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ASYMPTOTIC BEHAVIOR FOR A TIME-INHOMOGENEOUS

KOLMOGOROV TYPE DIFFUSION

Mihai Gradinaru and Emeline Luirard*

Abstract. We study a kinetic stochastic model with a non-linear time-inhomogeneous friction force
and a Brownian-type random force. More precisely, a Kolmogorov type diffusion (V,X) is considered:
here, X is the position of the particle, and V is its velocity. The process V is solution to a stochastic
differential equation driven by a one-dimensional Brownian motion, with a drift of the form t−βF (v).
The function F satisfies some homogeneity condition, and β is a real number. The behavior in large
time of the process (V,X) is proved by using stochastic analysis tools.
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1. Introduction

In several domains as fluids dynamics, statistical mechanics, or biology, a number of models are based on
the Fokker-Planck and Langevin equations driven by Brownian motion, could be non-linear or driven by other
random processes. For example, in [5] the persistent turning walker model was introduced, inspired by the
modelling of fish motion. An associated two-component Kolmogorov type diffusion solves a kinetic system
based on an Ornstein-Uhlenbeck Gaussian process, and the authors study the large-time behavior of this model
by using appropriate tools from stochastic analysis. One of the natural questions is to understand the behavior
in large-time of the solution to the corresponding stochastic differential equation (SDE). Although the tools of
partial differential equations allow us to ask this kind of question, and since these models are probabilistic, tools
based on stochastic processes could be more natural to use.

In the last decade, the asymptotic study of solutions to non-linear Langevin’s type was the subject of an
important number of papers, see [6], [8] and [9]. For instance, in [9] the following system is studied

Vt = v0 +Bt −
ρ

2

∫ t

0

F (Vs) ds and Xt = x0 +

∫ t

0

Vs ds.

In other words, one considers a particle moving such that its velocity is a diffusion with an invariant measure
behaving like (1 + |v|2)−ρ/2, as |v| → +∞. The authors prove that for large-time, after a suitable rescaling, the
position process behaves as a Brownian motion or other stable processes, following the values of ρ. Results have
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been extended to additive functional of V in [4]. It should be noticed that these cited papers use the standard
tools associated with time-homogeneous equations, as invariant measure, scale function, and speed measure.
Several of them will not be available when the drag force depends explicitly on time. In [11], a non-linear SDE
driven by a Brownian motion but having time-inhomogeneous drift coefficient was studied, and its large-time
behavior was described. Moreover, sharp rates of convergence are proved for the 1-dimensional marginal of the
solution. In the present paper, we consider the velocity process as satisfying the same kind of SDE.

Let us describe our framework: we consider a one-dimensional time-inhomogeneous stochastic kinetic model
driven by a Brownian motion. We denote by (Xt)t>0 the process describing the position of a particle at time
t and having the velocity Vt. The velocity process (Vt)t>0 is supposed to solve a Brownian-driven SDE with a
drag force, varying in time:

dVt = dBt − b(t, Vt) dt and Xt = X0 +

∫ t

0

Vs ds.

This system can be viewed as a perturbation of the classical two-component Kolmogorov diffusion

dVt = dBt and Xt = X0 +

∫ t

0

Vs ds.

In the present paper the drift is supposed to grow slowly to infinity, and it will be supposed to be of the form
t−βF (v), with β ∈ R and F satisfying some homogeneity condition. It describes a one-dimensional particle
subject to a friction force and undergoing many small random shocks. A natural question is to understand
the behavior of the process (V,X) in large time. More precisely we look for the limit in distribution of
(rε,V Vt/ε, rε,XXt/ε)t, as ε → 0, for some rates of convergence. Our results are proved on the product of path
spaces and consequently contain those of [11].

If F = 0, it is not difficult to see that the rescaled position process (ε
1
2Vt/ε, ε

3
2Xt/ε)t converges in distribution

towards the Kolmogorov diffusion (Bt,
∫ t
0
Bs ds)t. We prove that this kinetic behavior still holds for sufficiently

“small at infinity” drag force. The strategy to tackle this problem is based on estimates of moments of the
velocity process. The main result can then be extended to the case of a drift being equally weighted in some
sense as the random noise. It either offsets the random noise (critical regime) or swings with it (sub-critical
regime).

As suggested at the beginning of the introduction, other random noises can be considered. In [10], the case
of a Lévy random noise is analyzed. The case of a stochastic system evolving in a quadratic potential is the
purpose of another work (see [7]).

The organization of our paper is as follows: in the next section, we introduce notations, and we state our
main results. Results about existence and non-explosion of solutions are stated in Section 3. Estimates of the
moments of the velocity process are given in Section 4 while the proofs of our main results are presented in
Section 5.

2. Notations and main results

Let (Bt)t≥0 be a standard Brownian motion, β a real number and F a continuous function which is supposed
to satisfy either

for some γ ∈ R, ∀v ∈ R, λ > 0, F (λv) = λγF (v), (Hγ
1 )

or

|F | ≤ G where G is a positive function satisfying (Hγ
1 ). (Hγ

2 )
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Each assumption implies that there exist a positive constant K such that, for all v ∈ R, |F (v)| ≤ K |v|γ .
Obviously (Hγ

2 ) is a generalization of (Hγ
1 ). In the following, sgn is the sign function with convention sgn(0) = 0.

As an example of function satisfying (Hγ
1 ) one can keep in mind F : v 7→ sgn(v) |v|γ (see also [11]), and as an

example of function satisfying (Hγ
2 ) (with γ = 0) F : v 7→ v/(1+v2) (see also [9]).

Remark 2.1. If a function π satisfies (Hγ
1 ), then for all x ∈ R, π(x) = π(sgn(x)) |x|γ .

We consider the following one-dimensional stochastic kinetic model, for t ≥ t0 > 0,

dVt = dBt − t−βF (Vt) dt, Vt0 = v0 > 0, and dXt = Vt dt, Xt0 = x0 ∈ R. (SKE)

Most of the convergences take place in the space of continuous functions C((0,+∞),R) endowed by the uniform
topology

du : (f, g) ∈ C((0,+∞),R)2 7→
+∞∑
n=1

1

2n
min

(
1, sup

[ 1n ,n]

|f − g|
)
.

For a family ((Z
(ε)
t )t>0)ε>0 of continuous processes, we write

(Z
(ε)
t )t>0 =⇒

ε→0
(Zt)t>0,

if (Z
(ε)
t )t>0 converges in distribution to (Zt)t>0 in C((0,+∞),R), as ε→ 0.

We write

(Z
(ε)
t )t>0

f.d.d.
=⇒
ε→0

(Zt)t>0,

if for all finite subsets S ⊂ (0,+∞), the vector (Z
(ε)
t )t∈S converges in distribution to (Zt)t∈S in R

S , as ε→ 0.

Let us state our main results. Set q :=
β

γ + 1
.

Theorem 2.2. Consider γ ≥ 0, and q > 1
2 . Assume that either (Hγ

1 ) or (Hγ
2 ) is satisfied. Let (Vt, Xt)t≥t0 be

the solution to (SKE) and (Bt)t≥0 be a standard Brownian motion. Furthermore, if γ ≥ 1, we suppose that for
all v ∈ R, vF (v) ≥ 0.

Then,

(
ε

1
2Vt/ε, ε

3
2Xt/ε

)
t≥εt0

=⇒
ε→0

(
Bt,
∫ t

0

Bs ds

)
t≥0

.

Theorem 2.3. Consider γ ≥ 0 and q = 1
2 . Assume that (Hγ

1 ) is satisfied. Let (Vt, Xt)t≥t0 be the solution to
(SKE). If γ ≥ 1, we suppose furthermore that for all v ∈ R, vF (v) ≥ 0.

Call H̃ the eternal ergodic process, solution to the homogeneous SDE

dHs = dWs −
Hs

2
ds− F

(
Hs

)
ds,

such that the distribution of H̃−∞ is the invariant measure, where (Wt)t≥0 is again a standard Brownian motion.

Setting ΛF,t1,··· ,td for the finite dimensional distributions (f.d.d.) of H̃, we call (Vt)t≥0 the process whose f.d.d.
are T ∗ ΛF,log(t1),··· ,log(td), the pushforward measure of ΛF,log(t1),··· ,log(td) by the linear map T (u1, · · · , ud) :=

(
√
t1u1, · · · ,

√
tdud). Indeed, we have (Vt)t≥0 = (

√
tH̃log(t))t≥0.
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Then,

(
ε

1
2Vt/ε, ε

3
2Xt/ε

)
t≥εt0

=⇒
ε→0

(
Vt,
∫ t

0

Vs ds

)
t≥0

.

Remark 2.4. The one-dimensional distribution of (Vt)t≥0 has already been explicitly computed (see Thm. 4.1
in [11]).

Theorem 2.5. Consider γ ≥ 1 and q < 1
2 . Assume that F : v 7→ ρ sgn(v) |v|γ with ρ > 0. Let (Vt, Xt)t≥t0 be

the solution to (SKE). Call Ĥ the ergodic process, solution to the homogeneous SDE

dHs = dWs − F (Hs) ds,

where (Wt)t≥0 is a standard Brownian motion. Call ΠF its invariant measure. We call (Vt)t≥0 the process whose
f.d.d. are T ∗

(
Π⊗dF

)
, the pushforward measure of Π⊗dF by the linear map T (u1, · · · , ud) := (t1

qu1, · · · , tdqud).
Then,

(
εqVt/ε

)
t≥εt0

f.d.d.
=⇒
ε→0

(Vt)t≥0 .

Moreover, in the linear case (i.e. γ = 1) and if β > − 1
2 , we define (Xt)t≥0 the centered Gaussian process with

covariance function K(s, t) := (ρ2(1 + 2β))−1(s ∧ t)1+2β.
Then, as ε→ 0, (

εβ+
1
2Xt/ε

)
t≥εt0

f.d.d.
=⇒
ε→0

(Xt)t≥0 . (2.1)

Remark 2.6. If β = 0, one can prove using the martingale method, that (
√
εXt/ε)t≥0 converges towards a

Brownian motion. Assume, by way of contradiction, that the process (εqVt/ε)t≥εt0 would converge (i.e. were
tight), then by the continuous mapping theorem, the process (εXt/ε)t≥0 should converge. This is a contradiction
with (2.1). Here is why we deal only with the finite-dimensional convergence of the velocity process.

3. Changed-of-time processes

In the following, we suppose that γ > −1 and set Ω = C([t0,+∞)) the set of continuous functions, that equal
+∞ after their (possibly infinite) explosion time. Following the idea used in [11], we first perform a change of
time in (SKE) in order to produce at least one time-homogeneous coefficient in the transformed equation. For
every C2-diffeomorphism ϕ : [0, t1)→ [t0,+∞), let introduce the scaling transformation Φϕ defined, for ω ∈ Ω,
by

Φϕ(ω)(s) :=
ω(ϕ(s))√
ϕ′(s)

, with s ∈ [0, t1).

The result containing the change of time transformation can be found in Proposition 2.1 p. 187 in [11].
Let V be solution to the equation (SKE). Thanks to Lévy’s characterization theorem of the Brownian motion,

(Wt)t≥0 :=

(∫ t

0

dBϕ(s)√
ϕ′(s)

)
t≥0

is a standard Brownian motion. Then, by a change of variable t = ϕ(s), one gets

Vϕ(t) − Vϕ(0) =

∫ t

0

√
ϕ′(s) dWs −

∫ t

0

F (Vϕ(s))

ϕ(s)β
ϕ′(s) ds.
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The integration by parts formula yields

d

(
Vϕ(s)√
ϕ′(s)

)
= dWs −

√
ϕ′(s)

ϕ(s)β
F (Vϕ(s)) ds− ϕ′′(s)

2ϕ′(s)

Vϕ(s)√
ϕ′(s)

ds.

As a consequence, we can state the following result in our context.

Proposition 3.1. If V is a solution to the equation (SKE), then V (ϕ) := Φϕ(V ) is a solution to

dV (ϕ)
s = dWs −

√
ϕ′(s)

ϕ(s)β
F (
√
ϕ′(s)V (ϕ)

s ) ds− ϕ′′(s)

ϕ′(s)

V
(ϕ)
s

2
ds, V

(ϕ)
0 =

Vϕ(0)√
ϕ′(0)

, (3.1)

where Wt =
∫ t

0

dBϕ(s)√
ϕ′(s)

.

If V (ϕ) is a solution to (3.1), then Φ−1ϕ (V (ϕ)) is a solution to the equation (SKE), where Bt − Bt0 :=∫ t

t0

√
(ϕ′ ◦ ϕ−1)(s) dWϕ−1(s).

Furthermore, uniqueness in law, pathwise uniqueness or strong existence hold for the equation (SKE) if and
only if they hold for the equation (3.1).

In the following, we will use two particular changes of time, depending on which term of (3.1) should become
time-homogeneous.

� The exponential change of time: setting ϕe : t 7→ t0e
t, the exponential scaling transformation is defined by

Φe(ω) : s ∈ R+ 7→ ωt0es√
t0e

s
2

, for ω ∈ Ω. Thanks to Proposition 3.1, the process V (e) := Φe(V ) satisfies the

equation

dV (e)
s = dWs −

V
(e)
s

2
ds− t

1
2−β
0 e(

1
2−β)sF

(√
t0e

s
2V (e)

s

)
ds,

where (Wt)t≥0 is a standard Brownian motion.

� The power change of time: for q = β
γ+1 , consider ϕq ∈ C2([0, t1)) the solution to the Cauchy problem

ϕ′q = ϕ2q
q , ϕq(0) = t0.

Clearly, ϕq(t) =
(
t1−2q0 + (1− 2q)t

)1/(1−2q)
, when 2q 6= 1, and ϕq = ϕe, when 2q = 1.

The time t1 satisfies t1 = +∞, when 2q ≤ 1, and t1 = t1−2q0 (2q − 1)−1, when 2q > 1. The power scaling

transformation is defined by Φq(ω) : s ∈ R+ 7→ ω(ϕq(s))

ϕq(s)q
. The process V (q) := V (ϕq) satisfies the equation

dV (q)
s = dWs − ϕ−γqq (s)F

(√
ϕ′q(s)V

(q)
s

)
ds− qϕ2q−1

q (s)V (q)
s ds, (3.2)

where (Wt)t≥0 is a standard Brownian motion.

Adapting the proof of Propositions 3.2, 3.6 and 3.7 p. 188 in [11], one can prove the following proposition.

Proposition 3.2. For γ ≥ 0, there exists a pathwise unique strong solution to (SKE), defined up to the explosion
time τ∞ of V .

� When γ ≤ 1 or for all v ∈ R, vF (v) ≥ 0, then the explosion time of V is a.s. infinite.
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� If 2q > 1, then P(τ∞ = +∞) > 0.
� Under (Hγ

1 ), if γ > 1 and (F (−1), F (1)) ∈ ((0,+∞))× [0,+∞)) ∪ (R× (−∞, 0)), then we have P(τ∞ =
+∞) < 1, where τ∞ denotes the explosion time of V .

Remark 3.3. Assume that (Hγ
1 ) is satisfied. In the linear case (γ = 1), the drift and the diffusion terms are

Lipschitz and satisfy locally linear growth condition. The existence and non-explosion of V follow from Thm.
2.9 p. 289 in [13].

For more details, we refer to [14].

4. Moment estimates of the velocity process

In this section, we give estimates for the moment of the velocity process. It will be useful to control some
stochastic terms appearing later.

Proposition 4.1. Assume that γ ≥ 0 and β ∈ R. The inequality

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0t
κ
2

holds for

� κ ∈ [0, 1], when γ < 1 and β ≥ γ+1
2 ,

� κ ≥ 0, when for all v ∈ R, vF (v) ≥ 0.

If κ ∈ [0, 1], γ < 1 and β < γ+1
2 , then

∀t ≥ t0, E [|Vt|κ] ≤ Cγ,κ,β,t0t
κ 1−β

1−γ .

Remark 4.2. When −1 < γ < 0, it can be proved that for all t ≥ t0, E [|Vt|] ≤ Cγ,β,t0
√
t, without hypothesis

of the positivity of the function v 7→ vF (v).

Proof. Step 1. Assume that γ ≥ 1 and that for all v ∈ R, vF (v) ≥ 0.
Define, for all n ≥ 0, the stopping time Tn := inf{t ≥ t0, |Vt| ≥ n}. By Itô’s formula, for all t ≥ t0, we have

V 2
t∧Tn = v20 +

∫ t∧Tn

t0

2Vs dBs −
∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t ∧ Tn − t0)

= v20 +

∫ t

t0

1{s≤Tn}2Vs dBs −
∫ t∧Tn

t0

2s−βVsF (Vs) ds+ (t ∧ Tn − t0)

≤ v20 +

∫ t

t0

1{s≤Tn}2Vs dBs + (t− t0).

Since
∫ t
t0

41{s≤Tn}V
2
s ds ≤ 4n2(t− t0) < +∞, taking expectation yields

E
[
V 2
t∧Tn

]
≤ v20 + (t− t0) ≤ Ct0t.

Set κ ∈ [0, 2], we obtain by Jensen’s inequality that

E [|Vt|κ] ≤ E

[
|Vt|2

]κ
2 ≤

(
lim inf
n→+∞

E
[
V 2
t∧Tn

])κ
2

≤ Cκ,t0t
κ
2 . (4.1)



ASYMPTOTIC BEHAVIOR FOR A TIME-INHOMOGENEOUS KOLMOGOROV TYPE DIFFUSION 7

When κ > 2, the function v 7→ |v|κ is C2, so by Itô’s formula, we can write for all t ≥ t0,

|Vt∧Tn |
κ

= |v0|κ +

∫ t∧Tn

t0

κ sgn(Vs) |Vs|κ−1 dBs −
∫ t∧Tn

t0

κs−β |Vs|κ−1 sgn(Vs)F (Vs) ds

+

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2 ds.

In addition, using the hypothesis on the sign of F , we have

|Vt∧Tn |
κ ≤ |v0|κ +

∫ t

t0

1{s≤Tn}κ sgn(Vs) |Vs|κ−1 dBs +

∫ t∧Tn

t0

κ(κ− 1)

2
|Vs|κ−2 ds. (4.2)

We observe that
∫ t
t0
κ2V 2κ−2

s 1{s≤Tn} ds ≤ κ2n2κ−2(t− t0) < +∞. Taking expectation in (4.2), we obtain

E [|Vt|κ] ≤ lim inf
n→+∞

E [|Vt∧Tn |
κ
] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
E

[
|Vs|κ−2

]
ds.

When 0 ≤ κ− 2 ≤ 2, we can upper bound E

[
|Vs|κ−2

]
by injecting (4.1) and get

E [|Vt|κ] ≤ |v0|κ +

∫ t

t0

κ(κ− 1)

2
Cκ,t0s

κ−2
2 ds ≤ Cκ,t0s

κ
2 .

The same method is then applied inductively to prove the inequality for all κ > 2.
Step 2. Assume now that γ ∈ [0, 1).
Fix κ ∈ [0, 1]. Then Jensen’s inequality yields, for all t ≥ t0, E [|Vt|κ] ≤ E [|Vt|]κ, hence it suffices to verify the
inequality only for κ = 1.
Define, for all n ≥ 0, the stopping time Tn := inf{t ≥ t0, |Vt| ≥ n} and let us recall that under both hypotheses
(Hγ

1 ) or (Hγ
2 ), there exists a positive constant K, such that |F (v)| ≤ K |v|γ . We can write, for t ≥ t0 and n ≥ 0,

|Vt∧Tn | ≤ |v0 −Bt0 |+ |Bt∧Tn |+
∫ t∧Tn

t0

s−β |F (Vs∧Tn)|ds

≤ |v0 −Bt0 |+ |Bt∧Tn |+
∫ t∧Tn

t0

Ks−β |Vs∧Tn |
γ

ds.

By noting that γ ∈ [0, 1[ and that (B2
t − t)t≥0 is a martingale, taking expectation we get

E [|Vt∧Tn |] ≤ E [|v0 −Bt0 |] + E [|Bt∧Tn |] +

∫ t

t0

Ks−βE [|Vs∧Tn |
γ
] ds

≤ E [|v0 −Bt0 |] +
√
E
[
B2
t∧Tn

]
+

∫ t

t0

Ks−βE [|Vs∧Tn |]
γ

ds

≤ E [|v0 −Bt0 |] +
√
E [t ∧ Tn] +

∫ t

t0

Ks−βE [|Vs∧Tn |]
γ

ds

≤ Ct0
√
t+

∫ t

t0

Ks−βE [|Vs∧Tn |]
γ

ds.
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The function gn : t 7→ E [|Vt∧Tn |] is bounded by n. Applying the Grönwall-type lemma stated below (Lem. 4.3)
and Fatou’s lemma, for β 6= 1 and for all t ≥ t0, we end up with

E [|Vt|] ≤ lim inf
n→+∞

E [|Vt∧Tn |] ≤ Cγ

[
Ct0
√
t+

(
1− γ
1− β

K(t1−β − t1−β0 )

) 1
1−γ
]

≤ Cγ,β,t0

{√
t if β ≥ γ+1

2 ,

t
1−β
1−γ else.

The case β = 1 can be treated similarly.

Lemma 4.3 (Grönwall-type lemma). Fix r ∈ [0, 1) and t0 ∈ R. Assume that g is a non-negative real-valued
function, b is a positive function and a is a differentiable real-valued function. Moreover, suppose that the
function bgr is continuous. If

∀t ≥ t0, g(t) ≤ a(t) +

∫ t

t0

b(s)g(s)r ds, (4.3)

then,

∀t ≥ t0, g(t) ≤ 2
1

1−r

[
a(t) +

(
(1− r)

∫ t

t0

b(s) ds

) 1
1−r
]
.

Proof. For t ≥ t0, since r ≥ 0,

g(t)r ≤
(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r
,

then, multiplying by b(t) > 0,

b(t)g(t)r ≤ b(t)
(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r
.

Now, let us make appear the derivative of H

a′(t) + b(t)g(t)r ≤ a′(t) + b(t)

(
a(t) +

∫ t

t0

b(s)g(s)r ds

)r
,

that is

a′(t) + b(t)g(t)r(
a(t) +

∫ t
t0
b(s)g(s)r ds

)r ≤ b(t) +
a′(t)(

a(t) +
∫ t
t0
b(s)g(s)r ds

)r ≤ b(t) +
a′(t)

a(t)r
.

Integrating, since r 6= 1, we obtain

(1− r)−1
[(

a(t) +

∫ t

t0

b(s)g(s)r ds

)1−r

− a(t0)1−r

]
≤ (1− r)−1

[
a(t)1−r − a(t0)1−r

]
+

∫ t

t0

b(s) ds
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or equivalently, setting H for the right-hand side of (4.3) and using that r < 1, we get

H(t)1−r ≤ a(t)1−r + (1− r)
∫ t

t0

b(s) ds.

Since 1
1−r > 0 and using (4.3)

g(t) ≤
(
a(t)1−r + (1− r)

∫ t

t0

b(s) ds

) 1
1−r

≤ Cr

[
a(t) +

(
(1− r)

∫ t

t0

b(s) ds

) 1
1−r
]
.

This concludes the proof of the lemma.

Remark 4.4. Call H the right-hand side of (4.3). If g is not continuous, note that the function H is continuous
and satisfies (4.3) (since b is positive and g ≤ H). Therefore, one can apply the lemma to H and then use the
inequality g ≤ H.

5. Proof of the asymptotic behavior of the solution

This section is devoted to the proof of our main results.

5.1. Asymptotic behavior in the super-critical regime under both assumptions

In this section, we assume that γ ≥ 0 and q > 1
2 .

Proof of Theorem 2.2. We split the proof into three steps.

Step 1. We note that it is enough to prove that the process

(V
(ε)
t )t≥0 := (

√
εVt/ε)t≥0

converges in distribution to a Brownian motion in the space of continuous functions C([0,+∞)) endowed by the

uniform topology. In order to see V (ε) as a process of C([0,+∞)), let us state for all s ∈ [0, εt0], V
(ε)
s := V

(ε)
εt0 =√

εv0.
For every ε ∈ (0, 1] and t ≥ εt0, we can write

ε
3
2Xt/ε = ε

3
2x0 +

∫ t

εt0

V (ε)
s ds.

Clearly, the theorem will be proved once we show that gε(V
(ε)
• ) := (V

(ε)
• ,

∫ •
εt0
V

(ε)
s ds) converges weakly in

C([0,+∞)) endowed by the uniform topology. Here the mapping gε : v 7→
(
vt,
∫ t
εt0
vs ds

)
t≥0

is defined and valued

on C((0,+∞)). This mapping is converging, as ε→ 0, to the continuous mapping g : v 7→
(
vt,
∫ t
0
vs ds

)
t≥0

.

We have, for every ε ∈ (0, 1] and t ≥ εt0,

V
(ε)
t =

√
εVt/ε =

√
ε(v0 −Bt0) +

√
εBt/ε −

√
ε

∫ t/ε

t0

F (Vs)s
−β ds

=
√
ε(v0 −Bt0) +B

(ε)
t − εβ−

1
2

∫ t

εt0

F (Vu/ε)u
−β du.
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By self-similarity, B(ε) := (
√
εBt/ε)t≥0 has the same distribution as a standard Brownian motion.

Assume that the convergence of the rescaled velocity process is proved in the strong way, that is

∀T > 0, sup
εt0≤t≤T

∣∣∣V (ε)
t −B(ε)

t

∣∣∣ P−→
ε→0

0. (5.1)

Then it suffices to prove that gε(B
(ε)) =⇒ g(B) and du

(
gε(V

(ε)), gε(B
(ε))
)

P−→ 0, as ε→ 0 (see Thm. 3.1 p. 27
in [2]).
On the one hand, the process B(ε) being a Brownian motion and ‖·‖ denoting a norm on R2, the first convergence
follows from

∀T > 0, sup
εt0≤t≤T

‖gε(Bt)− g(Bt)‖
P−→

ε→0
0. (5.2)

Let us prove (5.2). For every εt0 ≤ t ≤ T , we get

‖gε(Bt)− g(Bt)‖ =

∣∣∣∣∫ εt0

0

Bs ds

∣∣∣∣ ≤ ∫ εt0

0

|Bs|ds.

Hence,

E

[
sup

εt0≤t≤T
‖gε(Bt)− g(Bt)‖

]
≤
∫ εt0

0

E |Bs|ds ≤ C
∫ εt0

0

√
sds −→

ε→0
0.

On the other hand, we prove that

∀T > 0, sup
εt0≤t≤T

∥∥∥gε(V (ε)
t )− gε(B(ε)

t )
∥∥∥ P−→

ε→0
0. (5.3)

For every εt0 ≤ t ≤ T , using (5.1)

∥∥∥gε(V (ε)
t )− gε(B(ε)

t )
∥∥∥ =

∣∣∣V (ε)
t −B(ε)

t

∣∣∣+

∣∣∣∣∫ t

εt0

V (ε)
s −B(ε)

s ds

∣∣∣∣
≤ (1 + T − εt0) sup

εt0≤t≤T

∣∣∣V (ε)
t −B(ε)

t

∣∣∣ P−→
ε→0

0.

Step 2. Let us prove now (5.1). Recall that under both hypothesis (Hγ
1 ) and (Hγ

2 ), there exists a positive

constant K, such that (
√
ε)γ

∣∣∣∣∣F
(
V

(ε)
u√
ε

)∣∣∣∣∣ ≤ K ∣∣∣V (ε)
u

∣∣∣γ . Modifying the factor in front of the integral part, we get

V
(ε)
t =

√
ε(v0 −Bt0) +

√
εBt/ε − εβ−

(γ+1)
2

∫ t

εt0

(
√
ε)γF

(
V

(ε)
u√
ε

)
u−β du.
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It follows that, for all T > 0,

sup
εt0≤t≤T

∣∣∣V (ε)
t −B(ε)

t

∣∣∣ ≤√ε |v0 −Bt0 |+ εβ−
(γ+1)

2 sup
εt0≤t≤T

∣∣∣∣∣
∫ t

εt0

(
√
ε)γF

(
V

(ε)
u√
ε

)
u−β du

∣∣∣∣∣
≤
√
ε |v0 −Bt0 |+ εβ−

(γ+1)
2

∫ T

εt0

K
∣∣∣V (ε)
u

∣∣∣γ u−β du.

Taking the expectation and using moment estimates (Prop. 4.1), we obtain, when β 6= γ
2 + 1 and since β > γ+1

2 ,

εβ−
(γ+1)

2 E

[∫ T

εt0

K
∣∣∣V (ε)
u

∣∣∣γ u−β du

]
= εβ−

(γ+1)
2

∫ T

εt0

KE
[∣∣∣V (ε)

u

∣∣∣γ]u−β du

≤ εβ−
(γ+1)

2

∫ T

εt0

Cγ,β,t0u
γ
2−β du

≤ C
(
εβ−

(γ+1)
2 T

γ
2−β+1 − t

γ
2−β+1
0

√
ε
)
−→
ε→0

0.

Hence, setting r = min( 1
2 , β −

(γ+1)
2 ) > 0,

E

[
sup

εt0≤t≤T

∣∣∣V (ε)
t −B(ε)

t

∣∣∣] = O
ε→0

(εr).

The case β = γ
2 + 1 can be treated similarly to get

E

[
sup

εt0≤t≤T

∣∣∣V (ε)
t −B(ε)

t

∣∣∣] = O
ε→0

(
√
ε ln(ε)).

This concludes the proof.

Remark 5.1. One can observe that the only moment in this proof when we need the condition “γ < 1 or for
all v ∈ R, vF (v) ≥ 0” is when we are proving the moment estimates.

5.2. Asymptotic behavior in the critical regime under (Hγ
1 )

Assume in this section that β = γ+1
2 and (Hγ

1 ) is satisfied.

Proof of Theorem 2.3. Step 1. As in the first step of the previous section, it suffices to prove the convergence
of the rescaled velocity process (

√
εVt/ε)t.

Keeping same notations, we prove that gε(V
(ε)) converges in distribution in C([0,+∞)) to g(V). In order to see

V (ε) as a process of C([0,+∞)), let us set for all s ∈ [0, εt0], V
(ε)
s := V

(ε)
εt0 =

√
εv0. Call Pε, P the distribution of

V (ε) and V respectively. Then, using Portmanteau theorem (see Thm. 2.1 p. 16 in [2]), it suffices to prove that
for all bounded and uniformly continuous function h : C([0,+∞))× C([0,+∞))→ R,∫

C([0,+∞))2
h(gε(ω)) dPε(dω) −→

ε→0

∫
C([0,+∞))2

h(g(ω)) dP (dω).

Take a bounded and uniformly continuous function h. By assumption, one knows that Pε =⇒
ε→0

P , hence, by

Problem 4.12 p. 64 in [13], it suffices to prove that the uniformly bounded sequence (h ◦ gε) of continuous
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functions on C([0,+∞)) converges uniformly on compact subsets of C([0,+∞)) to the continuous function h ◦ g.
Let K be a compact set of C([0,+∞)). Then, for all ω ∈ K, max[0,εt0] |ω| is uniformly bounded by a constant,
called M .
Fix η > 0. By the uniform continuity of h, there exists δ > 0 such that for all ω ∈ K,

du(gε(ω), g(ω)) ≤ δ =⇒ |h ◦ gε(ω), h ◦ g(ω)| ≤ η.

However, there exists ε1 > 0 small enough, such that for all ε ≤ ε1 and for all ω ∈ K,

du(gε(ω), g(ω)) ≤ C
∣∣∣∣∫ εt0

0

ω(s) ds

∣∣∣∣ ≤ Cεt0M ≤ δ.
Step 2. We first prove the f.d.d. convergence.
The exponential scaling process V (e) satisfies the time-homogeneous equation

dV (e)
s = dWs −

V
(e)
s

2
ds− F

(
V (e)
s

)
ds, (5.4)

where (Wt)t≥0 is a standard Brownian motion.
Using the bijection induced by the exponential change of time (Prop. 3.1), we get(

Vt0et√
t0et/2

)
t≥0

= (Ht)t≥0,

as solutions to the same SDE, starting at the same point. This can also be written as(
Vt√
t

)
t≥t0

= (Hlog(t/t0))t≥t0 .

So, we have, for all ε > 0, and (t1, · · · , td) ∈ [εt0,+∞)d,(
Vε−1t1√
ε−1t1

, · · · ,
Vε−1td√
ε−1td

)
=
(
Hlog(t1)+log((εt0)−1), · · · , Hlog(td)+log((εt0)−1)

)
. (5.5)

As in [11], the scale function and the speed measure of H are respectively

p(x) :=

∫ x

0

exp

(
y2

2
+

2

γ + 1
sgn(y)F (sgn(y)) |y|γ+1

)
dy

and

νF (dx) := exp

(
−x

2

2
− 2

γ + 1
sgn(x)F (sgn(x)) |x|γ+1

)
dx.

By the ergodic theorem (Thm. 23.15 p. 465 in [12]), H is ΛF -ergodic, where ΛF is the probability measure

associated to νF . Call H̃ the solution to the time homogeneous equation (5.4) such that the initial condition

H̃−∞ has the distribution ΛF .

For (t1, · · · , td) ∈ [εt0,+∞)d, let ΛF,t1,··· ,td := L(H̃t1 , · · · , H̃td) be the distribution of the vector (H̃t1 , · · · , H̃td).

Then, for all s ∈ R, ΛF,t1,··· ,td = ΛF,t1+s,··· ,td+s. Indeed, thanks to the invariance property of ΛF , (H̃t)t∈R and



ASYMPTOTIC BEHAVIOR FOR A TIME-INHOMOGENEOUS KOLMOGOROV TYPE DIFFUSION 13

(H̃t+s)t∈R satisfy the same SDE, starting at the same distribution. As a consequence, for all ε > 0,

L
(
H̃log(t1)+log((εt0)−1), · · · , H̃log(td)+log((εt0)−1)

)
= ΛF,log(t1),··· ,log(td). (5.6)

Moreover, by exponential ergodicity, we can prove that for every continuous and bounded function ψ : Rd → R,

E
[
ψ
(
Hlog(t1/(t0ε)), · · · , Hlog(td/(t0ε))

)]
− E

[
ψ
(
H̃log(t1/(t0ε)), · · · , H̃log(td/(t0ε))

)]
−→
ε→0

0. (5.7)

We postpone the proof of this convergence in Step 3.
To conclude this step, gather (5.5), (5.6) and (5.7) to get(

Vε−1t1√
ε−1t1

, · · · ,
Vε−1td√
ε−1td

)
=⇒
ε→0

ΛF,log(t1),··· ,log(td).

This can be written as (√
εVt1/ε, · · · ,

√
εVtd/ε

)
=⇒
ε→0

T ∗ ΛF,log(t1),··· ,log(td),

where T ∗ ΛF,log(t1),··· ,log(td) is the pushforward of the measure ΛF,log(t1),··· ,log(td) by the linear map
T (u1, · · · , ud) := (

√
t1u1, · · · ,

√
tdud).

Step 3. Let us now prove (5.7).

Pick εt0 ≤ s ≤ t. Set h0 = v0t
− 1

2
0 . Actually, we prove a more general result, which will also be useful in the last

regime. The convergence (5.7) will be a direct consequence of this lemma.

Lemma 5.2. Let H be an exponential ergodic process with invariant measure ν, solution to a SDE driven by a
Brownian motion. Pick a continuous function φ : [t0,+∞)→ R satisfying lims→+∞ φ(s) = +∞.
Then, for all integer d ≥ 1, every continuous and bounded function ψ : Rd → R, all h0 ∈ R and all (t1, · · · , td) ∈
[εt0,+∞)d,

E

[
ψ
(
Hφ(ε−1t1), · · · , Hφ(ε−1td)

) ∣∣∣H0 = h0

]
− E

[
ψ
(
Hφ(ε−1t1), · · · , Hφ(ε−1td)

) ∣∣∣H0 ∼ ν
]
−→
ε→0

0.

Proof. For the sake of clarity, let us give a proof for d = 2. The general case d ≥ 2 is similar.
Let ψ : R2 → R be a continuous and bounded function.

We set µε := L
(
Hφ(ε−1s)

∣∣∣H0 = h0

)
and use the generalized Markov property of solution to SDEs driven by a

Brownian motion (see Cor. 16.9 p. 313 in [12]. This leads to

E

[
ψ
(
Hφ(ε−1s), Hφ(ε−1t)

) ∣∣∣H0 = h0

]
= E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε
]

and, since ΛF is invariant,

E

[
ψ
(
Hφ(ε−1s), Hφ(ε−1t)

) ∣∣∣H0 ∼ ν
]

= E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]
.

Then, we are reduced to prove

E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε
]
− E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]
−→
ε→0

0.
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Hence, setting p(t, x,dy) := Px(Ht ∈ dy) and ‖.‖TV for the total variation norm, we get

∣∣∣E [ψ (H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ µε
]
− E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 ∼ ν
]∣∣∣

≤
∣∣∣∣∫
R

E

[
ψ
(
H0, Hφ(ε−1t)−φ(ε−1s)

) ∣∣∣H0 = y
]

(µε(dy)− ν(dy))

∣∣∣∣
≤ ‖ψ‖∞

∫
R

∣∣p (φ(ε−1s), h0,dy
)
− ν(dy)

∣∣
≤ ‖ψ‖∞ ‖p

(
φ(ε−1s), h0, ·

)
− ν‖TV .

We let ε→ 0, using the exponential ergodicity of H.

Step 4. Let us prove now the tightness of the family of distributions V (ε) =
(√
εVt/ε

)
t≥εt0

on every compact

interval [m,M ], 0 < m ≤M . We check the Kolmogorov criterion stated in Problem 4.11 p. 64 in [13].
Take ε0 small enough such that for all ε ≤ ε0, εt0 ≤ m. Fix m ≤ s ≤ t ≤ M and α > 2. Recalling that B(ε) is
a Brownian motion, using Jensen’s inequality, moment estimates (Prop. 4.1) and the relation β = γ+1

2 , we can
write

E

[∣∣∣V (ε)
t − V (ε)

s

∣∣∣α] ≤ CαE [∣∣∣B(ε)
t −Bεs

∣∣∣α]+ CαE

[∣∣∣∣∣√ε
∫ t/ε

s/ε

F (Vu)u−β du

∣∣∣∣∣
α]

≤ CαE [|Bt −Bs|α] + Cαε
1−α2 (t− s)α−1E

[∫ t/ε

s/ε

|F (Vu)|α u−βα du

]

≤ CαE [|Bt−s|α] + Cαε
1−α2 (t− s)α−1

∫ t/ε

s/ε

u
γα
2 −βα du

≤ Cα(t− s)α2 + Cαε
1−α2 (t− s)α−1

∫ t/ε

s/ε

u−
α
2 du

≤ Cα(t− s)α2 + Cα(t− s)α−1(t1−
α
2 − s1−α2 )

≤ Cα(t− s)α2 + Cα,m,M (t− s)α−1

≤ Cα,m,M (t− s)α2 .

Since α > 2, then α
2 > 1 and the upper bound does not depend on ε. Furthermore, by moment estimates

(Prop. 4.1),

sup
ε≤ε0

E

[∣∣∣V (ε)
m

∣∣∣] ≤ √m < +∞.

Conclusion. The previous steps yield weak convergence on every compact set (Thm. 13.1 p. 139 in [2]). The
conclusion follows from Thm. 16.7 p. 174 in [2], since all processes considered are continuous.

Example 5.3. We will see that the limiting process V is more explicit in the linear case (γ = 1). Choose

F (1) = 1, F (−1) = −1, the process H̃ solution to (5.4) is in fact an Ornstein-Uhlenbeck process with invariant

measure ΛF (dx) := e−
3x2

2 dx. It is a centered Gaussian process, hence for all s1, · · · , sd, its f.d.d. ΛF,s1,··· ,sd
are Gaussian. As a consequence, knowing the covariance function K is enough to provide the distribution of
the process. Since H̃ is a stationary Ornstein-Uhlenbeck process, one has K : (s, t) 7→ 1

3e
− 3

2 |t−s|. Hence, the
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limiting process V having f.d.d T ∗ ΛF,log(t1),··· ,log(td) is a centered Gaussian process with covariance function

(s, t) 7→ 1
3
(s∧t)2
s∨t .

5.3. Asymptotic behavior in the sub-critical regime under (Hγ
1 )

Assume in this section that β < γ+1
2 and F : v 7→ ρ sgn(v) |v|γ with γ ≥ 1. For simplicity, we shall write ϕ

instead of ϕq.

Proof of Theorem 2.5. Step 1. We first prove the f.d.d. convergence of the velocity process (V
(ε)
t )t≥εt0 :=

(εqVt/ε)t≥εt0 . Again we give a proof only for d = 2, since the general case d ≥ 2 is similar.

The power scaling process V (q), solution to (3.2) satisfies

dV (q)
s = dWs − F

(
V (q)
s

)
ds− qϕ2q−1(s)V (q)

s ds.

We call H the ergodic process solution to the SDE

dHs = dWs − F
(
Hs

)
ds, with H0 = h0 := v0t

−q
0 . (5.8)

We denote by ΠF (dx) := e−
2ρ
γ+1 |x|

γ+1

dx its invariant measure. Using the bijection induced by the power change
of time (Prop. 3.1), as solutions to the same SDE starting at the same point, we have, for all ε > 0, and
(s, t) ∈ [εt0,+∞)2, (

εq
Vε−1s

sq
, εq

Vε−1t

tq

)
=
(
V

(q)
ϕ−1(ε−1s), V

(q)
ϕ−1(ε−1t)

)
.

Using Thm. 3.1 p. 27 in [2], it suffices to prove that for all (s, t) ∈ [εt0,+∞)2,

�

∥∥∥(Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
−
(
V

(q)
ϕ−1(ε−1s), V

(q)
ϕ−1(ε−1t)

)∥∥∥ −→
ε→0

0.

�

(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF .

Step 2. We prove that E

[(
Ht − V (q)

t

)2]
−→
t→+∞

0.

We have

d
(
H − V (q)

)
t

= −
(
F (Ht)− F (V

(q)
t )

)
dt+ qϕ2q−1(t)V

(q)
t dt.

By straightforward differentiation, we can write

d
(
H − V (q)

)2
t

= −2
(
F (Ht)− F (V

(q)
t )

)(
Ht − V (q)

t

)
dt+ 2qϕ2q−1(t)V

(q)
t

(
Ht − V (q)

t

)
dt. (5.9)

We set

g(t) := E

[(
Ht − V (q)

t

)2]
, t ≥ 0.

Taking expectation in (5.9), we get

g′(t) = −2E
[(
F (Ht)− F (V

(q)
t )

)(
Ht − V (q)

t

)]
+ 2qϕ2q−1(t)E

[
V

(q)
t

(
Ht − V (q)

t

)]
.
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Since γ ≥ 1, the function F−1 is 1
γ -Hölder, therefore there exists Cγ > 0 such that,

g′(t) ≤ −CγE
[(
Ht − V (q)

t

)1+γ]
+ 2qϕ2q−1(t)E

[
V

(q)
t

(
Ht − V (q)

t

)]
.

Then, by Jensen’s inequality, since γ ≥ 1,

g′(t) ≤ −Cγg(t)
γ+1
2 + 2qϕ2q−1(t)E

[
V

(q)
t

(
Ht − V (q)

t

)]
.

Using Cauchy-Schwarz inequality and moment estimates (Prop. 4.1), we have

g′(t) ≤ −Cγg(t)
γ+1
2 + C |q|ϕq− 1

2 (t)
√
g(t), g(0) = 0.

Note that since 2q < 1, then ϕq−
1
2 (t) −→

t→+∞
0, therefore the conclusion follows from ??. Besides, for all t ≥ εt0,

E

[(
Hϕ−1(ε−1t) − V

(q)
ϕ−1(ε−1t)

)2]
= g

(
ϕ−1(ε−1t)

)
−→
ε→0

0.

Step 3. Pick (s, t) ∈ [εt0,+∞)2. We prove that the solution H to (5.8) satisfies(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

)
=⇒
ε→0

ΠF ⊗ΠF . (5.10)

Observe that

ϕ−1(ε−1t)− ϕ−1(ε−1s) =
t1−2q − s1−2q

ε1−2q
−→
ε→0

+∞. (5.11)

By Lemma 5.2, for every continuous and bounded function ψ, we can write

E

[
ψ
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

) ∣∣∣H0 = h0

]
− E

[
ψ
(
Hϕ−1(ε−1s), Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]
−→
ε→0

0.

Hence, it suffices to prove that for every bounded continuous functions f, g : R→ R, the following convergence
holds

lim
ε→0

E

[
f
(
Hϕ−1(ε−1s)

)
g
(
Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]
= ΠF (f)ΠF (g).

The following reasoning is inspired from the proof of Lemma 3.2 p. 7-8 in [5]. Since H0 is starting from the
invariant measure, up to considering f −ΠF (f) and g−ΠF (g), we can assume that f and g have zero ΠF -mean.
We call (Pt)t≥0 the semigroup of H, then we get, by invariance property of ΠF ,

E

[
f
(
Hϕ−1(ε−1s)

)
g
(
Hϕ−1(ε−1t)

) ∣∣∣H0 ∼ ΠF

]
=

∫
Pϕ−1(ε−1s)

(
fPϕ−1(ε−1t)−ϕ−1(ε−1s)g

)
dΠF

=

∫
fPϕ−1(ε−1t)−ϕ−1(ε−1s)g dΠF .

Note that U : v 7→ |v|1+γ
1+γ is a convex function, thus a λ-Poincaré inequality holds for the process H (see [3]

p. 1904). This implies the exponential decay of the variance (see Thm. 4.2.5 p. 183 in [1]), i.e. there exists a
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constant C > 0 such that, since ΠF is a probability measure,∣∣∣∣∫ fPϕ−1(ε−1t)−ϕ−1(ε−1s)g dΠF

∣∣∣∣ ≤ ∥∥fPϕ−1(ε−1t)−ϕ−1(ε−1s)g
∥∥
2

≤ ‖f‖∞
∥∥Pϕ−1(ε−1t)−ϕ−1(ε−1s)g

∥∥
2

≤ C ‖f‖∞ ‖g‖∞ e−λ(ϕ
−1(ε−1t)−ϕ−1(ε−1s)).

We deduce (5.10) from (5.11).
Step 4. We prove the convergence of the f.d.d. of the position process.

We set (X
(ε)
t )t≥εt0 := (εβ+

1
2Xt/ε)t≥εt0 . Take γ = 1 and β ∈ (− 1

2 , 1). Pick t ≥ εt0. By Itô’s formula applied to

tβVt, we get

ρX
(ε)
t = εβ+

1
2 (tβ0v0 + x0)− ε

1−β
2 tβV

(ε)
t + εβ+

1
2

∫ t/ε

t0

sβ dBs + εβ+
1
2

∫ t/ε

t0

βsβ−1Vs ds.

Since β > − 1
2 , the first term converges to 0 in probability as ε→ 0. Moreover, by Itô’s formula, for all t ≥ t0,

d

dt
E
[
V 2
t

]
= −2ρs−βE

[
V 2
s

]
+ 1.

Hence, by comparison theorem for ordinary differential equation,

E
[
V 2
t

]
≤ exp(−2ρ

t1−β

1− β
)

(
v20 +

∫ t

t0

exp(2ρ
s1−β

1− β
) ds

)
.

Using an integration by parts, we deduce that there exists a positive constant C such that, for all t ≥ t0,

E
[
V 2
t

]
≤ Ctβ .

As a consequence, we obtain

E

[∣∣∣∣∣−ε 1−β
2 tβV

(ε)
t + εβ+

1
2

∫ t/ε

t0

βsβ−1Vs ds

∣∣∣∣∣
]
≤ ε

1−β
2 tβE

[∣∣∣V (ε)
t

∣∣∣]+ εβ+
1
2

∫ t/ε

t0

βsβ−1E [|Vs|] ds

≤ Cε 1
2 t

3β
2 + Cε

1−β
2 t

3β
2 − Cεβ+ 1

2 t
3β
2
0 −→

ε→0
0.

It remains to study the centered Gaussian processM
(ε)
t := εβ+

1
2

∫ t/ε
t0

sβ dBs. By Itô’s isometry and since β > − 1
2 ,

for all εt0 ≤ s ≤ t, we can write

Cov(M (ε)
s ,M

(ε)
t ) = ε2β+1

∫ s/ε

t0

u2β ds ∼
ε→0

s1+2β

1 + 2β
.

Since the convergence of centered Gaussian processes is characterized by the convergence of their covariance
function, the conclusion follows from Thm. 3.1 p. 27 in [2].
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