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Abstract. The aim of this work is to provide a description of the corner asymp-
totics for the solutions of Maxwell equations in and outside a conductor body
and to investigate the limit as the ratio permittivity/conductivity tends to
zero (the eddy current limit). Corner singularities of the Maxwell transmission
problem and also of the eddy current model have been described elsewhere
[6, 7]. Here we concentrate on the uniform behavior with respect to the small
parameter describing the eddy current limit – analyticity of the singular func-
tions and stability of the decomposition of the fields into regular and singular
parts.

Introduction

We consider the time-harmonic Maxwell equations in a medium with a high con-
ductivity in one part and isolating in the other part. We are not interested in
scattering aspects here, but will study the local regularity of the fields, in partic-
ular near corners of the conductor. Since the questions are local, we can assume
from the outset that the domain is bounded. Let therefore Ω ⊂ R

3 be a bounded
domain decomposed into the two subdomains ΩC , the conductor, and ΩE , which
corresponds to the exterior isolator. For the sake of simplicity, we assume that
B := ∂ΩC is connected, and that ∂ΩE = ∂Ω∪B. The conductivity σ is a constant
σC > 0 in ΩC and vanishes in ΩE . The electric permittivity ε and the magnetic
permeability µ are supposed to be positive constants on ΩC and on ΩE . The
frequency ω is a fixed positive constant. The eddy current model describes the
situation where the quotient ωε/σC is very small.

We consider the case where B has a conical singularity. As is well known, in
the neighborhood of this corner point the electrical field will, in general, be un-
bounded. All possible singularities for the solutions of the time-harmonic Maxwell
equations near conical corner points have been described in [5] for the case of per-
fect conductor boundary conditions, in [6] for interface conditions, and in [7] for
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the eddy current model. In all these cases, it has been shown that the singular func-
tions can be obtained from corresponding scalar problems for the Laplace equation.
Therefore the analytical tools for singularity analysis, mainly Kondrat’ev’s Mellin
transform based technique, are applied to the well-studied boundary value and
interface problems for the Laplacian.

If, however, we want to describe the behavior of the singularities as the full
Maxwell problem tends towards the eddy current problem, we need to use tools
that have been developed for the situation of singularity problems depending on
a parameter ([4, 14, 16]). Since the coefficients of the operator are complex, we
cannot expect any simplification, but have to take into account all the possible
complications that may appear in such situations, such as “crossing” and “branch-
ing” of the exponents. In order to get a stable description of the singular behavior,
we no longer can reduce everything to the Laplace operator. Instead we have to
use Mellin transformation directly for the Maxwell system. The corresponding
constructions of spaces and operators do not seem to exist in the literature.

In the eddy current limit, the PDE problem itself changes its type from a pure
transmission problem for a strongly elliptic second order system to a mixture of
one-sided boundary conditions and transmission conditions for a system of Maxwell
type in the conductor and of Laplace type with a divergence-free constraint in
the isolator. On the other hand, from the point of view of the description of
singularities, the eddy current limit is a regular perturbation problem.

Thus it is not hard to show that in this limit, not only the solution of the
Maxwell problem converges in the energy norm to the solution of the eddy current
problem, but also the singularity exponents converge at the same time. This has
been proved in [7].

The continuity of the solution and of the singularity exponents does not im-
ply, however, that in any decomposition of the solution into regular and singular
parts, all the terms – regular part, singular functions, and coefficients of the sin-
gular functions – will also depend continuously on the small parameter δ that
characterizes the eddy current limit. This is the problem we are studying here.

In general, when the singularity exponent in the eddy current limit is of
multiplicity higher than one, a “näıve” decomposition into a regular part and
individual singular functions will produce coefficients tending to infinity as δ →
0. We show how to choose bases of singular functions that lead to coefficients
continuous as δ → 0, and we prove stability for the decomposition into regular
and singular parts in this case.

For the Mellin analysis, the “Mellin symbol”, i. e. the angular part of the
Maxwell transmission problem, has to be considered in a strong form, that is, on
a level of regularity above the level of the energy norm related to the variational
formulation. This means in particular that the natural transmission conditions now
appear explicitly in the formulation of the Mellin symbol. We indicate in section
5 how they are obtained. We also show how the classification of the singularities
into types 1, 2, and 3 is obtained from the Mellin analysis.
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1. Maxwell and eddy current problems

Let ω > 0 be a fixed frequency. The time harmonic Maxwell equations are

(1.1)




curl E = −iωµH in Ω,
curl H = (iωε+ σ)E + j0 in Ω,
E × n = 0 and H · n = 0 on ∂Ω,

E (resp. H) is the electric (resp. magnetic) field and j0 is the source current density
which is supposed to be a L2(Ω) field with support in ΩC and to be divergence
free, i.e. div j0 = 0 in Ω. Note that the assumption on div j0 is equivalent to

div j0 = 0 in ΩC and j0 · n = 0 on B.

Thus, taking the divergence of the second equation of (1.1), we obtain the following
equation on the divergence of E:

(1.2) div(iωε+ σ)E = 0 in Ω.

The time-harmonic eddy current problem [2, 3, 1, 9] reads

(1.3)




curl E = −iωµH in Ω,
curl H = σE + j0 in Ω.
E × n = 0 and H · n = 0 on ∂Ω,

Let us write EC = E|ΩC
and EE = E|ΩE

.
Taking the divergence of the second equation of (1.3), instead of condition

(1.2) we only obtain div EC = 0 in ΩC and EC ·n = 0 on B. These conditions have
to be completed by the gauge conditions:

(1.4) div EE = 0 in ΩE and
∫

B

EE · n dS = 0.

1.1. Eddy current limit

Following [3, Ch.4], we consider the eddy current limit as the limiting situation
when the quantities ωεC/σC and ωεE/σC are small. For a conducting material,
the permittivity εC is of the same order of magnitude as εE (also denoted ε0),
but εC/σC is very small. For moderate frequencies ω the quantities ωεC/σC and
ωεE/σC are still small. Let us fix two numbers ε̂C and ε̂E which are of the same
order as σC and such that there exists δ > 0 (thus δ is small)

(1.5) εC = δε̂C and εE = δε̂E .

Thus we can write (defining by the same token the complex electric transmission
coefficient α)

(1.6) iωα := iωε+ σ =
{

iωδε̂C + σC in ΩC

iωδε̂E in ΩE .

We fix σC , ω, ε̂C and ε̂E . The eddy current limit is the limit δ → 0.
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1.2. Strong electric formulations

We use the electric approach consisting in eliminating H from equations (1.1)-
(1.2) and (1.3)-(1.4). We denote by Eδ for δ > 0 according to (1.6), the solution
of equations (1.1)-(1.2) and by E0 the solution of (1.3)-(1.4). We note that we can
write the equations satisfied by Eδ in a unified way for δ > 0 and δ = 0:

(1.7)




(i) curl µ−1
C curl Eδ

C + iωσCEδ
C − δω2ε̂CEδ

C = −iωj0 in ΩC ,

(ii) div Eδ
C = 0 in ΩC ,

(iii) curl µ−1
E curl Eδ

E − δω2ε̂EEδ
E = 0 in ΩE ,

(iv) div Eδ
E = 0 in ΩE ,

(v)
∫

B
Eδ

E · n dS = 0
(vi) [Eδ × n] = 0 on B,

(vii) iδω[ε̂Eδ · n] + σCEδ
C · n = 0 on B,

(viii) Eδ × n = 0 on ∂Ω.

1.3. Variational formulations

The variational space which we will use is independent of δ, i.e. suitable for both
the Maxwell and the eddy current problem. Let H0(curl ,Ω) be the standard space

H0(curl ,Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3, u × n = 0 on ∂Ω}.
Our variational space Y(Ω) is defined as

Y(Ω) =
{
u ∈ H0(curl ,Ω) : div uC ∈ L2(ΩC), div uE ∈ L2(ΩE),

∫
B

E · n = 0
}

equipped with the norm

‖u‖2
Y(Ω)

= ‖u‖2
0,Ω + ‖ curl u‖2

0,Ω + ‖div uC‖2
0,ΩC

+ ‖div uE‖2
0,ΩE

.

There is a full family of sesquilinear forms aδ on Y(Ω) adapted to a regularized
variational formulation of the problem (1.7) for δ ≥ 0: We arbitrarily fix some
positive parameter γ (possibly different in ΩC and ΩE) and we define aδ as follows:
For u, v ∈ Y(Ω):

aδ(u, v) =
∫

Ω

(
µ−1 curl u · curl v − δω2ε̂u · v

)
dx+ iω

∫
ΩC

σCu · v dx

+
∫

ΩC

γC div uC div vC dx+
∫

ΩE

γE div uE div vE dx.

Lemma 1.1. Let the positive constants µC , µE, ε̂C , ε̂E, σC and ω be fixed. Then
there exists δ0 > 0 such that for all δ ∈ [0, δ0], aδ is strongly coercive on Y(Ω):
∃c0 > 0, ∀δ ∈ [0, δ0], ∀u ∈ Y(Ω)

Re
(
(1 − i)aδ(u,u)

)
≥ c0‖u‖2

Y(Ω)
.
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For all δ ∈ [0, δ0], we consider the variational problem:

(1.8) Find E ∈ Y(Ω) s. t. aδ(E, v) = −iω(j0, v)ΩC
, ∀v ∈ Y(Ω),

where (·, ·)D is the L2(D)3 hermitian inner product.
The following result is proved in [7]:

Theorem 1.2. Under the assumptions of Lemma 1.1, there holds for all δ ∈ [0, δ0]:
(i) There exists a unique solution Eδ to problem (1.8).
(ii) The solution Eδ satisfies all equations in (1.7).
(iii) The norms of the Eδ in Y(Ω) are uniformly bounded:

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ‖Y(Ω) ≤ C.

(iv) As δ → 0, Eδ → E0 and we have the convergence estimate

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ − E0‖Y(Ω) ≤ Cδ.

2. Localization at a conical point

Let us assume that ΩC has a smooth boundary except at one point, say O, where
it coincides with the tip of a cone ΓC . The solid angle GC := ΓC ∩ S

2 is a smooth
domain in S

2. In a neighborhood of O, the exterior domain ΩE coincides with the
open cone ΓE such that ΓC ∪ ΓE = R

3 and ΓC ∩ ΓE = ∅. Let GE := ΓE ∩ S
2. Let

(ρ, ϑ) be spherical coordinates centered in O.
As far as elliptic boundary value or transmission problems on domains with

conical points are concerned, the standard tool for the investigation of the structure
of their solution is the Mellin transform defined for all u ∈ C∞

0 (R3 \ {0}) and all
λ ∈ C by

u = u(ρ, ϑ) �−→ Mu(λ) = U(λ, ϑ) :=
∫ ∞

0

ρ−λu(r, ϑ)
dρ
ρ
.

The argument in [5, 6, 7] is that the equivalent regularized variational formula-
tion (1.8) provides an equivalent elliptic transmission problem where the standard
Kontrat’ev approach [11] applies. This is the reason why in these works only the
structure of singularities is investigated.

If we want to investigate the possibility of a stable asymptotics with respect
to the parameter δ, we have to revisit the Mellin approach, in order to look for
a Mellin symbol with meromorphic inverse which should depend analytically on δ
(and acting between a couple of spaces independent from δ).

2.1. Ellipticity

We integrate by parts in the variational problem (1.8) and find (with u = Eδ)

(2.1)

{
(i) curl µ−1

C curl uC −∇γC div uC − ω2αCuC = −iωj0 in ΩC ,

(ii) curl µ−1
E curl uE −∇γE div uE − ω2αEuE = 0 in ΩE ,
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with the essential boundary conditions, – we recall that α is defined in (1.6):

(2.2)
{

(i) [u × n] = 0 on B,

(ii) [αu · n] = 0 on B,

which we complement by the Neumann type transmission conditions

(2.3)
{

(i) [µ−1 curl u × n] = 0 on B,

(ii) [divαu] = 0 on B.

Proposition 2.1. Let LC and LE be the principal parts of the operators in (2.1).
There exists δ0 > 0 such that for all δ ∈ [0, δ0] the set of transmission conditions
(2.2) and (2.3) covers1 the couple of operators (LC , LE) at any smooth point of
the interface B.

Proof. Let us take δ = 0. We check that the 6×6 determinant obtained after partial
Fourier transform at any point of the interface and reduction to the interface by
the interior equations LCu = 0, LEu = 0 (symbol at the interface – cf standard
covering boundary conditions) is non-zero for any real ξ = (ξ1, ξ2) �= 0.

The corresponding determinant is therefore non-zero for δ small enough.

2.2. Local regularity

We deduce that our solution u corresponding to a charge density j0 in L2(ΩC)
has an optimal local regularity up to the interface outside the corner O: for any
neighborhood V such that O �∈ V:

uC ∈ H2(ΩC ∩ V) and uE ∈ H2(ΩE ∩ V).

Let χ be a smooth cut-off function which is ≡ 1 in a neighborhood of O and has
its support in the region where ΩC and ΩE coincide with the cones ΓC and ΓE

respectively. Still denoting χu by u, we are left with the following problem, instead
of (2.1)-(2.3):

(2.4)

{
(i) curl µ−1

C curl uC −∇γC div uC (= LCuC) = jC in ΓC ,

(ii) curl µ−1
E curl uE −∇γE div uE (= LEuE) = jE in ΓE ,

where jC and jE belong to L2(ΓC)3 and L2(ΓE)3 respectively (we have used the
fact that u belongs to L2(R3)3 to put the term of order zero into the rhs),

(2.5)
{

(i) [u × n] = 0 on I,

(ii) [αu · n] = 0 on I,

where I denotes the interface ∂ΓC = ∂ΓE , and

(2.6)
{

(i) [µ−1 curl u × n] = h� on I,

(ii) [divαu] = hn on I,

1In a sense extended from the classical Shapiro-Lopatinskii condition, [12, 15].
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where h� ∈ H1/2(I)2 and hn ∈ H1/2(I). Since the support of h� and hn is away
from zero and infinity there also holds:

(2.7) ρ−1/2h� ∈ L2(I)2 and ρ−1/2hn ∈ L2(I).

A standard homogeneity argument based on the a priori estimate between the two
nested annuli Aj = {x : 2−j < ρ < 2j}, j = 1, 2:

‖uC‖H2(ΓC∩A1)
+ ‖uE‖H2(ΓE∩A1)

≤ C
(
‖jC‖L2(ΓC∩A2)

+ ‖jE‖L2(ΓE∩A2)

+ ‖h�‖H1/2(I∩A2)
+ ‖hn‖H1/2(I∩A2)

)
yields the weighted regularity for uC and uE :

(2.8) ρ|α|∂αuC ∈ L2(ΓC) and ρ|α|∂αuE ∈ L2(ΓE), ∀α, |α| ≤ 2.

3. Mellin transform

For each fixed δ ≥ 0, we can apply to problem (2.4)-(2.6) the standard tools of the
Mellin transform and residue formula. Let us recall that the Mellin symbol of an
operator A homogeneous of degree m with constant coefficients is C � λ �→ A(λ)
where

A(∂x) = ρ−mA(ϑ; ρ∂ρ, ∂ϑ) and A(λ) := A(ϑ;λ, ∂ϑ).
If U(λ) is the Mellin transform of u, then the Mellin transform F(λ) of ρmAu is
A(λ)U(λ). Practically, we have the relation

A(∂x)
(
ρλU(ϑ)

)
= ρλ−mA(λ)U(λ).

3.1. Mellin symbol

In the case of our problem, we define a Mellin symbol acting between spaces which
do not depend on λ of course, but also not on δ. We take as source space

Y+(GC , GE) =
{
U ∈ L2(S2) : UC ∈ H2(GC), UE ∈ H2(GE), [U × n] = 0

}
and as target space

Z(GC , GE) = L2(GC)3 × L2(GE)3 ×H3/2(J) ×H1/2(J)2 ×H1/2(J),

where we recall that GC = ΓC ∩S
2 and GE = ΓE ∩S

2, and J denotes ∂GC ∩∂GE .
Let us fix λ ∈ C. Our Mellin symbol L(λ) is defined as follows

(3.1)
L(λ) : Y+(GC , GE) −→ Z(GC , GE)

(UC ,UE) �−→ F = (JC , JE , G,H�, Hn),

with

LC(∂x)
(
ρλUC(ϑ)

)
= ρλ−2JC(ϑ), LE(∂x)

(
ρλUE(ϑ)

)
= ρλ−2JE(ϑ)[

αρλU(ϑ) · n
]

= ρλG(ϑ)[
µ−1 curl ρλU(ϑ) × n

]
= ρλ−1H�(ϑ),

[
divαρλU(ϑ)

]
= ρλ−1Hn(ϑ).

As a standard consequence of the ellipticity (Proposition 2.1), we obtain that
• L(λ) is invertible except for λ in a discrete set S ⊂ C,
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• λ �→ L(λ)−1 is meromorphic,
• at each pole λ ∈ S, the range of the polar part of L

−1 is finite dimensional,
• in each strip of the form ξ1 ≤ Reλ ≤ ξ2 there are at most a finite number

of elements of S.

The elements λ of S are the poles of L(λ)−1 and they are also called singular
exponents because they are the possible degrees of homogeneity of the singular
parts in the conical asymptotics of solutions.

3.2. Splitting in regular and singular parts

As a consequence of the regularity and support properties of the data, cf (2.7),
the Mellin transform λ �→ F(λ) of

(ρ2fC , ρ
2fE , 0, ρh�, ρhn)

is holomorphic for λ in the half-plane Reλ < 1
2 with values in the space Z(GC , GE),

whereas, thanks to (2.8), the Mellin transform λ �→ U(λ) of u is holomorphic for
λ in the half-plane Reλ < − 3

2 with values in the space Y+(GC , GE). Moreover,
there holds

(3.2) L(λ)U(λ) = F(λ), ∀λ,Reλ ≤ −3
2
.

The function λ �→ L(λ)−1F(λ) is a meromorphic extension of U(λ) to the strip
− 3

2 ≤ Reλ < 1
2 . As standard in the Kondrat’ev Cauchy residue analysis we

obtain

(3.3) u = ureg −
1

2iπ

∫
γ

ρλL(λ)−1F(λ) dλ

where γ is a simple curve surrounding all the poles of L(λ)−1 in the strip − 3
2 ≤

Reλ < 1
2 , and ureg is the regular part satisfying, if S ∩ {λ : Reλ = 1

2} is empty:

(3.4) ρ|α|−2∂αureg,C ∈ L2(ΓC) and ρ|α|−2∂αureg,E ∈ L2(ΓE), ∀α, |α| ≤ 2.

Note that, in particular, the regular part ureg is H2 in any neighborhood of zero
inside ΓC and ΓE .

The properties of the polar part of L
−1 inherited from the ellipticity imply

that the residue in (3.3) (the singular part) spans a finite dimensional space.

4. Stable asymptotics with respect to δ

We now trace the dependency with respect to δ as δ → 0 in the above decompo-
sition (3.3). We fix the right hand side j0 and consider uδ := χEδ the localized
solution of problem (1.8). Since the form aδ depends analytically on δ, the solution
Eδ also depends analytically on δ in Y(Ω) for δ in a neighborhood of δ = 0. There-
fore, the localized solutions uδ and the associated right-hand sides (fδ

C , f
δ
E ,h

δ
�, h

δ
n)

depend analytically on δ.
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Thus, with λ �→ Fδ(λ) the Mellin transform of

(ρ2fδ
C , ρ

2fδ
E , 0, ρh

δ
�, ρh

δ
n)

we finally have the splitting of uδ for each δ according to (3.3):

(4.1) uδ = uδ
reg −

1
2iπ

∫
γ

ρλL
δ(λ)−1Fδ(λ) dλ,

where L
δ is the Mellin symbol of problem (2.4)-(2.6) with α depending on δ via

formula (1.6).

4.1. Spaces of singularities and characteristic polynomials

Definition 4.1. For a δ ≥ 0 and a contour γ which does not meet any pole of
L

δ(λ)−1, we denote by Sδ
γ the finite dimensional space spanned by the residues

1
2iπ

∫
γ

ρλL
δ(λ)−1F(λ) dλ

for all holomorphic λ �→ F(λ) with values in Z(GC , GE). We denote by mδ
γ its

dimension.

We have the classical result, see [13] for example:

Lemma 4.2. For δ and γ as in the definition above, let D be the interior region
such that ∂D = γ. Then

mδ
γ =

∑
ν∈D∩Sδ

mδ(ν)

where Sδ is the set of poles of L
δ(λ)−1 and mδ(ν) is the sum of the lengths of all

Keldysh chains associated with the pole ν.

Definition 4.3. We call characteristic polynomial of L
δ inside γ:

P δ
γ (λ) =

∏
ν∈D∩Sδ

(λ− ν)mδ(ν).

The operator valued function λ �→ P δ
γ (λ) L

δ(λ)−1 is holomorphic in D.

From the “operator valued Rouché formula” of Gohberg-Sigal [8], we find:

Lemma 4.4. The following representation holds for P δ
γ (µ) when µ �∈ D :

P δ
γ (µ) = exp

{
tr

1
2iπ

∫
γ

L
δ(λ)′ Lδ(λ)−1 log(µ− λ) dλ

}
.

Here we fix the contour γ so that L
0(λ)−1 has no pole on γ. Therefore, for

0 ≤ δ ≤ δ0 with δ0 > 0 small enough, L
δ(λ)−1 has still no poles on γ. The analytic

dependency of L
δ(λ)−1 on δ when λ ∈ γ implies that there holds:

Corollary 4.5. The coefficients of the characteristic polynomial P δ
γ depend ana-

lytically on δ for 0 ≤ δ ≤ δ0. In particular its degree does not depend on δ for
0 ≤ δ ≤ δ0: we denote it by mγ .
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4.2. Stable asymptotics: general result

Let us recall the notion of “distance” between two subspaces E and F of the same
Hilbert space H, cf [10]:

(4.2) dist(E,F ) = max
u∈E

min
v∈F

‖u − v‖H

‖u‖H

.

In general this distance is not symmetric. However, if E and F are finite dimen-
sional subspaces satisfying dist(E,F ) < 1 and dist(F,E) < 1, then dimE = dimF
and dist(E,F ) = dist(F,E).

Again as a consequence of the analytic dependency of L
δ(λ)−1 on δ we find

that
dist(S0

γ , Sδ
γ) = dist(Sδ

γ , S0
γ) = O(δ)

and that there holds

Theorem 4.6. We can choose a basis sδ
m, m = 1, . . . ,mγ , of Sδ

γ depending analyt-
ically on δ. The decomposition (4.1) of the localized solution uδ = χEδ of problem
(1.8) can be written

(4.3) uδ = uδ
reg +

mγ∑
m=1

cδmsδ
m, with [0, δ0] � δ �→ cδm ∈ C analytic.

with uδ
reg,C in H2(ΩC) and uδ

reg,E in H2(ΩE).

Let ν0
1 , . . . , ν

0
d be the distinct elements of S0 ∩D. Let γ1, . . . , γd be contours

around each of them and such that their interior regions D1, . . . , Dd are pairwise
disjoint. For 0 ≤ δ ≤ δ0 with δ0 > 0 small enough, γ1, . . . , γd do not intersect Sδ.
We clearly have

(4.4) Sδ
γ =

d⊕
j=1

Sδ
γj
.

According to Corollary 4.5, each characteristic polynomial P δ
γj

has coefficients
depending analytically on δ. The roots of P δ

γj
form the cluster of singular exponents

νδ
i which tend to ν0

j as δ → 0.

4.3. Stable asymptotics: cases of degrees 1 and 2

In particular, if the degree of P δ
γj

is one, the situation is “simple” as described in
the following proposition.

Proposition 4.7. Let ν0 = ν0
j ∈ S0 ∩D. If its multiplicity m0(ν0) is 1, then there

exists a unique element νδ of Sδ∩D which tends to ν0 as δ → 0. Moreover, δ �→ νδ

is analytic and a basis sδ of Sδ
γj

can be chosen of the form

sδ(ρ, ϑ) = ρν
δ
Uδ(ϑ)

where δ �→ Uδ is analytic in δ with values in Y+(GC , GE).
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Although unpredictable in general, the simplicity of limiting exponents of
singularity is generic. Nevertheless, the general question of stable asymptotics with
respect to δ keeps its interest.

If the characteristic polynomial P δ
γj

is of degree 2, the situation is more
complicated, but still possible to describe:

Proposition 4.8. Let ν0 = ν0
j ∈ S0 ∩D. If its multiplicity m0(ν0) is 2, then there

exists at least one and at most two elements νδ
i , i = 1, 2, of Sδ ∩D which tend to

ν0 as δ → 0.
Let us assume that the pole of L(λ)−1 in ν0 is of order 2 and that νδ

1 �= νδ
2

for all δ �= 0 small enough. Then we can choose a basis of S0
γj

of the form

s0(ρ, ϑ) = ρν
0
U0(ϑ) and t0(ρ, ϑ) = s0(ρ, ϑ) log ρ+ ρν

0
V0(ϑ).

Moreover, for all δ �= 0 small enough there exist two singular functions sδ
i , i = 1, 2

of the form

sδ
1(ρ, ϑ) = ρν

δ
1Uδ

1(ϑ) and sδ
2(ρ, ϑ) = ρν

δ
2Uδ

2(ϑ)
such that
(i) sδ

i tends to s0 as δ → 0, i = 1, 2,
(ii) the two functions

sδ
1 − sδ

2

νδ
1 − νδ

2

and sδ
1 + sδ

2

are a basis of Sδ
γj

depending analytically on δ. The first function tends to t0 and
the second one to 2s0 as δ → 0.

Proof. The first assertions are classical.
Let us prove the existence of sδ

i satisfying the next assertions of the propo-
sition. Let us denote for short the “small” contour surrounding ν0 by γ instead
of γj . By construction P 0

γ (λ)L0(λ)−1 is holomorphic in the region D surrounded
by γ. As the pole ν0 is double, there exists F(λ) holomorphic in D such that
(λ− ν0)L0(λ)−1F(λ) has a pole of order 1 in ν0. Let us define

Uδ(λ) := P δ
γ (λ)Lδ(λ)−1F(λ).

Thus Uδ(ν0) is not zero and the residue of ρλ(λ− ν0)P δ
γ (λ)−1Uδ(λ) is an element

of S0
γ , which we denote by s0:

(4.5) s0(ρ, ϑ) = ρν
δ
0Uδ(νδ

0).

The function λ �→ Uδ(λ) is holomorphic in D and analytic in δ. The residues
of

λ �−→ ρλ Uδ(λ)
P δ

γ (λ)
in νδ

1 and νδ
2

are
(νδ

1 − νδ
2)−1ρν

δ
1Uδ(νδ

1) and (νδ
2 − νδ

1)−1ρν
δ
2Uδ(νδ

2)



12 M. Costabel, M. Dauge, and S. Nicaise

respectively, and define elements of Sδ
γ . Let us set

(4.6) sδ
i := ρν

δ
i Uδ(νδ

i ), i = 1, 2.

From (4.5), (4.6), the continuity of δ �→ νδ
i as δ → 0 and the regularity of (δ, λ) �→

Uδ(λ), we deduce that sδ
i tend to s0 as δ → 0. We check that

1
2iπ

∫
γ

ρλP δ
γ (λ)−1Uδ(λ) dλ =

sδ
1 − sδ

2

νδ
1 − νδ

2

and
1

2iπ

∫
γ

ρλP δ
γ (λ)−1(2λ− νδ

1 − νδ
2)Uδ(λ) dλ = sδ

1 + sδ
2.

They both belong to Sδ
γ and, since νδ

1 + νδ
2 depends analytically on δ, they both

depend analytically on δ too.

General stable behaviors with respect to ρ for more general characteristic
polynomials are investigated in [4] and [16].

5. Maxwell singularities

In [5] it is proved that the singularities of the electric fields at corners and edges of
a perfectly conducting polyhedral body all derive from scalar potentials, namely
via three different types:
Type 1 are gradients of singularities of the Dirichlet Laplacian.
Type 2 are such that their curl is equal to the gradient of singularities of the

Neumann Laplacian.
Type 3 are such that their divergence is a singularity of the Dirichlet Laplacian.

In [6, 7] we have simply applied the same procedure as in [5] to describe the
three different types in the case of transmission and eddy current problems. In
this section, we are going to develop the arguments leading to such a description
in these cases.

We investigate the structure of the elements of Sδ
γ . Let sδ belong to Sδ

γ : There
exits F holomorphic such that

sδ =
∫

γ

ρλL
δ(λ)−1F(λ) dλ.

Let L
δ = L

δ(ρ∂ρ) be the collection of interior and interface operators

u �→ L
δu = (ρ2LCuC , ρ

2LEuE , [αu · n], ρ[µ−1 curl u × n], ρ[divαu]),

with α defined in (1.6), compare with (2.4)-(2.6). We have

L
δsδ =

∫
γ

ρλL
δ(λ)Lδ(λ)−1F(λ) dλ =

∫
γ

ρλF(λ) dλ = 0.

Let us fix δ ∈ [0, δ0], and thus α which is given by (1.6). From now on, we
drop the exponent δ.
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In other words, s is a solution of the elliptic interface problem (2.4)-(2.6) with
zero right hand side:

(5.1)

{
(i) curl µ−1

C curl sC −∇γC div sC = 0 in ΓC ,

(ii) curl µ−1
E curl sE −∇γE div sE = 0 in ΓE ,

(5.2)
{

(i) [s × n] = 0 on I,

(ii) [αs · n] = 0 on I,

(5.3)
{

(i) [µ−1 curl s × n] = 0 on I,

(ii) [divαs] = 0 on I.

5.1. Uncoupled systems

The key of the investigation of solutions s of (5.1)-(5.3) is the introduction of the
auxiliary unknowns

q s.t.
{

qC = div sC in ΓC ,
qE = div sE in ΓE ,

and ψ s.t.
{
ψC = µ−1

C curl sC in ΓC ,
ψE = µ−1

E curl sE in ΓE .

Taking the divergence of equations (5.1), we find that qC and qE are harmonic.
Condition (5.3)(ii) gives that [αq] = 0. Taking the normal component (with respect
to the interface I) of equations (5.1), we find that

γC∂n div sC = curl�(µ−1
C curl sC)�

γE∂n div sE = curl�(µ−1
E curl sE)�

Thanks to (5.3)(i), we obtain that the jump of curl�(µ−1 curl s)� is zero, whence
[γ∂n div s] = 0, i.e. [γ∂nq] = 0. When δ �= 0, we can write equivalently that
[α−1γ∂n(αq)] = 0. Summing up, we have obtained if δ �= 0

(5.4)




∆qC = 0 in ΓC ,
∆qE = 0 in ΓE ,
[αq] = 0, [α−1γ∂nαq] = 0 on I,

and if δ = 0:

(5.5)




∆qC = 0 in ΓC ,
∆qE = 0 in ΓE ,
qC = 0, [γ∂nq] = 0 on I.

Both problems (5.4) and (5.5) are scalar elliptic transmission problems. Besides
the trivial zero solution, their solutions are the singularities of these problems.

For ψ, we obtain from (5.1), (5.2)(i) and (5.3)(i):

(5.6)




curl ψC = ∇qC , div(µCψC) = 0 in ΓC ,
curl ψE = ∇qE , div(µEψE) = 0 in ΓE ,
[ψ × n] = 0, [µψ · n] = 0 on I.
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Finally for s we have:

(5.7)




curl sC = µCψC , div sC = qC in ΓC ,
curl sE = µEψE , div sE = qE in ΓE ,
[s × n] = 0, [αs · n] = 0 on I,

the last transmission condition becoming sC · n = 0 on I if δ = 0.

5.2. The three types of Maxwell singularities

The Maxwell or eddy current singularities of Type 1 are the solutions of (5.7) with
ψ = 0 and q = 0. We can see that they are the gradient of scalar singularities:
sC = ∇ΦC and sE = ∇ΦE with

(5.8)




∆ΦC = 0 in ΓC ,
∆ΦE = 0 in ΓE ,
[Φ] = 0, [α∂nΦ] = 0 on I,

the last transmission condition becoming ∂nΦC = 0 on I if δ = 0.
The Maxwell or eddy current singularities of Type 2 are particular solutions of

(5.7) with ψ solution of (5.6) and q = 0. We find that ψ is a gradient: ψC = ∇ΨC

and ψE = ∇ΨE with 


∆ΨC = 0 in ΓC ,
∆ΨE = 0 in ΓE ,
[Ψ] = 0, [µ∂nΨ] = 0 on I.

The solutions of the above transmission problem with real coefficients are linear
combinations of terms of the form Ψ = ρλψ(ϑ). Then a particular solution s
associated with such a Ψ is given by (for λ �= −1)

s = (λ+ 1)−1(µ∇Ψ × x −∇r)
with r solution of


∆rC = 0 in ΓC ,
∆rE = 0 in ΓE ,
[r] = 0, [α∂nr] = [αµ](∇Ψ × x) · n on I,

the last condition being replaced with ∂nrC = µC(∇ΨC × x) · n on I when δ = 0.
The singularities of Type 3 are particular solutions of (5.7), with ψ particular

solution of (5.6) and q general solution of (5.5).
In our case, the singularities of Type 3 can be discarded because their di-

vergences form the asymptotic part of the divergence of the solution. Since our
solutions are divergence-free, these singularities do not appear in the asymptotics
(4.1).

For any singular exponent ν0 ∈ S0 of the eddy current problem which is not
at the same time an exponent of type 1 and an exponent of type 2, we have as
δ → 0 a stable cluster of singular exponents νδ

i of the same type tending to ν0.
Let us develop that point for singularities of type 1 (which are the most

important ones, since they are the only possible non-H1 singularities). Let ν0 ∈ S0
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be of type 1, and let γ be a simple contour isolating ν0 from the other elements
of S0. There exists δ0 > 0 such that for all δ ∈ [0, δ0], γ ∩ Sδ = ∅.

Let λ �→ Mδ(λ) be the Mellin symbol of problem (5.8) and let Tδ
γ+1 be the

singularity space for potentials Φ: Tδ
γ+1 is spanned by the residues

1
2iπ

∫
γ+1

ρλMδ(λ)−1G(λ) dλ

for all holomorphic λ �→ G(λ). Then Sδ
γ = ∇Tδ

γ+1.
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