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Abstract. The aim of this work is to provide a description of the corner asymp-
totics for the solutions of Maxwell equations in and outside a conductor body
and to investigate the limit as the ratio permittivity/conductivity tends to
zero (the eddy current limit). Corner singularities of the Maxwell transmission
problem and also of the eddy current model have been described elsewhere
[6, 7]. Here we concentrate on the uniform behavior with respect to the small
parameter describing the eddy current limit — analyticity of the singular func-
tions and stability of the decomposition of the fields into regular and singular
parts.

Introduction

We consider the time-harmonic Maxwell equations in a medium with a high con-
ductivity in one part and isolating in the other part. We are not interested in
scattering aspects here, but will study the local regularity of the fields, in partic-
ular near corners of the conductor. Since the questions are local, we can assume
from the outset that the domain is bounded. Let therefore O C R? be a bounded
domain decomposed into the two subdomains ¢, the conductor, and Qg, which
corresponds to the exterior isolator. For the sake of simplicity, we assume that
B := 0Q¢ is connected, and that 002 = 0QU B. The conductivity o is a constant
oc > 0 in Q¢ and vanishes in Qg. The electric permittivity € and the magnetic
permeability u are supposed to be positive constants on ¢ and on Qp. The
frequency w is a fixed positive constant. The eddy current model describes the
situation where the quotient we/c¢ is very small.

We consider the case where B has a conical singularity. As is well known, in
the neighborhood of this corner point the electrical field will, in general, be un-
bounded. All possible singularities for the solutions of the time-harmonic Maxwell
equations near conical corner points have been described in [5] for the case of per-
fect conductor boundary conditions, in [6] for interface conditions, and in [7] for
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the eddy current model. In all these cases, it has been shown that the singular func-
tions can be obtained from corresponding scalar problems for the Laplace equation.
Therefore the analytical tools for singularity analysis, mainly Kondrat’ev’s Mellin
transform based technique, are applied to the well-studied boundary value and
interface problems for the Laplacian.

If, however, we want to describe the behavior of the singularities as the full
Maxwell problem tends towards the eddy current problem, we need to use tools
that have been developed for the situation of singularity problems depending on
a parameter ([4, 14, 16]). Since the coeflicients of the operator are complex, we
cannot expect any simplification, but have to take into account all the possible
complications that may appear in such situations, such as “crossing” and “branch-
ing” of the exponents. In order to get a stable description of the singular behavior,
we no longer can reduce everything to the Laplace operator. Instead we have to
use Mellin transformation directly for the Maxwell system. The corresponding
constructions of spaces and operators do not seem to exist in the literature.

In the eddy current limit, the PDE problem itself changes its type from a pure
transmission problem for a strongly elliptic second order system to a mixture of
one-sided boundary conditions and transmission conditions for a system of Maxwell
type in the conductor and of Laplace type with a divergence-free constraint in
the isolator. On the other hand, from the point of view of the description of
singularities, the eddy current limit is a regular perturbation problem.

Thus it is not hard to show that in this limit, not only the solution of the
Maxwell problem converges in the energy norm to the solution of the eddy current
problem, but also the singularity exponents converge at the same time. This has
been proved in [7].

The continuity of the solution and of the singularity exponents does not im-
ply, however, that in any decomposition of the solution into regular and singular
parts, all the terms — regular part, singular functions, and coefficients of the sin-
gular functions — will also depend continuously on the small parameter § that
characterizes the eddy current limit. This is the problem we are studying here.

In general, when the singularity exponent in the eddy current limit is of
multiplicity higher than one, a “naive” decomposition into a regular part and
individual singular functions will produce coefficients tending to infinity as § —
0. We show how to choose bases of singular functions that lead to coeflicients
continuous as 6 — 0, and we prove stability for the decomposition into regular
and singular parts in this case.

For the Mellin analysis, the “Mellin symbol”, i. e. the angular part of the
Maxwell transmission problem, has to be considered in a strong form, that is, on
a level of regularity above the level of the energy norm related to the variational
formulation. This means in particular that the natural transmission conditions now
appear explicitly in the formulation of the Mellin symbol. We indicate in section
5 how they are obtained. We also show how the classification of the singularities
into types 1, 2, and 3 is obtained from the Mellin analysis.
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1. Maxwell and eddy current problems
Let w > 0 be a fixed frequency. The time harmonic Maxwell equations are

curl E = —iwuH in Q,
(1.1) curl H = (iwe +0)E +j in Q,
Exn =0 and H-n =0 on 09,

E (resp. H) is the electric (resp. magnetic) field and j;, is the source current density

which is supposed to be a L?(2) field with support in Q¢ and to be divergence

free, i.e. divj, = 0 in . Note that the assumption on div j, is equivalent to
divj, =0in Q¢ and jy,-n=0on B.

Thus, taking the divergence of the second equation of (1.1), we obtain the following
equation on the divergence of E:

(1.2) div(iwe +0)E=0 in Q.
The time-harmonic eddy current problem [2, 3, 1, 9] reads
curlE = —iwuH in €,
(1.3) curl H = ¢E+j, in Q.

Exn =0 and H-n =0 on 09,

Let us write Ec = E|q. and Eg = E|q,,.

Taking the divergence of the second equation of (1.3), instead of condition
(1.2) we only obtain divEc = 0 in Q¢ and E¢-n = 0 on B. These conditions have
to be completed by the gauge conditions:

(14) leEEZO in QE and /EEndS:O
B

1.1. Eddy current limit

Following [3, Ch.4], we consider the eddy current limit as the limiting situation
when the quantities wec/o¢ and weg/o¢ are small. For a conducting material,
the permittivity ec is of the same order of magnitude as e (also denoted &p),
but e¢/o¢ is very small. For moderate frequencies w the quantities wec/o¢ and
weg/oc are still small. Let us fix two numbers éc and £z which are of the same
order as o¢ and such that there exists § > 0 (thus J is small)

(15) o = (séc and EEp = 5éE

Thus we can write (defining by the same token the complex electric transmission
coefficient «)

woéo + o¢ in Q¢

(1.6) iwa = iwe + 0 = { iwdep .

We fix o¢, w, éc and €g. The eddy current limit is the limit 6 — 0.
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1.2. Strong electric formulations

We use the electric approach consisting in eliminating H from equations (1.1)-
(1.2) and (1.3)-(1.4). We denote by E° for § > 0 according to (1.6), the solution
of equations (1.1)-(1.2) and by E° the solution of (1.3)-(1.4). We note that we can
write the equations satisfied by E° in a unified way for § > 0 and & = 0:

(i) curl ug' curl El, + iwocEd — 0w?écEL = —iwj, in Qc,
(ii) divES, = 0 in Qc,
(iii) curl u;! curl E}, — 0w?25E), = 0 in Qg,
) (iv) divES, = 0 in Qp,
(v) [3Ex-ndS = 0
(vi) [E°xn] = 0 on B,
(vii) i6w[EE® -n] + 0cESL -n = 0 on B,
(viii) Exn =0 on .

1.3. Variational formulations

The variational space which we will use is independent of §, i.e. suitable for both
the Maxwell and the eddy current problem. Let Hy(curl, ) be the standard space

Hy(curl,Q) = {ue L?*(Q)?:curlu € L?(Q)®, uxn=0 on 90}

Our variational space Y () is defined as
Y(Q) = {u € Hy(curl,Q) : divuc € L*(Qc), divug € L*(QE), / E-n=0}
B

equipped with the norm
[ullf o) = lullg.q + [lcurl ullf o + || divuc|§ o, + [ divugll§ .-

There is a full family of sesquilinear forms a’ on Y (Q) adapted to a regularized
variational formulation of the problem (1.7) for 6 > 0: We arbitrarily fix some
positive parameter 7 (possibly different in Q¢ and Q) and we define a® as follows:
For u, ve Y(Q):

a(uv) = / (" curl u-curl v — dw?éu-v)dz + iw/ ocu-vdx
Q Qc
+/ Yo divue divve dx—l—/ vg divug divvgdx.
Qc QE
Lemma 1.1. Let the positive constants uc, pg, €c, €g, oc and w be fized. Then

there exists 8o > 0 such that for all § € [0,d0], a® is strongly coercive on Y(Q):
Jeg > 0, V6 € [0, dp], Yu € Y()

Re ((1 —i)a’(u, u)) 2 COHUH\Q((Q)-
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For all § € [0, dp], we consider the variational problem:
(1.8) Find E€Y(Q) s. t. a’°(E,v) = —iw(jy,V)ae, YV € Y(Q),

where (-,-)p is the L?(D)? hermitian inner product.
The following result is proved in [7]:

Theorem 1.2. Under the assumptions of Lemma 1.1, there holds for all § € [0, do]:
(i) There exists a unique solution E° to problem (1.8).

(i) The solution E° satisfies all equations in (1.7).

(iii) The norms of the E® in Y () are uniformly bounded:

3C >0, V5€0,60], |E|lyq <C.
(iv) As 6 — 0, E° — E° and we have the convergence estimate

3C >0, V5€[0,60], [E® —E|y <C0.

2. Localization at a conical point

Let us assume that ¢ has a smooth boundary except at one point, say O, where
it coincides with the tip of a cone I'c. The solid angle G¢ := I'c N'S? is a smooth
domain in S2. In a neighborhood of O, the exterior domain Qg coincides with the
open cone I'g such that Tc UT g =R? and Te NTg = 0. Let Gg :=TxrNS?. Let
(p, ) be spherical coordinates centered in O.

As far as elliptic boundary value or transmission problems on domains with
conical points are concerned, the standard tool for the investigation of the structure
of their solution is the Mellin transform defined for all u € C§°(R3 \ {0}) and all
A e C by

u=u(p,¥) — Pul\)=UN\7J):= /OOO p~u(r, ) d—:

The argument in [5, 6, 7] is that the equivalent regularized variational formula-
tion (1.8) provides an equivalent elliptic transmission problem where the standard
Kontrat’ev approach [11] applies. This is the reason why in these works only the
structure of singularities is investigated.

If we want to investigate the possibility of a stable asymptotics with respect
to the parameter &, we have to revisit the Mellin approach, in order to look for
a Mellin symbol with meromorphic inverse which should depend analytically on &
(and acting between a couple of spaces independent from ).

2.1. Ellipticity
We integrate by parts in the variational problem (1.8) and find (with u = E°)

2.1) (i) curl ,ual curl uc — Vycdivue — w?acue = —iwj, in Qc,
’ (ii) curl ugl curl ug — Vygdivug — w?agug = 0 in Qg,
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with the essential boundary conditions, — we recall that « is defined in (1.6):

{(z) [uxn =0 on B,

(22) (i) [ou-n] = 0  on B,

which we complement by the Neumann type transmission conditions

{ (i) [wrcurluxn] = 0 on B,

(2:3) (ii) divau] = 0 on B.

Proposition 2.1. Let Lo and Lg be the principal parts of the operators in (2.1).
There exists o > 0 such that for all § € [0,d0] the set of transmission conditions
(2.2) and (2.3) covers* the couple of operators (Lc,Lg) at any smooth point of
the interface B.

Proof. Let us take 6 = 0. We check that the 6 x6 determinant obtained after partial
Fourier transform at any point of the interface and reduction to the interface by
the interior equations Lou = 0, Lgu = 0 (symbol at the interface — cf standard
covering boundary conditions) is non-zero for any real £ = (§1,&2) # 0.

The corresponding determinant is therefore non-zero for § small enough. [

2.2. Local regularity

We deduce that our solution u corresponding to a charge density j, in L*(Q¢)
has an optimal local regularity up to the interface outside the corner O: for any
neighborhood V such that O ¢ V:

uc € H*(QcnNV) and ug € H*(QpNV).

Let x be a smooth cut-off function which is = 1 in a neighborhood of O and has
its support in the region where Q¢ and Qg coincide with the cones I'c and T'g
respectively. Still denoting xu by u, we are left with the following problem, instead
of (2.1)-(2.3):

(2.4) (i) curl ,ual curl ug — Ve divue (= Loue) = jo in D¢,
' (ii) curl ugl curl ug — Vygdivug (= Lgug) = jg in T'g,

where jo and jg belong to L?(T'¢)® and L?(I'g)? respectively (we have used the
fact that u belongs to L?(IR?)? to put the term of order zero into the RHS),

) X =0 I
(2.5) (2) [u X n| on I,
(i) [au-n] = 0 on I,

where I denotes the interface OI'c = OI'g, and

{ (i) [ tcurluxn] = ht on I,

(2.6) (ii) [divau] = h, on I,

n a sense extended from the classical Shapiro-Lopatinskii condition, [12, 15].
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where ht € H'/2(I)? and h,, € H'/?(I). Since the support of h+ and h,, is away
from zero and infinity there also holds:

(2.7) p~Y2hr € L2(I)? and p~'/2h, € L3(I).

A standard homogeneity argument based on the a priori estimate between the two
nested annuli A; ={z:277 < p <27}, j=1,2:

lucllmzwenan + Elmconay < Clliclzrenas + lizlezmana,

0Tl g1z rmap) + 1l gz a,))
yields the weighted regularity for uc and ug:
(2.8) pl*lo%uc € L*(Tg) and pl®lo%up € L*(Tp), Va,|a| < 2.

3. Mellin transform

For each fixed § > 0, we can apply to problem (2.4)-(2.6) the standard tools of the
Mellin transform and residue formula. Let us recall that the Mellin symbol of an
operator A homogeneous of degree m with constant coefficients is C 2 X\ — 2(())
where
A(0z) = p”™U(V; p0,y, O9)  and  A(N) 1= A(Y; A, Oy).
If U(N) is the Mellin transform of u, then the Mellin transform F(\) of p™Au is
A(M)U(X). Practically, we have the relation
A(0,) (" U)) = P AU,

3.1. Mellin symbol

In the case of our problem, we define a Mellin symbol acting between spaces which
do not depend on A of course, but also not on §. We take as source space

Y+(G07GE) = {U S L2(S2) :Uce € HQ(Gc), Ug € HZ(GE), [U X n] = 0}
and as target space
Z(Ge,Gg) = L*(Ge)® x L2(GE)® x H32(J) x HY?(J)? x HY2(J),

where we recall that Go =T'¢NS? and Gg = 'gNS?, and J denotes G- NIGE.
Let us fix A € C. Our Mellin symbol £(A) is defined as follows

(3 1) S(A) : Y+(GC7GE) — Z(GC7GE)
. (UC?UE) — F:(JCaJEaGaHTaHn)7
with

Le(82) (0 e () = p*2de (@), Le(d.)(p*Up(9)) = p* 2Ip(¥)

[ap’\U(ﬁ) n] = e)

(1" curl prU9) x n = P THT(9), [ div apAU(ﬁ)] = H, (¥).
As a standard consequence of the ellipticity (Proposition 2.1), we obtain that
e £()) is invertible except for A in a discrete set & C C,
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e \+— £()\)~! is meromorphic,

e at each pole A € G, the range of the polar part of £~ ! is finite dimensional,

e in each strip of the form & < Re A < & there are at most a finite number
of elements of &.

The elements X of & are the poles of £()\)~! and they are also called singular
exponents because they are the possible degrees of homogeneity of the singular
parts in the conical asymptotics of solutions.

3.2. Splitting in regular and singular parts

As a consequence of the regularity and support properties of the data, c¢f (2.7),
the Mellin transform A — F(X) of

(p2fcv p2fE7 0, phT? phn)

is holomorphic for A in the half-plane Re A < % with values in the space Z(G¢, Gg),
whereas, thanks to (2.8), the Mellin transform A — U(X) of u is holomorphic for
A in the half-plane Re A < —% with values in the space Y (G¢, G ). Moreover,
there holds

(3.2) SOIUQ) = F(\), YA Re\ < —g.

The function A — £(\)"1F()\) is a meromorphic extension of U()) to the strip
—% < Rel < % As standard in the KONDRAT’EV Cauchy residue analysis we
obtain

1

(33) U = Ureg — %

/p’\S(A)_lF(A) dA

¥

where « is a simple curve surrounding all the poles of £(A\)~! in the strip —g <
Re A < %, and Uyeg is the regular part satisfying, if S N {\: Re A = %} is empty:

(34) pl1720%g 0 € L*(T¢) and  pl*1720%ee 1 € L*(Tg), Va,|a| <2.

Note that, in particular, the regular part u,g is H 2 in any neighborhood of zero
inside I'c and I'g.

The properties of the polar part of £ 1 inherited from the ellipticity imply
that the residue in (3.3) (the singular part) spans a finite dimensional space.

4. Stable asymptotics with respect to 0

We now trace the dependency with respect to § as & — 0 in the above decompo-
sition (3.3). We fix the right hand side j, and consider u® := YE? the localized
solution of problem (1.8). Since the form a’ depends analytically on &, the solution
E° also depends analytically on § in Y (£2) for ¢ in a neighborhood of 6 = 0. There-
fore, the localized solutions u® and the associated right-hand sides (f‘SC, f‘;;, h‘-ﬁ—7 ho)
depend analytically on §.
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Thus, with A — F°()\) the Mellin transform of

(P&, p*F%, 0, ph, phl)
we finally have the splitting of u® for each § according to (3.3):
(4.1) W = ul, — % 7 AT (V) d),
where £° is the Mellin symbol of problem (2.4)-(2.6) with a depending on § via
formula (1.6).
4.1. Spaces of singularities and characteristic polynomials

Definition 4.1. For a § > 0 and a contour v which does not meet any pole of
,85()\)_1, we denote by Si the finite dimensional space spanned by the residues
1 Aqdyy—1

— L°A)7TF(A) dA
2ir |, (M) F(N)
for all holomorphic A — F(X) with values in Z(G¢,Gg). We denote by mfsy its
dimension.

We have the classical result, see [13] for example:

Lemma 4.2. For § and v as in the definition above, let D be the interior region
such that 0D = ~. Then
mfsY = Z m?(v)

veDNG?

where &° is the set of poles of 25()\)_1 and m?(v) is the sum of the lengths of all
Keldysh chains associated with the pole v.

Definition 4.3. We call characteristic polynomial of £° inside v:
m‘s v
PPy = ] G=p)™®.
veDNGS
The operator valued function A — Pf/s (A) £°(\)~! is holomorphic in D.

From the “operator valued Rouché formula” of GOHBERG-SIGAL [8], we find:

Lemma 4.4. The following representation holds for Pj(,u) when & D :
1
SO Sy by —1 _
P2 (u) _exp{tr 57 [yS (A) £°(N) " log(p — A) d)\}.

Here we fix the contour v so that £°(A\)~! has no pole on ~y. Therefore, for
0 < & < 8 with dy > 0 small enough, £°(\)~* has still no poles on . The analytic
dependency of £°(A\)~! on § when X € ~ implies that there holds:

Corollary 4.5. The coefficients of the characteristic polynomial Pg depend ana-
lytically on & for 0 < & < 9. In particular its degree does mot depend on § for
0 <60 < g we denote it by m. .



10 M. Costabel, M. Dauge, and S. Nicaise

4.2. Stable asymptotics: general result
Let us recall the notion of “distance” between two subspaces E and F' of the same
Hilbert space H, ¢f [10]:

(4.2) dist(E, F) = max min 14—Vl
ucEveF HUHH

In general this distance is not symmetric. However, if F and F are finite dimen-
sional subspaces satisfying dist(E, F') < 1 and dist(F, E) < 1, then dim F = dim F'
and dist(E, F) = dist(F, E).
Again as a consequence of the analytic dependency of ,86()\)*1 on ¢ we find
that
dist(S) , 89) = dist(S? , S9) = O(3)
and that there holds

Theorem 4.6. We can choose a basis sfn, m=1,...,m,, of Sf/ depending analyt-

ically on 8. The decomposition (4.1) of the localized solution u® = XE‘S of problem
(1.8) can be written

My
(4.3) u’ = ufeg + Z ,s° . with [0,8] 36— ¢, € C analytic.
m=1

with WS, ¢ in H2(Qc) and uly, 5 in H*(Qp).

Let 9, ..., 1/3 be the distinct elements of &° N D. Let 71,. .., 74 be contours
around each of them and such that their interior regions D1, ..., D, are pairwise
disjoint. For 0 < § < &y with 8y > 0 small enough, v, ..., 74 do not intersect &°.
We clearly have

d
(44) ST - Ps’.
j=1

According to Corollary 4.5, each characteristic polynomial ng has coeflicients
depending analytically on §. The roots of ng form the cluster of singular exponents
v? which tend to 1/? as § — 0.

4.3. Stable asymptotics: cases of degrees 1 and 2
In particular, if the degree of Pffj is one, the situation is “simple” as described in
the following proposition.

Proposition 4.7. Let 10 = l/;) € &N D. If its multiplicity m°®(v°) is 1, then there

exists a unique element v° of °ND which tends to v° as § — 0. Moreover, § — v°

is analytic and a basis s° of Sij can be chosen of the form

S (p,9) = o UP()

where § — U° is analytic in § with values in Y (G, Gp).
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Although unpredictable in general, the simplicity of limiting exponents of
singularity is generic. Nevertheless, the general question of stable asymptotics with
respect to § keeps its interest.

If the characteristic polynomial Pf;j is of degree 2, the situation is more
complicated, but still possible to describe:

Proposition 4.8. Let 10 = V]Q € &N D. If its multiplicity m°(v°) is 2, then there
exists at least one and at most two elements Vf, i=1,2, of & N D which tend to
0 as § — 0.

Let us assume that the pole of £(\)~! in 0 is of order 2 and that v{ # v
for all § # 0 small enough. Then we can choose a basis of ng of the form

0 0
$%(p,9) = p” U°(9) and t%(p,9) =s"(p,9)logp+ p” V°(¥).
Moreover, for all § # 0 small enough there exist two singular functions s, i = 1,2
of the form
) &
s3(p,9) = p"1UI(¥) and s(p,9) = p2U5(9)
such that
(i) ¢ tends tos® as 6 — 0, i =1,2,
(ii) the two functions

5 _ &b
s{—s
H and S + s
LSS

are a basis of Sij depending analytically on 6. The first function tends to t° and
the second one to 2s° as § — 0.

Proof. The first assertions are classical.

Let us prove the existence of sf satisfying the next assertions of the propo-
sition. Let us denote for short the “small” contour surrounding »° by v instead
of ;. By construction Pg()\)SO(A)_l is holomorphic in the region D surrounded
by . As the pole ¥ is double, there exists F(\) holomorphic in D such that
(A =22 £°(N)~'F()) has a pole of order 1 in °. Let us define

U°(\) = P2(NE°(A)TF(N).

Thus U°(+°) is not zero and the residue of p* (A — uo)Pg()\)_lU‘s()\) is an element
of 59{, which we denote by s°:

5
(4.5) s%(p,¥) = pOU (1)
The function A — U’()) is holomorphic in D and analytic in 8. The residues
of
v'n
A — p Pff()\) in Z/f and l/éS
are

8 o
(1 —v8) P (]) and (v —09) ' pP2U(05)
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respectively, and define elements of Si. Let us set

1)
(4.6) )= pU()), i=1,2.

From (4.5), (4.6), the continuity of § — v? as § — 0 and the regularity of (5, \) —
U’()), we deduce that s tend to s° as § — 0. We check that

L/pkpﬁ()\)lufs(,\)d,\:ﬁ
2ir /., v v — v

and )

%/y,ﬁpj@)—lm — 2 — U (A)dA =80 +s3.
They both belong to sty and, since ¢ + 1§ depends analytically on d, they both
depend analytically on ¢ too. O

General stable behaviors with respect to p for more general characteristic
polynomials are investigated in [4] and [16].

5. Maxwell singularities

In [5] it is proved that the singularities of the electric fields at corners and edges of
a perfectly conducting polyhedral body all derive from scalar potentials, namely
via three different types:

Type 1 are gradients of singularities of the Dirichlet Laplacian.
Type 2 are such that their curl is equal to the gradient of singularities of the
Neumann Laplacian.
Type 8 are such that their divergence is a singularity of the Dirichlet Laplacian.
In [6, 7] we have simply applied the same procedure as in [5] to describe the
three different types in the case of transmission and eddy current problems. In
this section, we are going to develop the arguments leading to such a description
in these cases.
We investigate the structure of the elements of Si. Let s% belong to Si: There
exits F holomorphic such that

s‘s:/p*z‘s()\)*lF(A)d)\.

Let £° = £°(pd,) be the collection of interior and interface operators

1

u— £°u = (p’Louc, p’Lpug, [ou-n], plp~! curl u x n], p[divaul),

with « defined in (1.6), compare with (2.4)-(2.6). We have
£0% = /p’\S‘S()\)S‘s(/\)’lF()\) dX = /pAF(A) dA=0.
vy 8!

Let us fix 6 € [0,dp], and thus « which is given by (1.6). From now on, we
drop the exponent 9.
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In other words, s is a solution of the elliptic interface problem (2.4)-(2.6) with
zero right hand side:

i) curl pu-teurl s¢ — Ve divse = 0 in e,
(5.1) ¢
' i) curl p_lcurl sg — Vygdivsg = 0 in I'g,
E
(5.2) (i) [sxn] =0 on I,
’ (ii) [as-n] = 0 on I,
(5.3) (i) [utecurlsxn] = 0 on I,
’ (ii) [divas] = 0  on [I.

5.1. Uncoupled systems

The key of the investigation of solutions s of (5.1)-(5.3) is the introduction of the
auxiliary unknowns

. . -1 .
qgoc = divse  in I'g, Yo =po curlsg inT¢,
g st { qe =divsg inTg, and ¢ st { Yp=puy curl sgp inTg.

Taking the divergence of equations (5.1), we find that ¢¢ and ¢ are harmonic.
Condition (5.3) (7i) gives that [ag] = 0. Taking the normal component (with respect
to the interface I) of equations (5.1), we find that

vcOn divse = culf'lT(u(_;1 curl s¢)+
YO, divsg = CuI‘lT(/J,El curl sg)+

Thanks to (5.3) (i), we obtain that the jump of curl + (1! curl s) is zero, whence
[v0, divs] = 0, i.e. [y0,q] = 0. When 6 # 0, we can write equivalently that
[~ 1v0,(aq)] = 0. Summing up, we have obtained if § # 0

Ago =0 in T¢,
(5:4) Agp =0 in Tp,
[ag] =0, [a"'ydhag]=0 on I,
and if § = 0:
AQC =0 in FC”
(5.5) Agp =0 in I'g,

gc =0, [y0,q]=0 on I.

Both problems (5.4) and (5.5) are scalar elliptic transmission problems. Besides
the trivial zero solution, their solutions are the singularities of these problems.
For 1), we obtain from (5.1), (5.2) (i) and (5.3) (3):

curl ¥~ =Vqe, div(pcppo) =0 in T'¢,
(5.6) curl ¥ =Vqg, div(ugyp) =0 in I'g,
[tp xn] =0, [pp-n]=0 on I.
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Finally for s we have:

curl s¢ = pco, divsc =qc in I'c,
(5.7) curl sp = upvp, divsg =qg in T'g,
[sxn]=0, [as-n]=0 on I,

the last transmission condition becoming s¢ -n =0 on I if § = 0.

5.2. The three types of Maxwell singularities

The Maxwell or eddy current singularities of Type 1 are the solutions of (5.7) with
¥ = 0 and ¢ = 0. We can see that they are the gradient of scalar singularities:
sc = V@ and sp = VO g with

Ads =0 in ',
[0] =0, [@0,P]=0 on I,

the last transmission condition becoming 0,,®c =0 on I if § = 0.

The Maxwell or eddy current singularities of Type 2 are particular solutions of
(5.7) with ) solution of (5.6) and ¢ = 0. We find that 1 is a gradient: ¢~ = V¥¢
and Y5 = V¥ g with

A\I/C =0 in Fc,
A\I/E =0 in FE,
U] =0, [40,¥]=0 on I.

The solutions of the above transmission problem with real coefficients are linear
combinations of terms of the form ¥ = p*(¥). Then a particular solution s
associated with such a U is given by (for A # —1)

s=(\+1)"1(uV¥ x x - Vr)
with r solution of
ATC =0 in FC,

ATE =0 in FE,
[r] =0, [@dnr] =[ap](VE¥ xx)-n on I,

the last condition being replaced with d,,r¢ = uc(V¥¢ X x) -n on I when § = 0.

The singularities of Type 3 are particular solutions of (5.7), with ¥ particular
solution of (5.6) and ¢ general solution of (5.5).

In our case, the singularities of Type 3 can be discarded because their di-
vergences form the asymptotic part of the divergence of the solution. Since our
solutions are divergence-free, these singularities do not appear in the asymptotics
(4.1).

For any singular exponent 1° € G° of the eddy current problem which is not
at the same time an exponent of type 1 and an exponent of type 2, we have as
§ — 0 a stable cluster of singular exponents ¢ of the same type tending to 1°.

Let us develop that point for singularities of type 1 (which are the most
important ones, since they are the only possible non-H" singularities). Let v° € G°
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be of type 1, and let v be a simple contour isolating »° from the other elements
of G°. There exists 6y > 0 such that for all § € [0, o], v N &° = (.
Let A — 9M°(\) be the Mellin symbol of problem (5.8) and let Ti_H be the

singularity space for potentials ®: Tfsy 11 is spanned by the residues

1 Ao —1
— A A)dA
o B

for all holomorphic A — G(A). Then Sg = VT§/+1.
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