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Abstract: Consider a one-dimensional process zf the position of a particle at time ¢ which speed v§ is a
solution of a stochastic differential equation driven by a small a-stable Lévy process, ef;, a € (0,2], and with
a non-linear drift coefficient —sgn(v)|v|?, 8 > 2 — (2/2). The noise could be path continuous (Brownian motion
a = 2) or pure jump process (0 < a < 2). We prove that, as € goes to 0, the limit in distribution of the process
{ePH(@/D=20a s xZ_o, 1 t > 0} is a Brownian motion with some variance ko5, where 6,3 = @/(8+a-1). This
result is a generalization in some sense of the linear case studied by Hintze and Pavlyukevich [9].
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1 Introduction

In many physical, engineering or financial mathematics models based on random perturbations, the usual
construction is performed by using the standard white noise and studying the resulting diffusion process.
The Gaussian feature and the continuity of paths of the Brownian motion are essential when choosing
the tools used for this kind of situation. During the last fifteen years, the study of some particular
phenomena, as discontinuous behaviour of paths or self-similarity in time scale, focuses on another type
of random perturbation, mainly an a-stable Lévy noise. The resulting processes are called in physical
literature anomalous (fractional) diffusions or Lévy flights.

In this paper, we consider the one-dimensional and non-linear Langevin type equation driven by an
a-stable Lévy process. Let us denote by zf the one-dimensional process describing the position of a
particle at time ¢ > 0, having the speed v

¢
x§ = —|—/ vids, t >0, (1.1)
0
and such that v§ is a small a-stable Lévy process in a potential U(z) := %Mﬁ“,
1> 1 ! g g
dv; = edl; — 52/1 (v5)dt, v§ = vo, (1.2)

in other words v7 verifies the following integral equation

t
vy = vy + by — / sgn(ve)[vE|Pds, t > 0. (1.3)
0
Here 8 > —1 and {¢; : t > 0} is an a-stable Lévy process, a € (0,2]. If a € (0,2), the Lévy process is
a pure jump process with cadlag paths and the jump measure is given by v(dz) = |z|7'~“1g\ 01 (2)dz.
The 2-stable Lévy process is the standard Brownian motion {b, : ¢ > 0} which is continuous. In all



cases, the process has the property of self-similarity which means that the processes {¢; : ¢ > 0} and
{4 : t > 0} have the same law, for any ¢ > 0.

The case of a harmonic potential (8 = 1, linear equation), when the speed is a Ornstein-Uhlenbeck
process, was already considered by Hintze and Pavlyukevich [9]. The dynamic of the integrated Ornstein-
Uhlenbeck process appears in some financial mathematics (volatility) models (see for instance Barndorff-
Nielsen and Shephard [3]) or in models in physics of plasma (see for instance Chechkin, Gonchar and
Szydlowski [5]). In the paper by Hintze and Pavlyukevich, the authors study the asymptotic behaviour
of the integrated Ornstein-Uhlenbeck and prove that this process converges weakly, as ¢ — 0, to the
underlying a-stable Lévy process. In particular, when the driving process is a Brownian motion (« = 2),
the asymptotic behaviour is Gaussian. In [9], asymptotics of the first exit time from an interval are
deduced. Several physical papers pointed out that new interesting phenomena appear when one considers
super-harmonic potentials (see for instance Metzler, Chechkin, Klafter [11]).

Our goal is to answer to the same question in the situation of a super-harmonic potential (non-linear
equation): what is the asymptotic behaviour of the position process z§, as € — 0 ? On the one hand,
the non-linear case introduces new technical difficulties, mainly since the solution is no longer explicit.
Indeed, this fact was essential to prove weak convergence in the linear case. On the other hand, different
conditions on the two parameters o and S will generate different asymptotics for the position process.
The intuition suggests that the big jumps should be compensated by a strong negative drift (for instance
if > 1) and small jumps should have some regularising effect. In the present paper, we answer to the
question by showing that for o and 5 in some unbounded domain, the position process z; will behave
as a Brownian motion when ¢ goes to 0. In other words, we get Gaussian asymptotic behaviour even if
« is smaller than 2, provided that 3 is not very small, more precisely if 8+ § > 2. When « and 3 are in
somehow "small" the previous heuristic fails. To get convergence toward a stable process, one needs to
change the approach and other technical difficulties appear (this case will be presented in a forthcoming
paper, see [8]).

To state the main result of the present paper, we will perform some scaling transformations. Without
loss of generality, we can assume that the initial position is the origin xg = 0. Moreover we will assume
that the initial speed vanishes vy = 0, contrary to the linear case. By using the self-similarity, it is clear
that the process {L$ :=ef.-a; : t > 0} is also an a-stable process. Let us denote, for t > 0,

X, =al., and VF:=vl_., (1.4)
satisfying, respectively,
e __ 1 ! e e _ 1€ 1 i € e|1B
X = = J, Vids and VS =1L;— = /. sgn(Vo)|Ve|Pds. (1.5)
Set
o £y —ats-1y ) y 21 )
e . te® /(a+B-1) Yy xP— at+B—1 re . te® /(atB-1
L; = T T ey and VS := T (1.6)

provided that a + 3 — 1 > 0. Again by self-similarity, L¢ is distributed as an a-stable Lévy process and

we have
St
alEs
X;=¢ /
0

Let us note that if o = 2, all previous computations hold true with ¢, L or L replaced respectively by b,
B or B a standard Brownian motion. Our main result is the following:

e/ atB-1)

¢
VEds  and ngﬂf—/ sgn(VE)|VeEPds. (1.7)
0

Theorem 1.1. Assume that 0 < o <2 and 3+ § > 2. There exists a positive constant rkq,p such that
the process

a(B+%/2-2) a(f+2/2-2)
{55 et ez 0) = {55 XE e 2 0} (1.8)

converges in distribution toward a Brownian motion process with variance ko g, as € — 0. Moreover, if
o = 2, the result is true even for —1 < 5 < 1.

Remark 1.2. 1. If the driving noise is the Brownian motion o = 2, the convergence in the theorem
holds in the space of continuous functions C([0,00)) endowed by the uniform topology. If the driving



noise is a-stable with o € (0,2), the convergence in Theorem 1.1 holds in the Skorokhod space of
cadlag functions D([0, 00)) endowed by Jy (or simple) Skorokhod topology. Our situation is simpler
than in [9] since the limit is a continuous paths process.

2. If the driving noise is the Brownian motion a = 2, the normalizing factor is &~ /®+Y and it
behaves differently following with the position of 8 with respect to 1 (if 8 = 1, the position process
X¢ converges in distribution toward a standard Brownian motion, see also Remark 2.4 below).

3. The case when 3+ 5 = 2 should be considered as a critical for some phase transition from Gaussian
to stable case. It should be reasonable that there is some continuity but the proof seems more delicate
since natural integrability conditions are not fulfilled.

4. The constant kq g has an integral representation (see (2.9) and (3.28) ) and it is more explicit when
the driving noise is the Brownian motion (o = 2).

5. Again, as an application, one can find asymptotics of the first exit time from an interval : Corollary
2.1, p. 269, in [9] applies.

Let us explain the method of proof and the organisation of the paper. To simplify the notations, all

along the paper we will denote
o

0 Ziaa#3:=:E;QjZ?:iI

€ (0,1). (1.9)

It is a simple observation that
te— 0

0B+5-2) xe — % Veds,
0
hence Theorem 1.1 is in fact a second order type ergodic theorem. By using stochastic calculus, we
will show that the latter quantity is a sum of a square integrable martingale and a term which tends in
probability toward 0 as € — 0. The result is then obtained by using the functional central limit theorem
for martingales and the continuous-mapping theorem.

In the next section, we consider the case when the driving noise is the Brownian motion: in this case
computations are performed by using Itd’s calculus and are more explicit. For instance, the constant
k2,8 can be written in terms of the scale function and the speed measure. In Section 3, we follow the
same structure of the proof for a pure jump driving noise. Computations are more technical and new
ideas are needed: for instance, we need to find and use a Lyapunov function which allows to perform the
same reasoning by using Lévy-Itd’s calculus. We collect in the Appendix the technical proofs.

2 Brownian motion driving noise

Recall that in this case, {b; : t > 0} is a standard one-dimensional Brownian motion, 8 > —1 and we set

BE 4 b VE
- /(B+1) 2(1=8)/p+1 - 4/(B+1)
Bf = —tf = tfﬁfl) , and VF:i=-to—— (2.1)
/B c /(B+1) %/ (B+1)
Recall also that
2(2—5) t574/(ﬁ+1) t
Xf =g / Vids and V§ = Bf — / sgn(VE)|VEPds. (2.2)
0 0

B¢ is distributed as a standard Brownian motion so, to simplify the notation, we will suppress the index
e, as well as for Ve.

2.1 The speed process V*
2.1.1 Existence and uniqueness

If 8 > 1, the drift coefficient in (2.25) is a locally Lipschitz function hence by well known results (see, for
instance, Theorem 12.1, p. 132 in [12]), we get a pathwise unique strong solution V' to equation (2.25),



whereas if —1 < f < 1, Girsanov’s theorem gives the existence of a weak solution to equation (2.25).
For both situations, the solution is defined until an explosion time 7., but it is no difficult to prove that
Te = 00 a.s. by using Theorem 10.2.1, p. 254, in [14] and a convenient Lyapunov function (for instance
h(x) = 1422 for all |z| > 1, h(x) = 1 for all |z| < 1/2 and h > 1 ). Introduce the scale function and the
speed measure associated to the diffusion

2
B+1

Since [,° mg([0,2])e*(*)dz = oo, by Theorem 52.1, p. 297 in [12], the pathwise uniqueness holds to
(2.25). Finally, there exists a pathwise unique strong solution V' to the equation (2.2,).

xT
sp(z) ::/0 e #Wdy and mg(dz) == 2e%@dz, where cg(x):= ||+ (2.3)

2.1.2 Convergence in probability
The main result of this section is the following

Proposition 2.1. Ase — 0, {VF :t > 0} converges to 0 in probability uniformly on each compact time
interval.

By (2.13), the relation between V¢ and V is VF = 52/(5“)‘};6—4/(13“)- To prove Proposition 2.1, we
need a preliminary result:

Lemma 2.2.

1. Fiz p > 2. There exists a positive constant Cp g such that, for any t > 0,
E(|Vil") < Cpst. (2.4)
2. Fitp>4 and T > 0. There exists a positive constant Czlo,ﬁ such that

. p
E( sup [V, —sn|) < CpaT?e 0w, (2.5)
0<t<T €

Proof of Proposition 2.1. Taking p > 4 in Lemma 2.2, we deduce that for any 7" > 0, as ¢ — 0,
supg<;<7 |V{| converges to 0 in LP(Q2), and the conclusion follows. O

Proof of Lemma 2.2. By using It6’s formula and the equation (2.25), we can write

WP =o [ STVl B, +p / (/20— DIVP? - 7P ds
Since 3 > —1, there exists a constant Cp, 3 > 0 such that
p((1/2)(p = V)22 = o ~4F) < Cp 5, Vo € R.
We deduce that .
V[P < C'p’gt—i-p/o sgn(Vs)|Ve [P~ dB, (2.6)
We show that f(f sgn(V,)|Vs|P~1dB; is a martingale. Fix T > 0, for all ¢t < T, since (a +b)? < 2(a? + b?)

and |z|?*72 < 1+ |z|?, by using the Burkholder-Davis-Gundy inequality, we can see that there exists a
positive constant C] such that

L\2 “ M- 5 )2
JE( sup |Vu\P) S20§73T2+2p2E( sup /O sgn(Vs)IVsl”_lst) <205, T

0<u<t 0<u<t

t t
+2p201/ ]E(\‘V/,S|2p_2)ds§2pQC{T+2C§,BT2+2p2C{/ E(|V,[*)ds
0 0

t
§2p201T+2c§7,3T2+2p201/ E( sup |V,[?)°ds.
0

0<u<s



By Gronwall’s lemma, we get, for all t < T,

. 2 )
E( Sup |Vu|p) < (2p2 C{ T+ 2C§,ﬁ T2)e2p2 G T
0<u<t

Hence fot sgn(V,)|Vs|P~1d B, is a martingale and we get (2.4) by taking expectation in (2.6).
It is now possible to improve the inequality (2.4). Indeed, it can be used to see that

3 p 3 o 2 2 te YA+ et 5
IE( sup \‘/tsf4/(g+1>|) :IE( sup |Vt€74/<5+1)| ) < ?IE< sup A st)
0<t<T 0<t<T 0<t<T Jo
5 T e Y6+
+200,, T <0 / B([Val"2)ds + 207, g T2

2
< %C{ Cp2p T2 e7%/6B+0 4 203/27/3 T2 &~ %5+n),
Therefore (2.5) follows taking C), ; = &-C} Cpa,5 +2C2, ;. O

2.1.3 Ergodicity

Recall that we introduced the scale function and the speed measure in (2.3). Since sg(o0) = oo and
mgs(R) < oo, the diffusion V is regular (see for instance (45.2) and (46.10) pp. 272-275 in [12]) and is a
recurrent and ergodic process with the invariant measure mg (see for instance Theorem 53.1, p. 300 in
[12]). Therefore, for all f € L(mg),

T
Tlgr;o%/o f(V)ds = mgl(IR) /]Rf(x)mg(dx), almost surely. (2.7)

2.2 The position process X°

We recall that the infinitesimal generator of V is given by L5 5 = %% — sgn(z)|z[? L. Introduce

xT —+oo
gg(x) == / (/ —ZZeCﬁ(Z)dz) e Wdy, r e R, (2.8)
0 y

and note that (L2, g5)(x) =z, for all z € R. Set

1 / 2 _ 2 /
K2, 1= mﬁ(R)/Rgﬁ(l‘) mg(dz) = —Trw(m/lngg(fU)mﬂ(df) (2.9)

(the latter equality is obtained by integrating by parts). We can give now the proof of the main result.

Proof of Theorem 1.1 for the case oo = 2. By applying [t6’s formula, we can see that

t

t t t
gﬁ(‘/t) = / g;a(vs)st +/ (LQ,[’? gﬁ)(vs)ds = / glg(ve)st +/ Vsdsa
0 0 0 0

and therefore

—4/(p+1)
208-1)/(8+1) |, 2/(511) te . . 25 1) .
€ Xy =—¢ gﬁ(VS)st +e 96(‘/;5*4/0#1) )
0
The continuous local martingale
PRRRACERS
Mg = —€"/¢+n /O 95(V3)dB,



has the quadratic variation
te B+

(M5>t — 64/<B+1)/ g;;(Vs)st.
0

As a consequence of (2.7), for all t, (M®); — k2 gt a.s., as € = 0, where k2 g is given by (2.9), and it is
the constant in the statement of Theorem 1.1. Indeed, using Whitt’s theorem (see Theorem 2.1(ii), p.

270 in [15]), we deduce that M¢ converges in distribution (as a process) toward H;/ 23
We will prove that the second term in the right hand side converges in probability uniformly on
compact sets to 0. At this level, we need a technical result:

Lemma 2.3. There exist two positive constants pg,vg such that for all x € R,

l96(2)] < pplz PV + . (2.10)
We postpone the proof of the lemma to the Appendix and finish the proof of Theorem 1.1 in the case
a = 2. By using the classical inequality (a + b)?™ < 22m~1(a?™ + b2™), (m > 1 integer), we obtain

2/(B+1) Y 2m 2m—1, 2m _(4m)/(5+1) |17 2m((2—8)Vv1) 2m—1, 2m _(4m)/(341)
le gﬂ(VtE*‘lﬂmmﬂ <2 Hg € ‘Vt{““‘””l + 2 Vg€ .

By choosing the integer m > 1 such that p := 2m((2 — 5) V1) > 4, we can use Lemma 2.2 and we get
for all T > 0,

m/(8+1) ,2m (1)

lim 15| ! : —0.
S oilfgf 95 (VtE 4(a+1)) 0

We finish the proof of the theorem by employing the joint convergence theorem and the simple continuous-
mapping theorem (Theorem 11.4.5 p. 379 and Theorem 3.4.1, p. 85 in [16]) on the space of continuous
functions C(]0,c0)) endowed with the uniform topology. O

Remark 2.4. Let us note that if 3 =1 (Ornstein-Uhlenbeck case), gs(x) = —x, ko3 = 1 and the result
of Theorem 1.1 coincides with the result of Proposition 2.1, p. 268, in [9].

3 «a-stable driving noise

Recall that LF is distributed as a a-stable Lévy process (see (1.61)) so, to simplify the notation, we will
suppress the index ¢, as well as for V¢ (see (1.72)).

3.1 The speed process V*

3.1.1 Existence and uniqueness

If 8 > 1, the drift coefficient in (1.72) is a locally Lipschitz function and it is well known (see, for instance,
Theorem 6.2.11, p. 376 in [1]) that there exists a locally pathwise unique strong solution V for equation
(1.75) defined up to an explosion random time 7. Moreover it can be proved that 7 = co a.s. hence V is
a global solution. For the sake of completeness, we give the proof of the latter statement (see also [13],
p. 73) by following some ideas in [6], pp. 156-157.

Lemma 3.1. For any a € (0,2), any 6 € (0,) and any T > 0, E[ sup |Vt|5] < 00.
t€(0,T]

Proof. By Ito-Lévy’s decomposition, there exists a Poisson process N and its compensated N such that

¢ ¢
Ly :/ / zN(ds,dz) —|—/ / zN(ds,dz)
0 Jlz|<1 0 J|z|>1

and so the equation satisfied by V, starting from any = € R, is

t t t
V,=x —|—/ / 2N (ds,dz) —l—/ / zN(ds,dz) — / sgn(V,)|Vs|Pds. (3.1)
0 Jz|<1 0 Jlz>1 0



Consider another equation where we skip the (third) big jumps term

t t
yt:H/ / zN(dadz)—/ sen(Y,)[Ys|%ds, (3.2)
0 Jjz1<1 0

and apply It6-Lévy’s formula. We obtain
t t
Y2 = 2% 4+ M; + / / [(Ys + 2)? — Y2 — 22Y,|v(dz)ds — 2/ |V, [P *Htds
0 J|z|<1 0

::$24-Ahﬁ+tj/

|z<1

t
2u(dz) — 2 / V.[P*lds, (3.3)
0
where the local martingale term is given by

N, = /Ot /|z51[(Y5 +2)2 — V2N (ds, d2).

The constants depending only on a and § will be denoted ¢, or k4 g and could change from line to line
in this proof. Let us write the third term in (3.3) as ¢t and note that limjy|_.(ca — 2|y[*T!) = —o0.
We deduce that there exists a positive constant k, s such that, for all ¢ > 0,

Y2 < 2% 4 ko gt + M;. (3.4)

By Kunita’s inequality (see for instance [1], p. 265) and by our convention on constants,

0<s<t

t
E [ sup }/82} <+ kopt+ ca/ / E [(}/s +2)2 - Ysz]? v(dz)ds
0 J|z|<1

t t
<z’ 4+ ko gt + ca/ E[Yf]ds <2+ kgt + ca/ E [ sup Yuﬂ ds. (3.5)
0 0 0<u<s

Applying Gronwall’s inequality, we get

E [ sup Yf} < (22 + ko pt)ect. (3.6)

0<u<t
Hence M is a (true) square integrable martingale and, taking expectation in (3.4), we obtain
E[Y?] < 2% + ko pt. (3.7)

Re-injecting this in (3.5), we get that, for any T > 0, there exists a positive constant C, s 1 depending
also on T, such that

E[ sup Yf} < Cupr(l+2%). (3.8)
te[0,T)

We proceed with the study of (3.1). Denote by 0 < T} < Ty < ... the jumping times of N restricted to
{|z| > 1}, and by (Z,) the jumps which are i.i.d. random variables with distribution A~'1y,|~13(dz2),
where A := [i,_, v(dz). Therefore fot flzl>1va(ds,dz) =Y nen Znlyr,<¢y and (3.1) coincides with
(3.2) on each time interval (T, Ty,+1). Since V is a solution of (3.2) on [0,7}), by using (3.8),

]E[ sup VE‘Q] < Ca,g,T(1+x2), with G :=0o(T1,T5,...).
te[0, T AT)

By using the Jensen inequality and the classical inequality (a 4 b)° < c5(a® + %), we obtain

E [ sup V2
t€[0,T1AT)

g} < Copsr(l+|z]).



Furthermore, Vi, = Vi, 4+ Zy, hence |V, |° < cs(|Vr—|° + |Z1]°). Since § < a, E(|Z1]°) < oo.
Consequently, we have

E[ sup Vt‘s‘g} < Copor(l+|z)°).
te[0,T1 AT

Using the same inequality on (T, T}, 1), but starting from V7, , we can show that, for any n > 0,

Uy = E [ sup I7Al
tE[TW AT, Try1 AT

3IG])  (with Ty = 0).

G| < Crs(1+ E[Vx,

Then the sequence (uy)n>0 satisties ug < Cp 5(1 + |z]%) and wu, 41 < C7 s(1 + up), implying that there
exists C7.5, > 1 such that u,, < Cit! . We deduce that

n+1

IE[ sup f/,f‘g] <up Uy < T.ozx
t€[0,T5 AT Crse—1
Finally,
E vaJ < E E v < 1 Cn+2 ()‘T)n —A\T
[ sup V;} = Z |:]1T7L<T<Tn+1 ( sup Vvt |g)} S m Z T.ox ™ e < 0.
;0,T n>0 .

te[0,T] n>0 te[0,T, AT

3.1.2 Ergodicity

The ergodic feature of the process V is a consequence of Proposition 0.1, p. 604 in [10]. Indeed, provided
that 8 > 1, the drift coefficient b(z) = —sgn(z)|z|® and the jump measure v(dz) = |z|~!71g\ (o1dz
clearly satisfy the conditions in the cited result. Hence V is an exponential ergodic (and Harris recurrent)
process having an unique invariant distribution, denoted by mq_ g, which satisfies

2 u([u, +00)) C

d =
—b(z) u |z[otA—1

moslloto0) o~ [ (39)

||

as follows from Theorem 4.1, p. 92 in [13]. Clearly, the identity function, id € L!(mg,,s) under the
hypothesis of Theorem 1.1, 5+ § — 2 > 0. By the classical ergodic theorem, for all f € L'(mq g),

T
lim /O F(V2)ds = /}R F@)mes(da), as. (3.10)

T—oo T

Recall that we are interested on the behaviour as ¢ — 0 of

tE—aB

fBHE e = V.ds, (3.11)
0

where 6 is given by (1.9). In other words, we are studying a large time behaviour of a functional of V/,
hence it is quite natural to perform the study in steady state. In fact, we can prove the following lemma
(see also [2], Theorem 2.6, p. 194):

—ab
Lemma 3.2. Suppose that §+< —2 > 0. Assume that the process {e*°/ e Vsds : t > 0} converges,
2 0

as € — 0, in distribution toward a Brownian motion, provided that V is starting with Mq,3 65 an initial
distribution. Then the same process converges in distribution toward a Brownian motion when Vy = 0.

Proof. In this proof we will denote the process in (3.11) by Z, ¢(t), and for A >0,



First, let us prove that Z. a(-) converges in distribution, as A — oo and ¢ — 0, toward a Brownian
motion, when Vi = 0. Denoting by pua the distribution of VA, for each bounded continuous real function
1 on C([0,400)), by the Markov property, we have

E[(Z-a() | Vo =0] = E[{(Z-0(-) | Vo ~ pal.

We can write, for all € > 0,

‘EW(ZE,O(')) | Vo ~ pa] —E[¥(Zeo() | Vo ~ ma,ﬁ]‘ = ’/REW(ZE,O(')) | Vo =y (NA(dy)_ma,B(dy))‘
< 1o /R (A, 0,dy) — 1m0 5(dy)] < [0]locl [P(A, 0, dy) — 1m0 5(dy) [y

where p(t,z,dy) = P,(V; € dy) is the transition kernel of V (and therefore p(A,0,dy) = ua(dy)) , and
| - ||Tv is the norm in total variation. Since V is (exponentially) ergodic, we get that

lim |]E[¢(ZE,0(~)) | Vo ~ [LA] - E[w(ZQO(-)) | Vo ~ ma”gH =0, uniformly in e.

A—o0

—ab/y

Second, by choosing A = A(e) =¢ we obtain

o ts’o‘ngA(s) B o A(e) _ w1 Al(e) B
7z ) —e% Vd‘<7 Vilds = % —— V,|ds.
s —<* [ aslp < [T Wilas = ¥ s [ s

sup {
>0
The right hand side term of the latter inequality tends to 0 almost surely, by using the ergodicity (3.10).

Therefore £*%/> fo.eia TAE) V,ds converges in distribution, as ¢ — 0, toward a Brownian motion when
Vo = 0. Clearly, lim._o(t — A(e)e®?) = t, and applying Lemma p. 151 in [4] (a consequence of the
continuous mapping theorem for the composition function), we can conclude. O

In the sequel, we will always assume that V is starting with Mg g as an initial distribution. Let us recall
that the infinitesimal generator of V' is given by

(£059)(@) = —sm(@lal’d (@) + [ [o6+9) —g@) =9 @ty c]vian. @12
with the domain D ,. Also denote (7;);>0 the semi-group associated to the operator L, g (or to the
process V). We collect in the following lemma some useful properties of the process V.

Lemma 3.3.

1. The domain D, , contains the space of bounded twice differentiable functions CZ(R).

a,B

2. For all p > 1, Ty is a contraction semi-group on LP(mq g) and for each f € LP(mqy g),

75 = oo, ) = 0. (3.13)

Proof. To prove the first point, we fix f € CZ(R) and we show that (L, f)(z) < oco. First,
—sgn(z)|z|? f'(z) is well defined for all € R. Since f € CZ(R), Vy € [-1,1],

fla+y) = f@) —yf @] <y swp ()] < o,
z€[x—1,z+1]

and we find

/m [flat+y) — f@) —yf @]viay) < | s |G| /y|<1y21/(dy)<oo.

z€[x—1,x+1]

Since f is bounded, we have

[ e —swla <o [ v <o,

ly|>1



hence f € D, ,.
We proceed with the proof of the second point. Fix f € LP(m, g) and we show first that

I TeflILr (ma.s) < I flILp(ma.s)-
Since

1T A1 ) = /R 17: (@) P, s(de) = /R B (F(V2)) P p(da),

by the Jensen inequality (p > 1), we get

17117 < /R Ex (| £ (V)P 5(de) = Enn, , (1FVDIP) = 110 -

Finally, we prove (3.13). Since C3(R) is dense in LP(mq.g), there exists f, € CZ(R) such that
I|f— anLp(ma,ﬁ) < n/3. Since Ty is a contraction semi-group and mq, g is a probability measure, we get

ITef = Fllee(ma,s) < 201F = Fallema ) + 1 Tefn = Falloo < @0/3 + [ Tefy = folloo:

Since 7y is a Feller semi-group (see for instance, [1], p. 151), for ¢ small enough, we have ||7; f;,— fnllco < /3

and we deduce (3.13). The proof is complete. O

3.1.3 Convergence in probability

The main result of this section concerns the behaviour of the speed process which is described by using
a Lyapunov function.

Proposition 3.4. Suppose that 3+ § > 2 and let p and v such that

p>1, p’y>2,2—ﬁ<7<%. (3.14)

Introduce the Lyapunov function
hp () = (14 |2[7)"/P. (3.15)

Then, as € — 0, {e*/?h,, (e 7PVif) : t > 0} converges to 0 in probability uniformly on each compact time
interval. More precisely, there exists ¢ > 2 such that, for any fivzed T > 0,

i g, <o ()] = B[ g Hhoo i) ] =0 @10

In order to prove this result, we need the following lemma whose proof is postponed to the Appendix.
Lemma 3.5.

1. If py > 2, hy, 4 is a twice differentiable function and there exists a positive constant k such that for
all (z,y) € R?,

- if |z| <1 then
(hpy (@ +y) = hpy ()] < k(YL y <y + Y] Ly >13);

- if |z| > 1 then
|h;0,7(17 +y) — hp,'v(x)‘ < k(‘nypill{\ylgi(ax)} + |y|v]l{i(a;)<\y|})7
where i(z) == (2)z[PY 4 1)/P7 — |z|.

2. Assume that py > 2 and 2 — B <y < a. There exist a continuous function f, o g~, a compact set
K and a constant d (depending only on p, o, B, v) such that

Ve €R, fpap~(x) >1+]2], fpap~(T) m:m 7‘$|V+571, (3.17)
and
(ﬁa,ﬁ hzw)(x) < _fp,a,ﬁﬁ(m) +dlg. (3.18)

10



Proof of Proposition 3.4. By (1.62), we can write

Ve a .
e% hp’v( 52 ) = ETehpﬁ(Vta‘””) (3.19)

and the first equality in (3.16) is clear. Since 2 — 8 < § and 3 > 1, we can fix ¢ such that % V(2-p58)<
Y<2y<gy<aand 2<qg< % + 2. By noting that h, ,(x)9 = hg qo(), we can write

B[, s 5)) =0 (s, (5}

te[0,T] te[0,T]
Employing It6’s formula with hg .qvy» We get
t ~
hp,qv( 1) — hp,qv( 0) = R +/ (La yﬁh‘”,qv)(v )ds, (3.20)

where
R _// (1 (Vs + ) = e g (V) ) R (dy, ).

By Lemma 3.5 applied to the function hg we see that there exists ¢ > 0 such that, for all ¢ € [0, T7,

,qY?

t
/ (La,p hz,m)(Vs)ds < ct.
0 q

Moreover, let us note that hz 4 is continuous and that hgm(x) ~ |x]|?7, as |z| — co. Hence, by the

v
choice of ¢, we have hz 4, € Ll (mq,p)- Replacing in (3.20), we obtain

1% E[( sup he L”(Vt5 ae>)} < 1% ||h§’q7||L1(maﬁ) +e@ DY (T 4 9% IE( sup Rtsfue).
te[0,T] te[0,T

Since g > 2, the first and the second term converge toward 0. For the last term, we use Kunita’s first

inequality (see for instance [1], p. 265): since Vj ~ Me,g, then for all t, Vi ~ M g and there exists a
positive constant C' such that

/2
E( sup Rtafae) §]E( sup R7__ ae) <CVTe % //]R2 (@ +y) —he g (2 ))2I/(dy)ma,ﬁ(d$)-

te[0,T) t€[0,T]

It is sufficient to show that

//RQ(h%’qv( ¥) = b g (@) (dy)ma s(dz) < 0. (3.21)

This fact is obtained by using Lemma 3.5. If |z] > 1,

2 _
(h2 gy (z +y) = he gy (@) < K2 (Y22 P Ly <icery + WP L <pon):

hence )
/ (a4 9) = Bz g (2)) w(dy) = O(Ja217~2), as Ja] — +o0,
R

and, since g < % +2, we get (3.21). If |z| < 1,
2
(he gy (@ +y) = he gy ()" < E (Y Ly i<ay + WP gy s1y)

and fR2 (hg’qv(ac—&-y) hg (T ))2V(dy) is finite independently of z. Since mq g is a probability measure,
(3.21) is verified again. The proof is complete except for Lemma 3.5. O

11



3.2 The position process X°

We are ready to prove our main result concerning the behaviour of the position process. Recall that,
thanks to Lemma 3.2, we assume that V' is starting with mq g as an initial distribution.

Proof of Theorem 1.1 for the case a € (0,2). Thanks to (3.17), Theorem 3.2, p. 924 in [7] applies

and we deduce that the Poisson equation £g = id admits a solution g satisfying |g| < ¢(hp,, + 1), with ¢
a positive constant. Applying It6-Levy’s formula with g, we get

3(V0) — §(Va) = /O Vds + M,, (3.22)

where
M, = / /R 6z + V) — §(V2)| N (ds, d). (3.23)

Step 1) We prove that M given by the latter formula is a square integrable true martingale. On one
hand we have

E[3(V7)?] = Blg(Vo)?] = /R §(2)?ma 5(dz) < oo,

Indeed, recall that hfw is continuous and it behaves as |z|?” in the neighbourhood of the infinity. Recalling
that v was chosen such that % V (4 —20) < 2y < a, by using (3.9), we see that

/ hpﬁ(x)Qmaﬁ(dx) < 00.
R

On the other hand, we can write

tv 2 t tv . t s . t s . .
]E[(/ Vsds” - IE/ / VoV, duds = 2]E/ ds/ duV,V, < 2E/ ds/ du [Vi| | V).
0 0 0 0 0 0 0

Using Markov’s property and that V,, and V; follow the invariant law, we get, for u < s, E(|Vy||V,|) =
E(|Vg_ql\|%|). Therefore

t . 2 t s . . t s . .
E[(/O v;ds) ] gz/o ds/o duB(|Va||V)) :2/0 ds/o du T (|V,||Vo))

t S
—2 [ dsB(Vel [ Tid(V)du).
0 0

Applying again Theorem 3.2, p. 924 in [7], we deduce that the Poisson equation £, g ¢ = |id| admits a
solution ¢ satisfying |g| < ¢/(hp 4 + 1) with ¢ a positive constant. Moreover

[ TabdiVa)du = T.g(%) - (7).
0
Replacing in the latter inequality
t 9 t 5 3 5 t
B[( [ Vias) ] <2 [ E(WITa00) - a0l ds =2 [ as [ @lTate) - gle)lmo,s(e).
0 0 0
At this level, we need to apply the Holder inequality to conclude that
t 2
IE[/ Vsds} < . (3.24)
0

First, if # < 2 then we choose 7 close enough to 2 — 3 such that § € L® "/~ (m, 5). Since =2 > 1,
using the second part of Lemma 3.3, we get

||7;§ - §||L(3*5)/(27ﬁ)(ma)3) < 2||§||L<3*5>/(2—m(maﬁy

12



By the Holder inequality and the fact that |id| € L37%(m,.5), we get (3.24). Second, if 3 > 2, we choose
v < 1 close enough to 0 such that [id| € LY~ (m,, 3). Since § € L/7(m,, ), using again Lemma 3.3,
we get

1753 = Gl y < 20l

Since |id| € LY@ =7(m, s), we can apply the Hélder inequality and get (3.24) again.
We conclude that M given by (3.23) is a square integrable true martingale. Moreover, we can compute
its quadratic variation

M), = / /}R 6y + V2) — §(Va)Pu(dy)ds, (3.25)

hence

M), = t// 9@ + ) — §(@)P(dy)ma.s(dz) < oo (3.26)
R
Step 2) Performing a simple time change in (3.22), we see that the process in (1.8) can be written
HB+5-2) xe = % [ (Vyomo0) —g(f/o)] e M, 0. (3.27)
In this step, we show that the martingale term on the right hand side of the latter equality converges to

a Brownian motion by using Whitt’s theorem (see Theorem 2.1 (ii) in [15], pp. 270-271). We need to
verify the hypotheses of this result. In order, since the function

e / 6z + y) — §(2)2v(dy) € L-(ma ),
R

by using (3.25) and the ergodic theorem (3.10), we deduce that

b

finp (e M) = fmy /ta /9“‘/ (Vo) 2v(dy)ds
_t//]Rz (z+y) — §(@)Pv(dy)ma,p(de).

The condition (6) in [15], p. 271 is fulfilled. Again by (3.25), we see that (M) has no jump, hence the
condition (4) in [15], p. 270 is trivial. Let us note also that, by (3.22), the jumps of the martingale M;
are J(M;) := §(V;) — §(V;_). Therefore we deduce that the jumps of the martingale term on the right
hand side of (3.27) are

J(E%Mts*ae) = 5% [g(‘}vs*aet) *9(‘25*&%—)] <c % “hp“/( )| |h (‘76*“9t—)| + 2}

o)

1},

2ec]
te[0,T]

by using the fact that || < ¢(h,~ + 1) and (3.19). By Proposition 3.4,

N 2
limE[ sup J(eTeMtgfae) ] =0.
=0 Liclo, 1]

Therefore we can apply Whitt’s theorem to deduce that {5(“9)/2Mtsfae it > 0} converges in distribution

(as a process) toward /{Z%B, where B is a standard Brownian motion and

KB 1= //]R2 (z+y)—g(z )]QV(dy)maﬁ(dx) > 0. (3.28)

The constant k., g is positive by noting that v is absolutely continuous with respect to the Lebesgue
measure, that m, g has a non-empty support, and that g could not be a constant function, since £§ = id.

13



Step 3) By using that |g| < ¢(hp, + 1), we get

i " )| +2)

g(‘?tafa") - g(%) < 462( hp,’y (‘7156*0‘9)

hence, using Proposition 3.4,

2
. 2] ~ (T ~ (T —
tim B[ s Jo(Fie-) 5] ] =0

hence {e“"/2[§(V;.-as) — §(Vo)] : t > 0} converges in probability toward 0, uniformly on compact sets.

Step 4) Our processes are valued in the Skorokhod space of cadlag functions D([0, o)) endowed with .J;
(or simple) Skorokhod topology (see [16], §3.3). It is not difficult to see that a sequence which converges
in probability toward 0, uniformly on compact sets, is also convergent in probability for J; metric, hence
in distribution in J; topology. Recall that in the Skorokhod space, the addition is not a continuous map
(see for instance [16], p. 84). In our case, the limits of the terms on the right hand side of equality (3.27)
are, respectively 0 and a Brownian motion which have continuous paths. By using the joint convergence
theorem (Theorem 11.4.5, p. 379 in [16]) and the continuous-mapping theorem (Theorem 3.4.3, p. 86 in
[16]), we obtain the conclusion of Theorem 1.1. O

Proposition 3.6. The constant ko g in Theorem 1.1 given in (3.28) satisfies

Ka,3 = —Q/Rxg(x)maﬁ(dx) > 0. (3.29)

Proof. Since, by (3.26) and (3.28), ka3 = TE[M?], for all t > 0, by taking ¢t = £*Y and using It0’s
formula, we get

af

o = B[ ((Vees) = 30 = [ Vas)'] = {B[(9(0) - 200))]
) [

enl( [ Vi) -2 (o000 -s) [ v} o)

The first term on the right hand side of (3.30) can be written :

E[(3(Vee0) = 5(0)) | =2 [ 4(0Pmaslcle) - 2B[3(V)g(Vews) | =2 [ gla)m p(do)
~ 2B [§)E(§(Vece) | V)] =2 [ 40 maslcle) — 28 [3(6) (o) (Vo)
=2 [ gla)ma,s(de) 2 [a(%) (306) + | " T ioas)|
——26[o(7%) | (Td)(V)ds] = =2 [ o) mo sl [ " T s

&_ae

_ g / ()5 (d) — 2 / §(2) e s (da) / ((Teid) — id) (z)ds.

0

By using the Holder inequality, we prove that,

E {(g(f/&.ae) - g(vo)f] ~ 2590 / 2§(x)ma,5(dz), as € — 0. (3.31)

Indeed, if 2 — ¢ < 8 < 2, § € L 7> %(my ) and lim,_ ||(T5id) — id||ps-s
§ € L7 (ma,p) and im0 [|(Tid) — id ]l ya- . ) = 0.

) =0, and if 8 > 2,

(ma,p
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By using (3.24) and Fubini’s theorem, the second term on the right hand side of (3.30) can be written

E[(/O Vds / ds/ VV du—/ ds/ du
/ ds / Vo (o u1d><vo>)du— / - duE(vo / T ) (75) ds)
_ / B o (Toor 3 %6) / du [[o((Teeo-08) ~ 8) @ p(do).

0

Once again by the Holder inequality, we prove that

([ ey
0

Indeed, if 2 — § < 8 < 2 then id € L37#(m,, ), we can see that

= 0(e?), ase — 0. (3.32)

li ao_uf) — @l - —0.
L N 1(Tea0—ud) = Gllya-pr2-5 (., 5 =0

Similarly, if 8 > 2 then id € LY~ (Ma,p), we see that

lim  sup |[Tzeo_nd) — gl =0.

1
=0 g<y<eat L7 (ma,g)

Finally, the third term in (3.30) is analysed by using the Cauchy-Schwartz inequality and the behaviour
of the other terms. We get that

ab

€
—2E[(g(f/5ae) - g(f/o))/ Vsds} = 0(2?), as £ — 0. (3.33)
0
Putting together (3.30)-(3.32), we obtain that

Ka,g = —2/x§(x)ma’5(dm) +o0(1), as € = 0.

and the result is proved. O

3.3 Appendix

Proof of Lemma 2.3. Note that gg is an odd function. Introduce pg(z) = — f;oo 2yes W dy. By the

continuity of gz on [0,1], it is sufficient to prove (2.3) for z > 1. Assume 3 € [1, 00), then, since = > 1,
+o0 +oo

() :/ A (ot Y a4z > / 2o gy = e

x

x

hence

x
/ et Mlgpﬂ(y)dy >1-—u,
1
and (2.3) is true in this case. If 8 € [0,1), by integration by parts,

400 _ 400
pp(x) = / 2P (= 22'86_[*%Zﬁ+l)dz = gl B % 272 (— 2 Pe 71"
x x

dz

B+1)

2 641 1—p

__2 B+1
> gl Pemm?

2
z e m

hence,



and (2.3) follows. More generally, assume § € [— 75, m) for an integer n > 0. Set dy = 1 and

k—1

dy =27 ] ((1 = B) —j(1 + B)), for k > 1 integer. By the choice of n, we can see that d,, > 0. If we
§=0

iterate n times the integration by parts, we get:

n 400
po(x) = = 3 dpat-A KO g, / A= DG (_gpPem7H g
k=0 r
Since (1 — ) — (n+1)(8+ 1) <0 we can write
orer 2 - (a0 gt ) e
k=0

By integrating, we have

/xe%yﬂ“ dy>/ (deyl B—k(1+6) | g/ (1-5)= (n+1)(/3+1)> dy,
1

and we easily deduce (2.3). The proof of (2.3) is complete for all 8 € (-1, c0). O

Proof of Lemma 3.5. Recall that h, . (z) = (1 + |2[P?)"? and assume firstly that |z| < 1. Since h,, ,
is continuously differentiable and equivalent to |z|” at infinity, there exists k > 0 such that

|hpy (2 +y) — by (2)] < [yl su132]| By, (2) L gpyi<1y + Ky gy 513

z€[-2,

The desired inequality is then clear. Secondly, assume that |x| > 1. It is a simple computation to see
that for all z > 0 and r > 0, there exists ¢, > 0, such that

1+2)-1<e¢, (Z]l{zgl} + Zr]l{z>1}).
We deduce that, for all (u,v) € [0,00) X [0,00), there exist k, > 0 such that
(o) —u = |(142) = 1] k(o0 7 Lucuy + 0 L ucw))- (3.34)

Since = # 0,

|hp,7($ +y) — hpﬁ(w)‘ = |z|"

1 y [P\ P 1 /p
) G Y
<|x|P’Y+‘ +a: |x|m+
1 ¥\ P\ /e 1 /v
g J Y
< lal {(|x|p’7+<1+|x|) ) (|x|m“) }

Py L .
) —land r= 5, we obtain

Applying (3.34) with u = ﬁ +1,v= (1 +

y
x

y Ypy Yo
ey 9) = b (@)] < Kl | (L4 1) = 1) Lpicarion

+(a+ 127 1) (mlm + 1)1511{“!'@@)}} :

Since i(z) > |x|, we can use again (3.34) to estimate the first term in the bracket on the right hand of
the latter inequality. We let u =1, v = ‘%] and r = py and we get

1—p

1 e
lhp (T + 1) = hpy (@)| < ki [y Lisy<pyry + ksl ((1 + ‘%’)m - 1) <|m|m + 1) Lyi<i(@)y-
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Since |z| > 1, i(=)/|z| is bounded, and since p > 1, (1/jz>* +1)"""/» < 1. Using that py > 2 and the fact
that I¥l/|z| is bounded, we have the existence of a ¥’ > 0 such that

MP’Y_ /M
((1+ ] 1) <k i

Taking k = max(ky/,ky, ki, k'), we get the second inequality in the first part of Lemma 3.5.
We proceed with the second part and we note that, since py > 2, hy, - is twice differentiable with

hy (@) =7 |22 [(y = D]z + py — 1] (1 + |27) 72
Moreover, since v < a < 2, hy € L>°. We split (Lq g hy ) (2) into three terms

|x|p7+ﬁ—1

Lo,ghp~(z) = —VW

* /ygl [h’w(x TY) = hpy(z) = yh;W(x)] v(dy)
+ /|y>1 [hprv(x +y) — hpﬁ(z)] v(dy).

The first term on the right hand side is equivalent to —y|2[**#~1 at infinity, while for the second term,
since |y| < 1, we have

‘hpﬁ(x +y) — hp(x) — yh;v(x)‘ <y? |SF<pl |h;',7(x +2)| < y2||h;’ﬁ||oo.
2>

Hence

/ » (@ 4+ 9) = P () = iy (0) | (@) | < callbf e
Y=

where ¢, := f‘y|<1 y?v(dy). We use the first part of the lemma to estimate the third term on the right
hand side. There are two situations : if |z| > 1, we get

hp (2 4y) — hp/y(x)‘ < k(yllz]" M Ly 1<icy + W L <iy)y)-

Hence

lylv(dy) + k/ ly["v(dy)
{max(1,i(z))<ly|}

< Ko / lylv(dy) + ke, .
{i(z)>]y|>1}

) /|y|>1 {hp’W(x +y) - hzw@")} u(dy)‘ < kx| /{

i(z)2ly[>1}

where ¢, . = f{|y|>1} ly|"v(dy). Since i(z) = O(|z]), as |z| — oo,

klxl%l/ lylv(dy) = O(Jz]" ™) + O(|z"~*),  as |z] = oo.
{i(@)2ly|>1}

If |z| < 1, since |y| > 1,
|hpy ( +y) = hpy (2)] < Ky,

SO

’/y>1 [hp,’Y(CL"f‘y)_hp,'y(x)}l/(dy)‘ </|y|>1|yvy(dy) < 400,

Denote by u the continuous function —L, ghy . Putting together the previous estimates, since g > 1
and % < v < «, we obtain that

u(z) ~ |z as |z| = oo,

and since v > 2 — 3,
1+ |z| = o(u(x)), as |z| — oco.
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Set K = [k~, k] with

ETi=inflz >0:y>2=uy) >y+1}, k =sup{z<0:y<z=u(y)>-y+1},

and
di=— inf (u@) = 1= [al), fyopn(2) = u(e@) e+ (1+ 2L
Then relations (3.17)-(3.18) hold true and the proof is complete. O
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