with support in B(0, 1). Then the moments dα as defined in

(4.7) satisfy:

a) For all |α| = M , χdα ∈ Jm
− 1

2

(R+).

b) If ∀|α| = M , χdα ∈ Km
− 1

2

(R+), then u − TM−1u belongs to Km
β (K).

Proof. We can assume without restriction that χu = u. Let us set v = u − χTM−1u. Then

χdα[u] = dα[v] and

v − TM−1v = v and u − TM−1u = v − (1 − χ)TM−1u.

Since (1 − χ)TM−1u belongs to Km
β (K), we can replace u with v and omit the cut-off χ.

We still denote v by u. The Mellin transform U(λ) of u is holomorphic in the half-plane

Re λ < M and, by Theorem 3.22, the norm

(4.9) sup
b∈ (M− 1

2
,M)

{ ∫

| Im λ|61
Re λ=b

‖(I − PM)U(λ)‖
2

m; G
+ |λ − M |2‖PMU(λ)‖

2

m; G
d Im λ

+

∫

| Im λ|>1
Re λ=b

‖U(λ)‖
2

m; G;λ
d Im λ

} 1

2

is bounded by C‖u‖
Jm
β

(K)
.

As a mere consequence of the definition of PM , see (4.6), we have the uniform inequality

for Re λ < M

‖PMU(λ)‖
m; G;λ

6 C‖U(λ)‖
m; G; λ

.

Hence we deduce from estimates (4.9) that

sup
b∈(M− 1

2
,M)

∫

Re λ=b

‖(I − PM )U(λ)‖
2

m; G;λ
d Im λ 6 C‖u‖

2

Jm
β

(K)
.

Thus Theorem 3.2 yields that M−1[(I − PM)U ] belongs to K
m
β (K).
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26 MARTIN COSTABEL, MONIQUE DAUGE, AND SERGE NICAISE

Let us set Dα = M [dα]. We have

Dα(λ) = M

[〈
r−MuM , ϕM

α

〉
G

]
(λ)

= M

[〈
uM , ϕM

α

〉
G

]
(λ + M)

=
〈
U(λ + M), ϕM

α

〉
G
.

Therefore, by formulas (4.5) and (4.6), we find

(1) Dα(λ) =
〈
PMU(λ + M), ϕM

α

〉
G
.

a) We deduce from (1) and (4.9) that Dα is holomorphic in the half-plane Re λ < 0 and

that

sup
b∈ (− 1

2
,0)

{∫

Re λ=b

(
|λ|2 + |λ|2m

)
|Dα(λ)|2 d Im λ

} 1

2

is bounded. This allows to prove that dα ∈ Jm
− 1

2

(R+).

b) If dα ∈ Km
− 1

2

(R+), then

∫

Re λ=0

(
1 + |λ|2m

)
|Dα(λ)|2 d Im λ

is bounded. Since by (1) and (4.5):

PMU(λ + M) =
∑

|α|=M

Dα(λ)
ϑα

α!

we find ∫

Re λ=M

‖PMU(λ)‖
2

m; G;λ
d Im λ < ∞,

hence M−1[PMU ] ∈ Km
β (K). Since M−1[(I−PM )U ] ∈ Km

β (K), this ends the proof. �

We conclude this section with a result about the generalized Taylor expansion at the

corner in the critical case. The homogeneous part of critical degree
∑

|α|=M ∂α
x
u(0) x

α

α!

does not make sense, because the Taylor coefficients ∂α
x
u(0) are not bounded with respect

to the J
m
β norm in this case. But one can replace the constants ∂α

x
u(0) by “generalized

constants”, namely the analytic functions K
(
χdα

)
, which means that the homogeneous

part of degree M of the Taylor expansion is replaced by KMu, which is not polynomial but

belongs to the analytic class Bβ(S). The “Taylor remainder” then belongs to Km
β (K).

Theorem 4.8. Let β be such that −β − n
2

= M ∈ N and let u ∈ Jm
β (K) with support in

B(0, 1). Then

(4.10) u − TM−1u − KMu ∈ K
m
β (S) and KMu ∈ Bβ(S).

Proof. Let u ∈ Jm
β (K) with support in B(0, 1). By Proposition 4.7 a), for all |α| = M , χdα

belongs to Jm
− 1

2

(R+). By Proposition 4.3 b), we deduce that K(χdα) belongs to B− 1

2

(I).

Let us consider the function

vα : S ∋ x 7→ K(χdα)(r)
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and the class B−n
2
(S). This class is associated with η = 0. Therefore, using Lemma 3.21

we deduce that vα ∈ B−n
2
(S) as a direct consequence of the fact that K(χdα) ∈ B− 1

2

(I).

Multiplying by x
α, we find that x 7→ x

αvα(x) belongs to B−n
2
−M(S) = Bβ(S). Finally

KMu belongs to Bβ(S).
Let v = u − TM−1u − KMu. It remains to show that v ∈ Km

β (S). Denote by dα[v] the

moments of v defined like in (4.7). We notice that

χdα[v] = χdα − χK(χdα).

But Proposition 4.7 a) yields χdα ∈ Jm
− 1

2

(R+) and then by Proposition 4.3 b) we get χdα −

K(χdα) ∈ Km
− 1

2

(R+), hence χdα[v] ∈ Km
− 1

2

(R+). The regularity v ∈ Km
β (S) is then a

consequence of Proposition 4.7 b). �

Corollary 4.9. Let β be such that −β − n
2

= M ∈ N and m > M . Then the space Km
β (S)

is not closed in Jm
β (S) and the quotient Jm

β (S)/Km
β (S) is infinite dimensional.

5. CONCLUSION

Theorems 3.22 and 4.8 can advantageously be used for the analysis of second order

elliptic boundary value problems in domains Ω with corners: Let L be the interior operator

and B the operator on the boundary. L is supposed to be elliptic on Ω and B to cover L on

∂Ω. The order d of B is 0 or 1.

Theorem 3.22 fully characterizes the spaces Jm
β by Mellin transformation. This is an

essential tool for stating necessary and sufficient conditions for (L, B) to define a Fredholm

operator:

J
m
β (Ω) −→ J

m−2
β+2 (Ω) × Γ∂ΩJ

m−d
β+d (Ω)

where Γ∂Ω denotes the trace operator on ∂Ω. When Km
β spaces are involved instead, this

condition is the absence of poles for the corner Mellin resolvents on certain lines {Reλ =
const}, see [3]. Theorem 3.22 allows to prove by Mellin transformation that the necessary

and sufficient condition associated with spaces J
m
β is the injectivity modulo polynomials

(cf. [2, 1]) on similar lines in the complex plane.

Theorem 4.8 allows to prove an analytic shift theorem in Jm
β spaces for elliptic (L, B)

with analytic coefficients: Roughly, this means that if a solution u belongs to J2
β(Ω) and is

associated with a right hand side in RBβ(Ω) := Bβ+2(Ω)×Γ∂ΩBβ+d(Ω), then u belongs to

Bβ(Ω). This result relies on

(1) The analytic shift theorem in the scale K
m
β : If u ∈ K

2
β(Ω) and the right hand sides

belongs to RAβ(Ω), then u ∈ Aβ(Ω).
(2) The splitting (4.10).

The analytic shift theorem in the scale Km
β , that is with homogeneous norms, can be proved

by a “standard” technique of dyadic refined partitions towards the corners combined with

local analytic estimates in smooth regions. This technique cannot be directly applied to

spaces with non-homogeneous norms, hence the utility of the splitting (4.10).

See [1, Part II] for details.
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