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Abstract

In this note, we show how the penalization method, introduced in order to describe
some non-trivial changes of the Wiener measure, can be applied to the study of some
simple polymer models such as the pinning model. The bulk of the analysis is then
focused on the study of a martingale which has to be computed as a Markovian limit.
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1 Introduction

Our motivation for writing the current note is the following: on the one hand, in the
last past years, some interesting advances have seen the light concerning various kind of
polymer models, having either an interaction with a random environment or a kind of
intrinsic self-interaction. Among this wide class of models, we will be interested here in
some polymers interacting with a given interface, as developed for instance in [1, 7]. For
this kind of polymers, the introduction of some generalized renewal tools has yield some
very substantial progresses in the analysis of the model, and a quite complete picture of
their asymptotic behaviour in terms of localization near the interface is now available e.g.
in [5, 6] and in the monograph [4].

On the other hand, and a priori in a different context, the series of papers starting by
[8] and ending with the recent monograph [9] presents a rather simple method in order to
quantify the penalization of a Brownian (or Bessel) path by a functional of its trajectory
(such as the one-sided supremum or the number of excursions). This method can then
be applied in a wide number of natural situations, getting a very complete description
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of some Gibbs type measures based on the original Brownian motion. More specifically,
when translated in a random walk context, the penalization method can be read as fol-
lows: let {bn; n ≥ 0} be a symmetric random walk on Z, defined on a stochastic basis
(Ω,F , (Fn)n≥1, (Pz)z∈Z). For n ≥ 0, let also eHn be a bounded positive measurable func-
tional of the path (b0, . . . , bn). Then, for β ∈ R, n ≥ p ≥ 0, we are concerned with a
generic Gibbs type measure ρn on Fp defined, for Γp ∈ Fp, by

ρn(Γp) =
E0

[
1Γpe

βHn
]

Zn

, where Zn = E0

[
eβHn

]
. (1.1)

In its general formulation, the penalization principle, which allows an asymptotic study of
ρn, can be stated as follows:

Proposition 1.1. Suppose that the process (bn, Hn) is a Z × R+-valued Markov process,
and let Λn be its semi-group. Assume that, for any p ≥ 0, the function Mp defined by

Mp(w, z) := lim
n→∞

[Λn−pf ](w, z)

[Λnf ](0)
, where f(w, z) = e−βz (1.2)

exists, for any (w, z) ∈ Z×R+, and that

[Λn−pf ](w, z)

[Λnf ](0)
≤ C(p, w, z), where E0[C(p, bp, `p)] < ∞.

Then:

1. the process Mp := Mp(bp, `p) is a non-negative P0-martingale;

2. for any p ≥ 0, when n → ∞, the measure ρn defined by (1.1) converges weakly on
Fp to a measure ρ, where ρ is defined by

ρ(Γp) = E0

[
1ΓpMp

]
, for Γp ∈ Fp.

This last proposition can be seen then as an invitation to organize the asymptotic
study of the measure ρn in the following way: first compute explicitly the limit of the ratio
[Λp−nf ](w, z)/[Λpf ](0) when p →∞, which should define also an asymptotic measure ρ in
the infinite volume regime. Then try to read the basic properties of ρ by taking advantage
of some simple relations on the martingale Mp.

It is easily seen that some links exists between the polymer measure theory as mentioned
above and the penalization method. Furthermore, we believe that the two theories can
interact in a fruitful way. Indeed, the penalizing scheme offers a simple and systematic
framework for the study of Gibbs measures based on paths, and it is also quite pleasant to
be able to read the main features of the limiting measure ρ on the martingale Mp, which
is usually a simple object. Without presenting a completely new result, this article will
thus try to make a bridge between the two aspects of the topic, by studying the simplest of
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the interface-based polymers, namely the polymer pinned at an interface, through a purely
penalizing scheme. Let us be more specific once again, and describe our model and the
main results we shall obtain: denote by `n the local time at 0 of b, that is

`n = ]{p ≤ n; bp = 0}.

For β ∈ R, n ≥ p ≥ 0, we are concerned here with the Gibbs type measure Q
(n,β)
0 on Fp

defined, for Γp ∈ Fp, p < n, by

Q
(n,β)
0 (Γp) =

E0

[
1Γpe

β`n
]

Zf
n

, where Zf
n = E0

[
eβ`n

]
. (1.3)

Finally, we will need to introduce a slight variation of the Bessel walk of dimension 3, which
is defined as a random walk R on N starting from 0, such that P0(R0 = 0) = P0(R1 =
1) = 1, and whenever j ≥ 1,

P0(Rn+1 = j ± 1 |Rn = j) =
j ± 1

2j
. (1.4)

With these notations in hand, the main result we shall obtain is then the following:

Theorem 1.1. For β ∈ R, n ≥ p ≥ 0, let Q
(n,β)
0 be the measure defined by (1.3). Then,

for any p ≥ 0, the measure Q
(n,β)
0 on Fp converges weakly, as n → ∞, to a measure Q

(β)
0

defined by
Q

(β)
0 (Γp) = E0

[
1ΓpM

(β)
p

]
, for Γp ∈ Fp. (1.5)

According to the sign of β the two following situations can occur:

(1) When β < 0 (delocalized phase): set α = −β. Then M
(β)
p has the following expression:

M (β)
p = e−α`p

[
(1− e−α)|bp|+ 1

]
.

Moreover, under the probability Q
(β)
0 , the process b and its local time ` can be described in

the following way:

a) The random variable `∞ is finite almost surely, and is distributed according to a
geometric law with parameter 1− e−α.

b) Let g = sup{r ≥ 0; br = 0}.Then g is finite almost surely, and the two processes
b(−) = {br; r ≤ g} and b(+) = {br+g; r ≥ 0} are independent.

c) The process |b(+)| is a Bessel random walk as defined by the transition law (1.4), and
sign(b(+)) = ±1 with probability 1/2.

d) Given the event `∞ = l for l ≥ 1, the process b(−) is a standard random walk, stopped
when its local time reaches l.
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(2) When β > 0 (localized phase): in this case, the martingale M
(β)
p can be written as:

M (β)
p = exp

{
β ˆ̀

p − c+,β |bp| − c−,β p
}

, (1.6)

where c±,β = (1/2)[β ± ln(2 − e−β)], and where ˆ̀
p is a slight modification of `p defined by

ˆ̀
p = `p − 1bp=0. Furthermore, under the probability Q

(β)
0 , the process b can be decomposed

as follows:

a) Let τ = (τ j
0 )j≥1 be the successive return times of b at 0, and set τ 0

0 = 0, τ 1
0 = τ0. Then

the sequence {τ j
0 − τ j−1

0 ; j ≥ 1} is i.i.d, and the law of τ0 is defined by its Laplace
transform (5.4). In particular, τ0 has a finite mean, whose equivalent, as β →∞, is
1− e−β/2.

b) Given the sequence τ , the excursions (bj)j≥1, defined by bj
r = bτj−1

0 +r for r ≤ τ j
0−τ j−1

0 ,

are independent. Moreover, each bj is distributed as a random walk starting from 0,
constrained to go back to 0 at time τ j

0 − τ j−1
0 .

As mentioned above, the results presented in this note are not really new. In the
penalization literature, the random walk weighted by a functional of its local time has
been considered by Debs in [2] for the delocalized phase, and we only cite his result here
in order to give a complete picture of our polymer behaviour. We shall thus concentrate
on the localized phase β > 0 in the remainder of the article. However, in this case the
results concerning homogeneous polymers can be considered now as classical, and the first
rigorous treatment of our pinned model can be traced back at least to [1]. The results we
obtain for the localized part of our theorem can also be found, in an (almost) explicit way,
in [5, 4]. But once again, our goal here is just to show that the penalization method can be
applied in this context, and may shed a new light on the polymer problem. Furthermore,
we believe that this method may be applied to other continuous or discrete inhomogeneous
models, hopefully leading to some simplifications in their analysis. These aspects will be
handled in a subsequent publication.

Let us say now a few words about the way our article is structured: at Section 2, we will
recall some basic identities in law for the simple symmetric random walk on Z. In order to
apply our penalization program, a fundamental step is then to get some sharp asymptotics
for the semi-group Λn mentioned at Proposition 1.1. This will be done at Section 3, thanks
to the renewal trick introduced e.g. in [4]. This will allow to us to describe our infinite

volume limit at Section 4 in terms of the martingale M
(β)
p . The description of the process

b under the infinite volume measure given at Theorem 1.1 will then be proved, in terms of
the behavior of M

(β)
p , at Section 5.

2 Classical facts on random walks

Let us first recall some basic results about the random walk b: for n ≥ 0 and z ∈ Z, set

Sn = sup{bp; p ≤ n}, Tz = inf{n ≥ 0; bn = z} and τz = inf{n ≥ 1; bn = z}.
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Let us denote by D the set of even integers in Z, and for (n, r) ∈ N × Z, recall that
pn,r := P0(bn = r) is given by:

pn,r =

(
1

2

)n(
(n+r)/2

n

)
1D(n + r)1{|r|≤n}.

Then it is well-known (see e.g. [3, 2]) that

P0(Sn = r) = pn,r ∨ pn,r+1 and P0(Tr = n) =
r

n

(
1

2

)n(
(n+r)/2

n

)
. (2.1)

Moreover, the distribution of `n can be expressed in terms of these quantities:

P0(`n = k) = P0(Sn−k = k) + P0(Tn+1 = n− k), (2.2)

and the following asymptotic results hold true:

Lemma 2.1. Let p ∈ N and set κ = (2/π)1/2. Then

lim
n→∞

n
1/2P0(Sn = p) = lim

n→∞
n

1/2P0(`n = p) = κ, and lim
n→∞

n
3/2P0(Tz = n) = κz.

For our further computations, we will also need the following expression for the Laplace
transform of Tr and τr:

Lemma 2.2. Let r ∈ N, δ > 0. Then

E0[e
−δTr ] = exp

{
−r arg cosh(eδ)

}
(2.3)

and

E0[e
−δτr ] =

{
exp

{
−r arg cosh(eδ)

}
, if r ≥ 1

exp
{
−δ − arg cosh(eδ)

}
, if r = 0

(2.4)

Proof. This is an elementary computation based on the fact that {exp(ηbn − δn); n ≥ 1}
is a martingale. Also, note that τ0 has the same law as 1 + T1.

3 Laplace transform of the local time

Our aim in this section is to find an asymptotic equivalent for the Laplace transform
Zf

n of `n. However, for computational purposes, we will also have to consider the following
constrained Laplace transform :

Zc
2m := E0

[
eβ`2m1{b2m=0}

]
(β ≥ 0).

With this notation in hand, here is our first result about the exponential moments of the
local time:
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Lemma 3.1. For any β > 0, we have

lim
m→∞

(
e−β(2− e−β)

)m
Zc

2m = cc
β, where cc

β :=
2(1− e−β)

2− e−β
, (3.1)

and

lim
n→∞

(
e−β(2− e−β)

)bn/2c
Zf

n = cf
β, where cf

β :=
2

2− e−β
. (3.2)

Proof. According to (1.9)-(1.10) in [4, p. 9], by using the renewal theorem, we can write

Zc
2m = E0

[
eβ`2m1{b2m=0}

]
=

m∑
k=1

∑
r∈Ak,m

k∏
j=1

eβP0(τ0 = 2rj) ∼
m→∞

emF(β)∑
m mK̃β(m)

, (3.3)

where we denoted Ak,m = {r = (r1, . . . , rk),
∑k

j=1 rj = m}. Here

K̃β(m) := exp (β −mF(β)) K(m), where K(m) := P0(τ0 = 2m), (3.4)

and F(β) is the solution of the following equation (see also (1.6), p. 8 in [4])∑
m

e−mF(β)K(m) = e−β i.e. E0

[
e
−F(β)τ0/2

]
= e−β. (3.5)

Notice that in our case, equation (3.5) can be solved explicitly: thanks to relation (2.4), it
can be transformed into:

exp
(
−F(β)/2− arg cosh

(
e
F(β)/2

))
= e−β ⇔ cosh (β − F(β)/2) = e

F(β)/2 ⇔ eβ−F(β) + e−β = 2,

and thus, the solution of (3.5) is given by

F(β) = β − ln(2− e−β). (3.6)

On the other hand,∑
m

me−λmP0(τ0 = 2m) = − d

dλ
E0

[
e
−λτ0/2

]
= − d

dλ

(
1− e

−λ/2(eλ − 1)
1/2
)

=
e−λ

2(1− e−λ)1/2
,

as we can see again by (2.4) and simple computation. Therefore, taking λ = F(β), we
obtain ∑

m

mK̃β(m) = eβ
∑
m

me−mF(β)P0(τ0 = 2m) =
2− e−β

2(1− e−β)
, (3.7)

since, according to (3.6), e−F(β) = e−β(2 − e−β) = 1 − (1 − e−β)2. Puting together (3.3),
(3.6) and (3.7) we get the equivalent for the constrained Laplace transform (3.1).
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We proceed now with the study of the free Laplace transform Zf
n . Set K(n) :=∑

j>n K(j). We can write

Zf
2m =

m∑
j=0

E0

[
eβ`2m1max{k≤m,b2k=0}=j

]
=

m∑
j=0

E0

[
eβ`2j1{b2j=0}1{τ0◦θ2j>2(m−j)}

]
=

m∑
j=0

E0

[
eβ`2j1{b2j=0}

]
P0 (τ0 > 2(m− j)) =

m∑
j=0

E0

[
eβ`2(m−j)1{b2(m−j)=0}

]
K(j)

=
m∑

j=0

Zc
2(m−j)K(j) = emF(β)

m∑
j=0

e−(m−j)F(β) Zc
2(m−j)e

−jF(β)K(j).

In order to use (3.1) on the right hand side of the latter equality we need to apply the
dominated convergence theorem. This is allowed by the inequality

e−(m−j)F(β) Zc
2(m−j) ≤ 1, (3.8)

which is valid since e−jF(β)Zc
2j represents the probability that a random walk with positive

increments with law K̃β passes by j (see also (1.9) in [4], p. 9). Therefore, according to
(3.1) and (2.4),

Zf
2m ∼

m→∞
cc
βemF(β)

∞∑
j=0

e−jF(β)

∞∑
i=j+1

K(i) = cc
βemF(β)

∞∑
i=1

K(i)
i−1∑
j=0

e−jF(β)

=
cc
β

1− e−F(β)
emF(β)

(
∞∑
i=1

K(i)−
∞∑
i=1

K(i)e−iF(β)

)
=

cc
βemF(β)(1− e−β)

1− e−F(β)
=

2emF(β)

2− e−β

and we get (3.2), by using (3.6). To finish the proof, let us note that, for any β > 0,

E0

[
eβ`2m+1

]
= E0

[
eβ`2m

]
= Zf

2m ∼
m→∞

cf
βemF(β). (3.9)

We will now go one step further and give an equivalent of Ex

[
eβ`n

]
for an arbitrary

x ∈ Z. Let us denote by O the set of odd integers in Z.

Lemma 3.2. Let x ∈ Z be the starting point for b and recall that the constant cf
β has been

defined at relation (3.2). Then, for any β > 0,

Ex

[
eβ`n

]
∼

n→∞
cf
β exp

{
F(β)

2
(n + |x| − 1O(n + x))− β|x|

}
. (3.10)
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Proof. First of all, notice that, by symmetry of the random walk, Ex

[
eβ`n

]
= E−x

[
eβ`n

]
.

We will thus treat the case of a strictly positive initial condition x without loss of generality.

Case x, n ∈ D. Let us split Ex

[
eβ`2m

]
into

Ex

[
eβ`2m

]
= Px (T0 > 2m) + Ex

[
eβ`2m1{T0≤2m}

]
=: D1(2m) + D2(2m).

Then, on the one hand,

D1(2m) = P0 (Tx > 2m) = P0 (S2m < x) ,

and thus, owing to Lemma 2.1, we have

D1(2m) ∼
m→∞

κxm
−1/2. (3.11)

On the other hand, setting g(p) = E0

[
eβ`p
]
, we can write

D2(2m) = Ex

[
1{T0≤2m}g(2m− T0)

]
=

m∑
k=0

Px(T0 = 2k)g(2(m− k))

= emF(β)

m∑
k=0

Px(T0 = 2k)e−kF(β)g(2(m− k))e−(m−k)F(β)

∼
m→∞

cf
βemF(β)E0

[
exp

{
−F(β)

Tx

2

}]
= cf

β exp

{
mF(β)− arg cosh

(
F(β)

2

)
x

}
= cf

β exp

{
F(β)

2
(2m + x)− βx

}
,

which is (3.10). Here we used the dominated convergence theorem allowed again by the
fact that g(2(m− k))e−(m−k)F(β) ≤ 1 (this inequality being obtained by a little elaboration
of (3.8)).

Case x ∈ D, n ∈ O. Clearly, invoking the latter result, we have

Ex

[
eβ`n

]
= Ex

[
eβ`n−1

]
∼

n→∞
cf
β exp

{
F(β)

2
(n− 1 + x)− βx

}
.

Case x ∈ O, n ∈ D. Following a similar reasoning as for the first case, we see that it is
enough to study the term D2(2m):

D2(2m) = Ex

[
1{T0≤2m}g(2m− T0)

]
=

m∑
k=1

Px(T0 = 2k − 1)g(2m− 2k + 1)

=
m∑

k=1

Px(T0 = 2k − 1)g(2(m− k)) ∼
m→∞

cf
βemF(β)

∞∑
k=1

Px(T0 = 2k − 1)e−kF(β)

= cf
βemF(β)Ex

[
exp

{
−F(β)

1 + T0

2

}]
= cf

βe(m−1/2)F(β)E0

[
exp

{
−F(β)

Tx

2

}]
= cf

βe(m−1/2)F(β) exp

{(
F(β)

2
− β

)}
= cf

β exp

{
F(β)

2
(2m− 1 + x)− βx

}
.
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Here we used again the dominated convergence theorem and the fact that `2(m−k)+1 and
`2(m−k) have the same law under P0.

Case x, n ∈ O. Again, by using the preceding result

Ex

[
eβ`n

]
= Ex

[
eβ`n+1

]
∼

n→∞
cf
β exp

{
F(β)

2
(n + x)− βx

}
.

4 Gibbs limit

Let us turn now to the asymptotic behaviour of the measure Q
(n,β)
0 defined at (1.3). To

this purpose, we will need an additional definition: for n ≥ 0, let ˆ̀
n be the modified local

time given by:
ˆ̀
n = `n − 1{bn=0},

and notice that this modified local time appears here because ` satisfies the relation

`n = ˆ̀
p + `n−p ◦ θp instead of `n = `p + `n−p ◦ θp.

Indeed, it is readily checked that one zero is doubly counted in the latter relation if bp = 0.
With this notation in hand, the limit of Q is given by the following:

Proposition 4.1. For any p ≥ 0, the measure Q
(n,β)
0 converges weakly on Fp, as n →∞,

to the measure Q
(β)
0 given by

Q
(β)
0 (Γp) = E0

[
1ΓpM

(β)
p

]
, for Γp ∈ Fp, (4.1)

with M (β) a positive martingale defined by

M (β)
p = exp

{
β ˆ̀

p − c+(β) |bp| − c−(β) p
}

, (4.2)

where
c±(β) = (1/2)[β ± ln(2− e−β)]. (4.3)

Proof. For n ≥ p, let us decompose `n into

`n = ˆ̀
p + `n−p ◦ θp.

Thanks to this decomposition, we obtain, for a given Γp ∈ Fp,

Q
(n,β)
0 (Γp) = E0

[
1Γpe

β ˆ̀
pUn,p(bp)

]
, with Un,p(x) =

Ex

[
eβ`n−p

]
E0 [eβ`n ]

. (4.4)

9



Moreover, according to relation (3.10), we have, for any x ∈ Z,

Un,p(x) ∼
n→∞


exp{F(β)

2
(|x| − p)− β|x| − 1O(x + p)} if n ∈ D

exp{F(β)
2

(|x| − p)− β|x|+ 1O(x + p)} if n ∈ O,

(4.5)

where we used the symmetry on x. To apply the dominated convergence theorem let us
note that

Ex

[
eβ`n−p

]
≤ E0

[
eβ`n−p

]
, ∀x ∈ Z ⇒ Un,p(x) ≤ 1, ∀x ∈ Z ⇒ Un,p(bp) ≤ 1.

Therefore, we obtain that

M (β)
p = exp

{
F(β)

2
(bp − p)− βbp + β ˆ̀

p

}
,

and we deduce (4.2). It is now easily checked that the process M (β) is a martingale. Indeed,

setting N
(β)
p = ln(M

(β)
p ), and noting that c+(β) + c−(β) = β, we have

N
(β)
p+1 = β ˆ̀

p+1 − c+(β) |bp+1| − c−(β) (p + 1)

= 1{bp=0}[β(ˆ̀p + 1)− β − c−(β) p] + 1{bp 6=0}[β(ˆ̀p − c+(β) (|bp|+ ξp+1)− c−(β) (p + 1)],

where ξp+1 is a symmetric ±1-valued random variable independent of Fp, representing the
increment of b at time p + 1. Hence

N
(β)
p+1 = 1{bp=0}N

(β)
p + 1{bp 6=0}[N

(β)
p − c+(β) ξp+1 − c−(β)]. (4.6)

Thus
E0[M

(β)
p+1 | Fp] = 1{bp=0}M

(β)
p + 1{bp 6=0}M

(β)
p cosh(c+(β)) exp(−c−(β)),

from which the martingale property is readily obtained from the definition (4.3).

Remark 4.2. It should be noticed that the convergence of Q
(n,β)
0 we have obtained on

Fp is stronger than the weak convergence. In fact, we have been able to prove that, for

any Γp ∈ Fp, we have limn→∞Q
(n,β)
0 (Γp) = Q

(β)
0 (Γp). This property is classical in the

penalization theory.

5 The process under the new probability measure

It must be noticed that Q
(β)
0 is a probability measure on (Ω,F , (Fn)n≥1), since M

(β)
0 = 1.

In this section we study the process {bn; n ≥ 1} under the new probability measure Q
(β)
0 ,

which recovers the results of Theorem 1.1, part 2.

Proposition 5.1. Let Q
(β)
0 be the probability measure defined by (4.1) with M (β) given by

(4.2). Then, under Q
(β)
0 :
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a) {bn; n ≥ 1} is a Markov process on the state space Z having some transition proba-
bilities given by

Q
(β)
0 (bn = r | bn−1 = r − 1) =


e−β/2 if r > 1

1− e−β/2 if r < −1,
(5.1)

Q
(β)
0 (bn = r | bn−1 = r + 1) =


1− e−β/2 if r ≥ 0

e−β/2 if r < −1
(5.2)

and
Q

(β)
0 (bn = 1 | bn−1 = 0) = Q

(β)
0 (bn = −1 | bn−1 = 0) = 1/2. (5.3)

b) the Laplace transform of the first return time in 0 is given by

E
(β)
0

[
e−δτ0

]
= eβ

(
eδ+F(β) −

[
e2(δ+F(β)) − 1

]1/2
)

. (5.4)

In particular, E
(β)
0 [τ0] < ∞ for any β > 0, and

E
(β)
0 [τ0] ∼ 1− e−β/2, when β →∞. (5.5)

c) the distribution law of the excursion between two succesive zero of the process {bn; n ≥
1} is the same as under P0.

Proof. a) Let Γn−2 ∈ Fn−2 arbitrary. Then

Q
(β)
0 (bn = r | bn−1 = r − 1, Γn−2) =

Q
(β)
0 (bn = r, bn−1 = r − 1, Γn−2)

Q
(β)
0 (bn−1 = r − 1, Γn−2)

=
E0

[
1{bn=r}1{bn−1=r−1}1Γn−2M

(β)
n

]
E0

[
1{bn−1=r−1}1Γn−2M

(β)
n−1

] =
E0

{
E0

[
1{bn=r}1{bn−1=r−1}1Γn−2M

(β)
n | Fn−1

]}
E0

[
1{bn−1=r−1}1Γn−2M

(β)
n−1

] .

(5.6)

First, assume that r = 1 in the latter equality Since M
(β)
n = M

(β)
n−1 if bn−1 = 0, then

Q
(β)
0 (bn = 1 | bn−1 = 0, Γn−2) =

E0

{
E0

[
1{bn=1}1{bn−1=0}1Γn−2M

(β)
n−1 | Fn−1

]}
E0

[
1{bn−1=0}1Γn−2M

(β)
n−1

]
= E0

[
1{bn=1} | Fn−1

]
=

1

2
. (5.7)
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The same kind of computations can be performed with Γn−2 = Ω, which gives

Q
(β)
0 (bn = 1 | bn−1 = 0, Γn−2) = Q

(β)
0 (bn = 1 | bn−1 = 0). (5.8)

Second, assume that r > 1 in (5.6). In this case, invoking (4.6) we have

Q
(β)
0 (bn = r | bn−1 = r − 1, Γn−2)

=
E0

{
E0

[
1{bn=r}1{bn−1=r−1}1Γn−2M

(β)
n−1e

−ξnc+(β)−c−(β) | Fn−1

]}
E0

[
1{bn−1=r−1}1Γn−2M

(β)
n−1

]
=
E0

{
1{bn−1=r−1}1Γn−2M

(β)
n−1E0

[
1{bn=r}e

−ξnc+(β)−c−(β) | Fn−1

]}
E0

[
1{bn−1=r−1}1Γn−2M

(β)
n−1

]
= Er−1

[
1{b1=r}e

−ξ1c+(β)−c−(β)
]

=
1

2
e−(c+(β)+c−(β)) =

1

2
e−β. (5.9)

Again, we can get that

Q
(β)
0 (bn = r | bn−1 = r − 1, Γn−2) = Q

(β)
0 (bn = r | bn−1 = r − 1). (5.10)

Hence (5.8) and (5.10) prove the Markovian feature of the process {bn; n ≥ 1} under Q
(β)
0 ,

while (5.7) and (5.9) prove the first equalities in (5.1) and (5.3). The other equalities can
be obtained in a similar way.

b) We can write

Q
(β)
0 (τ0 = 2k) = E0

[
1{τ0=2k}M

(β)
2k

]
= eβ−2kc−(β)P0(τ0 = 2k) = eβ−kF(β)P0(τ0 = 2k),

where we used (4.2) and the fact that 2c−(β) = F(β). Clearly, the latter equality defines a
probability measure since, thanks to (3.5),∑

k≥1

eβ−kF(β)P0(τ0 = 2k) = eβE0

[
e
−F(β)τ0/2

]
= 1.

Moreover, we can compute the Laplace transform of τ0

E
(β)
0

[
e−δτ0

]
=
∑
k≥1

e−2δkeβ−2kc−(β)P0(τ0 = 2k) = eβE0

[
e−(δ+F(β))τ0

]
= exp

{
β − arg cosh

(
eδ+F(β)

)}
=

eβ

eδ+F(β) +
[
e2(δ+F(β)) − 1

]1/2
= eβ

{
eδ+F(β) −

[
e2(δ+F(β)) − 1

]1/2
}

. (5.11)
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We deduce

E
(β)
0 [τ0] = − d

dδ
E

(β)
0

[
e−δτ0

]
|δ=0

= eβ+F(β)

{
1[

1− e−2F(β)
]1/2 − 1

}
. (5.12)

By (5.12) we also get that limβ→∞E
(β)
0 [τ0] = 1 = limβ→∞ 1/F′(β), by using also (3.6), while

E
(β)
0 [τ0] 6= 1/F′(β). The equivalent (5.5) is also easily deduced from (5.12).

c) Thanks to the Markov property it is enough to describe the first excursion of b between
0 and τ0. For any positive Borel function f , we have

E
(β)
0 [f(b0, . . . , bn) | τ0 = n] =

E0

[
f(b0, . . . , bn)1{τ0=n}Mτ0

]
E0

[
1{τ0=n}Mτ0

] .

Since, Mτ0 = eβ−c−(β)n, if τ0 = n, we obtain that

E
(β)
0 [f(b0, . . . , bn) | τ0 = n] = E0 [f(b0, . . . , bn) | τ0 = n] .
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