
Gaussian asymptotics for a non-linear Langevin type equation

driven by an α-stable Lévy noise

Richard Eon and Mihai Gradinaru

Institut de Recherche Mathématique de Rennes, Université de Rennes 1,

Campus de Beaulieu, 35042 Rennes Cedex, France

{Richard.Eon,Mihai.Gradinaru}@univ-rennes1.fr

Abstract: Consider a one-dimensional process xεt the position of a particle at time t which speed vεt is a

solution of a stochastic di�erential equation driven by a small α-stable Lévy process, ε`t, α ∈ (0, 2], and with

a non-linear drift coe�cient −sgn(v)|v|β , β > 2 − (α/2). The noise could be path continuous (Brownian motion

α = 2) or pure jump process (0 < α < 2). We prove that, as ε goes to 0, the limit in distribution of the process

{ε(β+(α/2)−2)θα,β xεε−αt : t ≥ 0} is a Brownian motion with some variance κα,β , where θα,β = α/(β+α−1). This

result is a generalization in some sense of the linear case studied by Hintze and Pavlyukevich [9].

Key words: stable Lévy noise, non-linear Langevin type equation, Lévy driven stochastic di�erential equa-

tion, Brownian motion, exponential ergodic processes, Lyapunov function, convergence in probability, functional

central limit theorem for martingales.

MSC2010 Subject Classi�cation Primary 60F17; secondary 60G52; 60J75; 60J65; 60H10; 60G44.

1 Introduction

In many physical, engineering or �nancial mathematics models based on random perturbations, the usual
construction is performed by using the standard white noise and studying the resulting di�usion process.
The Gaussian feature and the continuity of paths of the Brownian motion are essential when choosing
the tools used for this kind of situation. During the last �fteen years, the study of some particular
phenomena, as discontinuous behaviour of paths or self-similarity in time scale, focuses on another type
of random perturbation, mainly an α-stable Lévy noise. The resulting processes are called in physical
literature anomalous (fractional) di�usions or Lévy �ights.

In this paper, we consider the one-dimensional and non-linear Langevin type equation driven by an
α-stable Lévy process. Let us denote by xεt the one-dimensional process describing the position of a
particle at time t ≥ 0, having the speed vεt

xεt = x0 +

∫ t

0

vεsds, t ≥ 0, (1.1)

and such that vεt is a small α-stable Lévy process in a potential U(x) := 2
β+1 |x|

β+1,

dvεt = εd`t −
1

2
U ′(vεt )dt, vε0 = v0, (1.2)

in other words vεt veri�es the following integral equation

vεt = v0 + ε`t −
∫ t

0

sgn(vεs)|vεs |βds, t ≥ 0. (1.3)

Here β > −1 and {`t : t ≥ 0} is an α-stable Lévy process, α ∈ (0, 2]. If α ∈ (0, 2), the Lévy process is
a pure jump process with càdlàg paths and the jump measure is given by ν(dz) = |z|−1−α1R\{0}(z)dz.
The 2-stable Lévy process is the standard Brownian motion {bt : t ≥ 0} which is continuous. In all
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cases, the process has the property of self-similarity which means that the processes {`t : t ≥ 0} and
{c−1/α`ct : t ≥ 0} have the same law, for any c > 0.

The case of a harmonic potential (β = 1, linear equation), when the speed is a Ornstein-Uhlenbeck
process, was already considered by Hintze and Pavlyukevich [9]. The dynamic of the integrated Ornstein-
Uhlenbeck process appears in some �nancial mathematics (volatility) models (see for instance Barndor�-
Nielsen and Shephard [3]) or in models in physics of plasma (see for instance Chechkin, Gonchar and
Szydlowski [5]). In the paper by Hintze and Pavlyukevich, the authors study the asymptotic behaviour
of the integrated Ornstein-Uhlenbeck and prove that this process converges weakly, as ε → 0, to the
underlying α-stable Lévy process. In particular, when the driving process is a Brownian motion (α = 2),
the asymptotic behaviour is Gaussian. In [9], asymptotics of the �rst exit time from an interval are
deduced. Several physical papers pointed out that new interesting phenomena appear when one considers
super-harmonic potentials (see for instance Metzler, Chechkin, Klafter [11]).

Our goal is to answer to the same question in the situation of a super-harmonic potential (non-linear
equation): what is the asymptotic behaviour of the position process xεt , as ε → 0 ? On the one hand,
the non-linear case introduces new technical di�culties, mainly since the solution is no longer explicit.
Indeed, this fact was essential to prove weak convergence in the linear case. On the other hand, di�erent
conditions on the two parameters α and β will generate di�erent asymptotics for the position process.
The intuition suggests that the big jumps should be compensated by a strong negative drift (for instance
if β > 1) and small jumps should have some regularising e�ect. In the present paper, we answer to the
question by showing that for α and β in some unbounded domain, the position process xεt will behave
as a Brownian motion when ε goes to 0. In other words, we get Gaussian asymptotic behaviour even if
α is smaller than 2, provided that β is not very small, more precisely if β+ α

2 > 2. When α and β are in
somehow "small" the previous heuristic fails. To get convergence toward a stable process, one needs to
change the approach and other technical di�culties appear (this case will be presented in a forthcoming
paper, see [8]).

To state the main result of the present paper, we will perform some scaling transformations. Without
loss of generality, we can assume that the initial position is the origin x0 = 0. Moreover we will assume
that the initial speed vanishes v0 = 0, contrary to the linear case. By using the self-similarity, it is clear
that the process {Lεt := ε`ε−αt : t ≥ 0} is also an α-stable process. Let us denote, for t ≥ 0,

Xε
t := xεε−αt and V εt := vεε−αt (1.4)

satisfying, respectively,

Xε
t =

1

εα

∫ t

0

V εs ds and V εt = Lεt −
1

εα

∫ t

0

sgn(V εs )|V εs |βds. (1.5)

Set

Ľεt :=
Lε
t εα

2
/(α+β−1)

ε
α/(α+β−1)

=
`
t ε−α(β−1)/(α+β−1)

ε
(β−1)/(α+β−1)

and V̌ εt :=
V ε
t εα

2
/(α+β−1)

ε
α/(α+β−1)

, (1.6)

provided that α+ β − 1 > 0. Again by self-similarity, Ľε is distributed as an α-stable Lévy process and
we have

Xε
t = ε

α(2−β)
α+β−1

∫ tε
−α2

/(α+β−1)

0

V̌ εs ds and V̌ εt = Ľεt −
∫ t

0

sgn(V̌ εs )|V̌ εs |βds. (1.7)

Let us note that if α = 2, all previous computations hold true with `, L or Ľ replaced respectively by b,
B or B̌ a standard Brownian motion. Our main result is the following:

Theorem 1.1. Assume that 0 < α ≤ 2 and β + α
2 > 2. There exists a positive constant κα,β such that

the process {
ε
α(β+α/2−2)
α+β−1 xεε−αt : t ≥ 0

}
=
{
ε
α(β+α/2−2)
α+β−1 Xε

t : t ≥ 0
}

(1.8)

converges in distribution toward a Brownian motion process with variance κα,β, as ε→ 0. Moreover, if
α = 2, the result is true even for −1 < β ≤ 1.

Remark 1.2. 1. If the driving noise is the Brownian motion α = 2, the convergence in the theorem
holds in the space of continuous functions C([0,∞)) endowed by the uniform topology. If the driving
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noise is α-stable with α ∈ (0, 2), the convergence in Theorem 1.1 holds in the Skorokhod space of
càdlàg functions D([0,∞)) endowed by J1 (or simple) Skorokhod topology. Our situation is simpler
than in [9] since the limit is a continuous paths process.

2. If the driving noise is the Brownian motion α = 2, the normalizing factor is ε2(β−1)/(β+1) and it
behaves di�erently following with the position of β with respect to 1 (if β = 1, the position process
Xε converges in distribution toward a standard Brownian motion, see also Remark 2.4 below).

3. The case when β+ α
2 = 2 should be considered as a critical for some phase transition from Gaussian

to stable case. It should be reasonable that there is some continuity but the proof seems more delicate
since natural integrability conditions are not ful�lled.

4. The constant κα,β has an integral representation (see (2.9) and (3.28) ) and it is more explicit when
the driving noise is the Brownian motion (α = 2).

5. Again, as an application, one can �nd asymptotics of the �rst exit time from an interval : Corollary
2.1, p. 269, in [9] applies.

Let us explain the method of proof and the organisation of the paper. To simplify the notations, all
along the paper we will denote

θ = θα,β :=
α

α+ β − 1
∈ (0, 1). (1.9)

It is a simple observation that

εθ(β+α
2−2)Xε

t = ε
αθ
2

∫ tε−αθ

0

V̌ εs ds ,

hence Theorem 1.1 is in fact a second order type ergodic theorem. By using stochastic calculus, we
will show that the latter quantity is a sum of a square integrable martingale and a term which tends in
probability toward 0 as ε→ 0. The result is then obtained by using the functional central limit theorem
for martingales and the continuous-mapping theorem.

In the next section, we consider the case when the driving noise is the Brownian motion: in this case
computations are performed by using Itô's calculus and are more explicit. For instance, the constant
κ2,β can be written in terms of the scale function and the speed measure. In Section 3, we follow the
same structure of the proof for a pure jump driving noise. Computations are more technical and new
ideas are needed: for instance, we need to �nd and use a Lyapunov function which allows to perform the
same reasoning by using Lévy-Itô's calculus. We collect in the Appendix the technical proofs.

2 Brownian motion driving noise

Recall that in this case, {bt : t ≥ 0} is a standard one-dimensional Brownian motion, β > −1 and we set

B̌εt :=
Bε
t ε

4/(β+1)

ε
2/(β+1)

=
b
t ε

2(1−β)/β+1

ε
(β−1)/(β+1)

, and V̌ εt :=
V ε
t ε

4/(β+1)

ε2/(β+1)
. (2.1)

Recall also that

Xε
t = ε

2(2−β)
(β+1)

∫ tε
−4/(β+1)

0

V̌ εs ds and V̌ εt = B̌εt −
∫ t

0

sgn(V̌ εs )|V̌ εs |βds . (2.2)

B̌ε is distributed as a standard Brownian motion so, to simplify the notation, we will suppress the index
ε, as well as for V̌ ε.

2.1 The speed process V ε

2.1.1 Existence and uniqueness

If β ≥ 1, the drift coe�cient in (2.22) is a locally Lipschitz function hence by well known results (see, for
instance, Theorem 12.1, p. 132 in [12]), we get a pathwise unique strong solution V̌ to equation (2.22),
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whereas if −1 < β < 1, Girsanov's theorem gives the existence of a weak solution to equation (2.22).
For both situations, the solution is de�ned until an explosion time τe, but it is no di�cult to prove that
τe =∞ a.s. by using Theorem 10.2.1, p. 254, in [14] and a convenient Lyapunov function (for instance
h(x) = 1 +x2 for all |x| ≥ 1, h(x) = 1 for all |x| ≤ 1/2 and h ≥ 1 ). Introduce the scale function and the
speed measure associated to the di�usion

sβ(x) :=

∫ x

0

e−cβ(y)dy and mβ(dx) := 2ecβ(x)dx, where cβ(x) := − 2

β + 1
|x|β+1 . (2.3)

Since
∫∞

0
mβ([0, x])e−cβ(x)dx = ∞, by Theorem 52.1, p. 297 in [12], the pathwise uniqueness holds to

(2.22). Finally, there exists a pathwise unique strong solution V̌ to the equation (2.22).

2.1.2 Convergence in probability

The main result of this section is the following

Proposition 2.1. As ε→ 0, {V εt : t ≥ 0} converges to 0 in probability uniformly on each compact time
interval.

By (2.12), the relation between V ε and V̌ is V εt = ε2/(β+1)V̌
t ε
−4/(β+1) . To prove Proposition 2.1, we

need a preliminary result:

Lemma 2.2.

1. Fix p ≥ 2. There exists a positive constant Cp,β such that, for any t ≥ 0,

E
(
|V̌t|p

)
≤ Cp,β t. (2.4)

2. Fix p ≥ 4 and T > 0. There exists a positive constant C ′p,β such that

E
(

sup
0≤t≤T

|V̌
t ε
−4/(β+1) |

)p
≤ C ′p,β T 2 ε

−8/(β+1). (2.5)

Proof of Proposition 2.1. Taking p > 4 in Lemma 2.2, we deduce that for any T > 0, as ε → 0,
sup0≤t≤T |V εt | converges to 0 in Lp(Ω), and the conclusion follows. �

Proof of Lemma 2.2. By using Itô's formula and the equation (2.22), we can write

|V̌t|p = p

∫ t

0

sgn(V̌s)|V̌s|p−1dB̌s + p

∫ t

0

(
(1/2)(p− 1)|V̌s|p−2 − |V̌s|p−1+β

)
ds

Since β > −1, there exists a constant Cp,β > 0 such that

p
(

(1/2)(p− 1)|x|p−2 − |x|p−1+β
)
≤ Cp,β , ∀x ∈ R.

We deduce that

|V̌t|p ≤ Cp,βt+ p

∫ t

0

sgn(V̌s)|V̌s|p−1dB̌s (2.6)

We show that
∫ t

0
sgn(V̌s)|V̌s|p−1dB̌s is a martingale. Fix T > 0, for all t ≤ T , since (a+ b)2 ≤ 2(a2 + b2)

and |x|2p−2 ≤ 1 + |x|2p, by using the Burkholder-Davis-Gundy inequality, we can see that there exists a
positive constant C ′1 such that

E
(

sup
0≤u≤t

|V̌u|p
)2

≤ 2C2
p,β T

2 + 2p2E
(

sup
0≤u≤t

∫ u

0

sgn(V̌s)|V̌s|p−1dB̌s

)2

≤ 2C2
p,β T

2

+ 2p2 C ′1

∫ t

0

E
(
|V̌s|2p−2

)
ds ≤ 2p2 C ′1 T + 2C2

p,β T
2 + 2p2 C ′1

∫ t

0

E
(
|V̌s|2p

)
ds

≤ 2p2 C ′1 T + 2C2
p,β T

2 + 2p2 C ′1

∫ t

0

E
(

sup
0≤u≤s

|V̌u|p
)2

ds.
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By Gronwall's lemma, we get, for all t ≤ T ,

E
(

sup
0≤u≤t

|V̌u|p
)2

≤ (2p2 C ′1 T + 2C2
p,β T

2)e2p2 C′2 T .

Hence
∫ t

0
sgn(V̌s)|V̌s|p−1dB̌s is a martingale and we get (2.4) by taking expectation in (2.6).

It is now possible to improve the inequality (2.4). Indeed, it can be used to see that

E
(

sup
0≤t≤T

|V̌
t ε
−4/(β+1) |

)p
= E

(
sup

0≤t≤T
|V̌
t ε
−4/(β+1) |p/2

)2

≤ p2

2
E
(

sup
0≤t≤T

∫ t ε
−4/(β+1)

0

|V̌s|
p/2−1dB̌s

)2

+ 2C2
p/2,β T

2 ε
−8/(β+1) ≤ p2

2
C ′1

∫ T ε
−4/(β+1)

0

E
(
|V̌s|p−2

)
ds+ 2C2

p/2,β T
2 ε
−8/(β+1)

≤ p2

4
C ′1 Cp−2,β T

2 ε
−8/(β+1) + 2C2

p/2,β T
2 ε
−8/(β+1).

Therefore (2.5) follows taking C ′p,β := p2

4 C
′
1 Cp−2,β + 2C2

p/2,β . �

2.1.3 Ergodicity

Recall that we introduced the scale function and the speed measure in (2.3). Since sβ(∞) = ∞ and
mβ(R) <∞, the di�usion V̌ is regular (see for instance (45.2) and (46.10) pp. 272-275 in [12]) and is a
recurrent and ergodic process with the invariant measure mβ (see for instance Theorem 53.1, p. 300 in
[12]). Therefore, for all f ∈ L1(mβ),

lim
T→∞

1

T

∫ T

0

f(V̌s)ds =
1

mβ(R)

∫
R

f(x)mβ(dx), almost surely. (2.7)

2.2 The position process Xε

We recall that the in�nitesimal generator of V̌ is given by L2,β = 1
2

d2

dx2 − sgn(x)|x|β d
dx . Introduce

gβ(x) :=

∫ x

0

(∫ +∞

y

−2zecβ(z)dz

)
e−cβ(y)dy, x ∈ R, (2.8)

and note that (L2,β gβ)(x) = x, for all x ∈ R. Set

κ2,β :=
1

mβ(R)

∫
R

g′β(x)2mβ(dx) = − 2

mβ(R)

∫
R

xg′β(x)mβ(dx) (2.9)

(the latter equality is obtained by integrating by parts). We can give now the proof of the main result.

Proof of Theorem 1.1 for the case α = 2. By applying Itô's formula, we can see that

gβ(V̌t) =

∫ t

0

g′β(V̌s)dB̌s +

∫ t

0

(L2,β gβ)(V̌s)ds =

∫ t

0

g′β(V̌s)dB̌s +

∫ t

0

V̌sds,

and therefore

ε
2(β−1)/(β+1)

Xε
t = −ε2/(β+1)

∫ t ε
−4/(β+1)

0

g′β(V̌s)dB̌s + ε
2/(β+1)gβ(V̌

t ε
−4/(β+1) ) .

The continuous local martingale

Mε
t := −ε2/(β+1)

∫ t ε
−4/(β+1)

0

g′β(V̌s)dB̌s
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has the quadratic variation

〈Mε〉t = ε
4/(β+1)

∫ t ε
−4/(β+1)

0

g′β(V̌s)
2ds .

As a consequence of (2.7), for all t, 〈Mε〉t → κ2,βt a.s., as ε→ 0, where κ2,β is given by (2.9), and it is
the constant in the statement of Theorem 1.1. Indeed, using Whitt's theorem (see Theorem 2.1(ii), p.

270 in [15]), we deduce that Mε converges in distribution (as a process) toward κ
1/2
2,βB̌.

We will prove that the second term in the right hand side converges in probability uniformly on
compact sets to 0. At this level, we need a technical result:

Lemma 2.3. There exist two positive constants µβ , νβ such that for all x ∈ R,

|gβ(x)| ≤ µβ |x|(2−β)∨1 + νβ . (2.10)

We postpone the proof of the lemma to the Appendix and �nish the proof of Theorem 1.1 in the case
α = 2. By using the classical inequality (a+ b)2m ≤ 22m−1(a2m + b2m), (m ≥ 1 integer), we obtain

|ε2/(β+1)gβ(V̌
t ε
−4/(β+1) )|2m ≤ 22m−1µ2m

β ε
(4m)/(β+1)|V̌

t ε
−4/(β+1) |2m((2−β)∨1) + 22m−1ν2m

β ε
(4m)/(β+1) .

By choosing the integer m ≥ 1 such that p := 2m((2 − β) ∨ 1) > 4, we can use Lemma 2.2 and we get
for all T > 0,

lim
ε→0

E
[

sup
0≤t≤T

ε
4m/(β+1)g2m

β (V̌
t ε
−4/(β+1) )

]
= 0.

We �nish the proof of the theorem by employing the joint convergence theorem and the simple continuous-
mapping theorem (Theorem 11.4.5 p. 379 and Theorem 3.4.1, p. 85 in [16]) on the space of continuous
functions C([0,∞)) endowed with the uniform topology. �

Remark 2.4. Let us note that if β = 1 (Ornstein-Uhlenbeck case), gβ(x) = −x, κ2,β = 1 and the result
of Theorem 1.1 coincides with the result of Proposition 2.1, p. 268, in [9].

3 α-stable driving noise

Recall that Ľε is distributed as a α-stable Lévy process (see (1.61)) so, to simplify the notation, we will
suppress the index ε, as well as for V̌ ε (see (1.72)).

3.1 The speed process V ε

3.1.1 Existence and uniqueness

If β > 1, the drift coe�cient in (1.72) is a locally Lipschitz function and it is well known (see, for instance,
Theorem 6.2.11, p. 376 in [1]) that there exists a locally pathwise unique strong solution V̌ for equation
(1.72) de�ned up to an explosion random time τ . Moreover it can be proved that τ =∞ a.s. hence V̌ is
a global solution. For the sake of completeness, we give the proof of the latter statement (see also [13],
p. 73) by following some ideas in [6], pp. 156-157.

Lemma 3.1. For any α ∈ (0, 2), any δ ∈ (0, α) and any T > 0, E
[

sup
t∈[0,T ]

|V̌t|δ
]
<∞.

Proof. By Itô-Lévy's decomposition, there exists a Poisson process N and its compensated Ñ such that

Ľt =

∫ t

0

∫
|z|≤1

zÑ(ds,dz) +

∫ t

0

∫
|z|>1

zN(ds,dz)

and so the equation satis�ed by V̌ , starting from any x ∈ R, is

V̌t = x+

∫ t

0

∫
|z|≤1

zÑ(ds,dz) +

∫ t

0

∫
|z|>1

zN(ds,dz)−
∫ t

0

sgn(V̌s)|V̌s|βds. (3.1)

6



Consider another equation where we skip the (third) big jumps term

Yt = x+

∫ t

0

∫
|z|≤1

zÑ(ds,dz)−
∫ t

0

sgn(Ys)|Ys|βds, (3.2)

and apply Itô-Lévy's formula. We obtain

Y 2
t = x2 +Mt +

∫ t

0

∫
|z|≤1

[(Ys + z)2 − Y 2
s − 2zYs]ν(dz)ds− 2

∫ t

0

|Ys|β+1ds

= x2 + M̃t + t

∫
|z|≤1

z2ν(dz)− 2

∫ t

0

|Ys|β+1ds, (3.3)

where the local martingale term is given by

M̃t :=

∫ t

0

∫
|z|≤1

[(Ys + z)2 − Y 2
s ]Ñ(ds,dz).

The constants depending only on α and β will be denoted cα or kα,β and could change from line to line
in this proof. Let us write the third term in (3.3) as cαt and note that lim|y|→∞(cα − 2|y|β+1) = −∞.
We deduce that there exists a positive constant kα,β such that, for all t ≥ 0,

Y 2
t ≤ x2 + kα,βt+ M̃t. (3.4)

By Kunita's inequality (see for instance [1], p. 265) and by our convention on constants,

E

[
sup

0≤s≤t
Y 2
s

]
≤ x2 + kα,βt+ cα

∫ t

0

∫
|z|≤1

E
[
(Ys + z)2 − Y 2

s

]2
ν(dz)ds

≤ x2 + kα,βt+ cα

∫ t

0

E[Y 2
s ]ds ≤ x2 + kα,βt+ cα

∫ t

0

E

[
sup

0≤u≤s
Y 2
u

]
ds. (3.5)

Applying Gronwall's inequality, we get

E

[
sup

0≤u≤t
Y 2
u

]
≤ (x2 + kα,βt)e

cαt. (3.6)

Hence M is a (true) square integrable martingale and, taking expectation in (3.4), we obtain

E[Y 2
t ] ≤ x2 + kα,βt. (3.7)

Re-injecting this in (3.5), we get that, for any T > 0, there exists a positive constant Cα,β,T depending
also on T , such that

E
[

sup
t∈[0,T ]

Y 2
t

]
≤ Cα,β,T (1 + x2). (3.8)

We proceed with the study of (3.1). Denote by 0 < T1 < T2 < . . . the jumping times of N restricted to
{|z| > 1}, and by (Zn) the jumps which are i.i.d. random variables with distribution λ−11{|z|>1}ν(dz),

where λ :=
∫
{|z|>1} ν(dz). Therefore

∫ t
0

∫
|z|>1

zN(ds,dz) =
∑
n∈N Zn1{Tn≤t} and (3.1) coincides with

(3.2) on each time interval (Tn, Tn+1). Since V̌ is a solution of (3.2) on [0, T1), by using (3.8),

E
[

sup
t∈[0,T1∧T )

V̌ 2
t

∣∣∣G] ≤ Cα,β,T (1 + x2), with G := σ(T1, T2, . . . ).

By using the Jensen inequality and the classical inequality (a+ b)δ ≤ cδ(aδ + bδ), we obtain

E
[

sup
t∈[0,T1∧T )

V̌ δt

∣∣∣G] ≤ Cα,β,δ,T (1 + |x|δ).
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Furthermore, V̌T1
= V̌T1− + Z1, hence |V̌T1

|δ ≤ cδ
(
|V̌T1−|δ + |Z1|δ

)
. Since δ < α, E(|Z1|δ) < ∞.

Consequently, we have

E
[

sup
t∈[0,T1∧T ]

V̌ δt

∣∣∣G] ≤ Cα,β,δ,T (1 + |x|δ).

Using the same inequality on (Tn, Tn+1), but starting from V̌Tn , we can show that, for any n ≥ 0,

un := E
[

sup
t∈[Tn∧T,Tn+1∧T ]

V̌ δt

∣∣∣G] ≤ C ′T,δ(1 + E[|V̌Tn |δ|G]) (with T0 = 0).

Then the sequence (un)n≥0 satis�es u0 ≤ C ′T,δ(1 + |x|δ) and un+1 ≤ C ′T,δ(1 + un), implying that there

exists CT,δ,x > 1 such that un ≤ Cn+1
T,δ,x. We deduce that

E
[

sup
t∈[0,Tn∧T ]

V̌ δt

∣∣∣G] ≤ u0 + · · ·+ un−1 ≤
Cn+1
T,δ,x

CT,δ,x − 1
.

Finally,

E
[

sup
t∈[0,T ]

V̌ δt

]
≤
∑
n≥0

E
[
1Tn<T<Tn+1

E
(

sup
t∈[0,Tn∧T ]

V̌ δt
∣∣G)] ≤ 1

CT,δ,x − 1

∑
n≥0

Cn+2
T,δ,x

(λT )n

n!
e−λT <∞.

�

3.1.2 Ergodicity

The ergodic feature of the process V̌ is a consequence of Proposition 0.1, p. 604 in [10]. Indeed, provided
that β > 1, the drift coe�cient b(x) = −sgn(x)|x|β and the jump measure ν(dz) = |z|−1−α1R\{0}dz

clearly satisfy the conditions in the cited result. Hence V̌ is an exponential ergodic (and Harris recurrent)
process having an unique invariant distribution, denoted by mα,β , which satis�es

mα,β([x,+∞)) ∼
|x|→∞

∫ +∞

|x|

ν([u,+∞))

−b(x)
du =

C

|x|α+β−1
(3.9)

as follows from Theorem 4.1, p. 92 in [13]. Clearly, the identity function, id ∈ L1(mα,β) under the
hypothesis of Theorem 1.1, β + α

2 − 2 > 0. By the classical ergodic theorem, for all f ∈ L1(mα,β),

lim
T→∞

1

T

∫ T

0

f(V̌s)ds =

∫
R

f(x)mα,β(dx), a.s. (3.10)

Recall that we are interested on the behaviour as ε→ 0 of

εθ(β+α
2−2)xεε−αt = ε

αθ
2

∫ tε−αθ

0

V̌sds, (3.11)

where θ is given by (1.9). In other words, we are studying a large time behaviour of a functional of V̌ ,
hence it is quite natural to perform the study in steady state. In fact, we can prove the following lemma
(see also [2], Theorem 2.6, p. 194):

Lemma 3.2. Suppose that β+ α
2 −2 > 0. Assume that the process

{
εαθ/2

∫ tε−αθ
0

V̌sds : t ≥ 0
}
converges,

as ε→ 0, in distribution toward a Brownian motion, provided that V̌ is starting with mα,β as an initial
distribution. Then the same process converges in distribution toward a Brownian motion when V̌0 = 0.

Proof. In this proof we will denote the process in (3.11) by Zε,0(t), and for ∆ ≥ 0,

Zε,∆(t) := ε
αθ
2

∫ tε−αθ+∆

∆

V̌sds.
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First, let us prove that Zε,∆(·) converges in distribution, as ∆ → ∞ and ε → 0, toward a Brownian
motion, when V̌0 = 0. Denoting by µ∆ the distribution of V̌∆, for each bounded continuous real function
ψ on C([0,+∞)), by the Markov property, we have

E
[
ψ(Zε,∆(·)) | V̌0 = 0

]
= E

[
ψ(Zε,0(·)) | V̌0 ∼ µ∆

]
.

We can write, for all ε > 0,

∣∣E[ψ(Zε,0(·)) | V̌0 ∼ µ∆

]
−E
[
ψ(Zε,0(·)) | V̌0 ∼ mα,β

]∣∣ =
∣∣∣ ∫
R

E
[
ψ(Zε,0(·)) | V̌0 = y

](
µ∆(dy)−mα,β(dy)

)∣∣∣
≤ ||ψ||∞

∫
R

∣∣p(∆, 0,dy)−mα,β(dy)
∣∣ ≤ ||ψ||∞||p(∆, 0,dy)−mα,β(dy)||TV ,

where p(t, x,dy) = Px(V̌t ∈ dy) is the transition kernel of V̌ (and therefore p(∆, 0,dy) = µ∆(dy)) , and
‖ · ‖TV is the norm in total variation. Since V̌ is (exponentially) ergodic, we get that

lim
∆→∞

∣∣E[ψ(Zε,0(·)) | V̌0 ∼ µ∆

]
− E

[
ψ(Zε,0(·)) | V̌0 ∼ mα,β

]∣∣ = 0, uniformly in ε.

Second, by choosing ∆ = ∆(ε) = ε−αθ/4 we obtain

sup
t≥0

{∣∣∣Zε,∆(ε)(t)− ε
αθ
2

∫ tε−αθ+∆(ε)

0

V̌sds
∣∣∣} ≤ εαθ2 ∫ ∆(ε)

0

|V̌s|ds = ε
αθ
4

1

∆(ε)

∫ ∆(ε)

0

|V̌s|ds.

The right hand side term of the latter inequality tends to 0 almost surely, by using the ergodicity (3.10).

Therefore εαθ/2
∫ •ε−αθ+∆(ε)

0
V̌sds converges in distribution, as ε → 0, toward a Brownian motion when

V̌0 = 0. Clearly, limε→0(t − ∆(ε)εαθ) = t, and applying Lemma p. 151 in [4] (a consequence of the
continuous mapping theorem for the composition function), we can conclude. �

In the sequel, we will always assume that V̌ is starting with mα,β as an initial distribution. Let us recall
that the in�nitesimal generator of V̌ is given by

(Lα,β g)(x) = −sgn(x)|x|βg′(x) +

∫
R

[
g(x+ y)− g(x)− yg′(x)1|y|≤1

]
ν(dy) , (3.12)

with the domain DLα,β . Also denote (Tt)t≥0 the semi-group associated to the operator Lα,β (or to the

process V̌ ). We collect in the following lemma some useful properties of the process V̌ .

Lemma 3.3.

1. The domain DLα,β contains the space of bounded twice di�erentiable functions C2
b(R).

2. For all p ≥ 1, Tt is a contraction semi-group on Lp(mα,β) and for each f ∈ Lp(mα,β),

lim
t→0
‖Ttf − f‖Lp(mα,β) = 0. (3.13)

Proof. To prove the �rst point, we �x f ∈ C2
b(R) and we show that (Lα,β f)(x) < ∞. First,

−sgn(x)|x|βf ′(x) is well de�ned for all x ∈ R. Since f ∈ C2
b(R), ∀y ∈ [−1, 1],∣∣∣f(x+ y)− f(x)− yf ′(x)

∣∣∣ ≤ y2 sup
z∈[x−1,x+1]

|f ′′(z)| <∞,

and we �nd∫
|y|≤1

[
f(x+ y)− f(x)− yf ′(x)

]
ν(dy) ≤

[
sup

z∈[x−1,x+1]

|f ′′(z)|
] ∫
|y|≤1

y2ν(dy) <∞.

Since f is bounded, we have∫
|y|>1

[
f(x+ y)− f(x)

]
ν(dy) ≤ 2||f ||∞

∫
|y|>1

ν(dy) <∞ ,
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hence f ∈ DLα,β .
We proceed with the proof of the second point. Fix f ∈ Lp(mα,β) and we show �rst that

‖Ttf‖Lp(mα,β) ≤ ‖f‖Lp(mα,β).

Since

‖Ttf‖pLp(mα,β) =

∫
R

|Ttf(x)|pmα,β(dx) =

∫
R

|Ex(f(V̌t))|pmα,β(dx),

by the Jensen inequality (p ≥ 1), we get

‖Ttf‖pp ≤
∫
R

Ex(|f(V̌t)|p)mα,β(dx) = Emα,β (|f(V̌t)|p) = ||f ||pLp(mα,β).

Finally, we prove (3.13). Since C2
b(R) is dense in Lp(mα,β), there exists fη ∈ C2

b(R) such that
||f − fη||Lp(mα,β) ≤ η/3. Since Tt is a contraction semi-group and mα,β is a probability measure, we get

‖Ttf − f‖Lp(mα,β) ≤ 2‖f − fη‖Lp(mα,β) + ‖Ttfη − fη‖∞ ≤ (2η)/3 + ‖Ttfη − fη‖∞.

Since Tt is a Feller semi-group (see for instance, [1], p. 151), for t small enough, we have ‖Ttfη−fη‖∞ ≤ η/3
and we deduce (3.13). The proof is complete. �

3.1.3 Convergence in probability

The main result of this section concerns the behaviour of the speed process which is described by using
a Lyapunov function.

Proposition 3.4. Suppose that β + α
2 > 2 and let p and γ such that

p > 1, pγ > 2, 2− β < γ <
α

2
. (3.14)

Introduce the Lyapunov function
hp,γ(x) := (1 + |x|pγ)1/p. (3.15)

Then, as ε→ 0, {εαθ/2hp,γ(ε−θV εt ) : t ≥ 0} converges to 0 in probability uniformly on each compact time
interval. More precisely, there exists q > 2 such that, for any �xed T > 0,

lim
ε→0

E
[(

sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
ε−θV εt

))q]
= E

[(
sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
V̌t ε−αθ

))q]
= 0. (3.16)

In order to prove this result, we need the following lemma whose proof is postponed to the Appendix.

Lemma 3.5.

1. If pγ > 2, hp,γ is a twice di�erentiable function and there exists a positive constant k such that for
all (x, y) ∈ R2,

- if |x| < 1 then
|hp,γ(x+ y)− hp,γ(x)| ≤ k(|y|1{|y|≤1} + |y|γ1{|y|>1});

- if |x| ≥ 1 then

|hp,γ(x+ y)− hp,γ(x)| ≤ k(|y||x|γ−11{|y|≤i(x)} + |y|γ1{i(x)<|y|}),

where i(x) := (2|x|pγ + 1)1/pγ − |x|.

2. Assume that pγ > 2 and 2− β < γ < α. There exist a continuous function fp,α,β,γ , a compact set
K and a constant d (depending only on p, α, β, γ) such that

∀x ∈ R, fp,α,β,γ(x) ≥ 1 + |x|, fp,α,β,γ(x) ∼
|x|→∞

γ|x|γ+β−1, (3.17)

and
(Lα,β hp,γ)(x) ≤ −fp,α,β,γ(x) + d1K . (3.18)
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Proof of Proposition 3.4. By (1.62), we can write

ε
αθ
2 hp,γ

(V εt
εθ

)
= ε

αθ
2 hp,γ

(
V̌t ε−αθ

)
(3.19)

and the �rst equality in (3.16) is clear. Since 2− β < α
2 and β > 1, we can �x q such that 2

p ∨ (2− β) <

γ < 2γ < qγ < α and 2 < q < β−1
α + 2. By noting that hp,γ(x)q = h p

q ,qγ
(x), we can write

E
[(

sup
t∈[0,T ]

ε
αθ
2 hp,γ

(
V̌t ε−αθ

))q]
= εq

αθ
2 E

[(
sup
t∈[0,T ]

h p
q ,qγ

(
V̌t ε−αθ

))]
.

Employing Itô's formula with h p
q ,qγ

, we get

h p
q ,qγ

(V̌t)− h p
q ,qγ

(V̌0) = Rt +

∫ t

0

(Lα,β h p
q ,qγ

)(V̌s)ds, (3.20)

where

Rt :=

∫ t

0

∫
R

(
h p
q ,qγ

(V̌s + y)− h p
q ,qγ

(V̌s)
)
Ñ(dy,ds).

By Lemma 3.5 applied to the function h p
q ,qγ

, we see that there exists c > 0 such that, for all t ∈ [0, T ],∫ t

0

(Lα,β h p
q ,qγ

)(V̌s)ds ≤ ct.

Moreover, let us note that h p
q ,qγ

is continuous and that h p
q ,qγ

(x) ∼ |x|qγ , as |x| → ∞. Hence, by the

choice of q, we have h p
q ,qγ
∈ L1(mα,β). Replacing in (3.20), we obtain

εq
αθ
2 E

[(
sup
t∈[0,T ]

h p
q ,qγ

(
V̌t ε−αθ

))]
≤ εq αθ2 ‖h p

q ,qγ
‖L1(mα,β) + ε(q−2)αθ2 cT + εq

αθ
2 E

(
sup
t∈[0,T ]

Rt ε−αθ
)
.

Since q > 2, the �rst and the second term converge toward 0. For the last term, we use Kunita's �rst
inequality (see for instance [1], p. 265): since V̌0 ∼ mα,β , then for all t, V̌t ∼ mα,β and there exists a
positive constant C such that

E
(

sup
t∈[0,T ]

Rt ε−αθ
)
≤ E

(
sup
t∈[0,T ]

R2
t ε−αθ

)1/2

≤ C
√
T ε−

αθ
2

∫∫
R2

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2
ν(dy)mα,β(dx).

It is su�cient to show that∫∫
R2

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2
ν(dy)mα,β(dx) <∞. (3.21)

This fact is obtained by using Lemma 3.5. If |x| ≥ 1,(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2 ≤ k2(|y|2|x|2qγ−21{|y|≤i(x)} + |y|2qγ1{i(x)<|y|}),

hence ∫
R

(
h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2

ν(dy) = O(|x|2qγ−α), as |x| → +∞,

and, since q < β−1
α + 2, we get (3.21). If |x| < 1,(

h p
q ,qγ

(x+ y)− h p
q ,qγ

(x)
)2 ≤ k2(|y|21{|y|≤1} + |y|2qγ1{|y|>1})

and
∫
R2

(
h p
q ,qγ

(x+y)−h p
q ,qγ

(x)
)2
ν(dy) is �nite independently of x. Since mα,β is a probability measure,

(3.21) is veri�ed again. The proof is complete except for Lemma 3.5. �
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3.2 The position process Xε

We are ready to prove our main result concerning the behaviour of the position process. Recall that,
thanks to Lemma 3.2, we assume that V̌ is starting with mα,β as an initial distribution.

Proof of Theorem 1.1 for the case α ∈ (0, 2). Thanks to (3.17), Theorem 3.2, p. 924 in [7] applies
and we deduce that the Poisson equation Lg = id admits a solution ĝ satisfying |ĝ| ≤ c(hp,γ + 1), with c
a positive constant. Applying Itô-Levy's formula with ĝ, we get

ĝ(V̌t)− ĝ(V̌0) =

∫ t

0

V̌sds+Mt, (3.22)

where

Mt :=

∫ t

0

∫
R

[ĝ(z + V̌s)− ĝ(V̌s)]Ñ(ds,dz). (3.23)

Step 1) We prove that M given by the latter formula is a square integrable true martingale. On one
hand we have

E[ĝ(V̌t)
2] = E[ĝ(V0)2] =

∫
R

ĝ(x)2mα,β(dx) <∞.

Indeed, recall that h2
p,γ is continuous and it behaves as |x|2γ in the neighbourhood of the in�nity. Recalling

that γ was chosen such that 4
p ∨ (4− 2β) < 2γ < α, by using (3.9), we see that∫

R

hp,γ(x)2mα,β(dx) <∞.

On the other hand, we can write

E

[(∫ t

0

V̌sds
)2
]

= E

∫ t

0

∫ t

0

V̌uV̌s duds = 2E

∫ t

0

ds

∫ s

0

du V̌uV̌s ≤ 2E

∫ t

0

ds

∫ s

0

du |V̌u||V̌s|.

Using Markov's property and that V̌u and V̌0 follow the invariant law, we get, for u < s, E
(
|V̌s||V̌u|

)
=

E
(
|V̌s−u||V̌0|

)
. Therefore

E
[( ∫ t

0

V̌sds
)2]
≤ 2

∫ t

0

ds

∫ s

0

duE
(
|V̌s−u||V̌0|

)
= 2

∫ t

0

ds

∫ s

0

duE
(
|V̌u||V̌0|

)
= 2

∫ t

0

dsE
(
|V̌0|

∫ s

0

Tu|id|(V̌0)du
)
.

Applying again Theorem 3.2, p. 924 in [7], we deduce that the Poisson equation Lα,β g = |id| admits a
solution g̃ satisfying |g̃| ≤ c′(hp,γ + 1) with c′ a positive constant. Moreover∫ s

0

Tu|id|(V̌0)du = Tsg̃(V̌0)− g̃(V̌0).

Replacing in the latter inequality

E
[( ∫ t

0

V̌sds
)2]
≤ 2

∫ t

0

E
(
|V̌0||Tsg̃(V̌0)− g̃(V̌0)|

)
ds = 2

∫ t

0

ds

∫
R

|x||Tsg̃(x)− g̃(x)|mα,β(dx).

At this level, we need to apply the Hölder inequality to conclude that

E
[ ∫ t

0

V̌sds
]2
<∞. (3.24)

First, if β < 2 then we choose γ close enough to 2− β such that g̃ ∈ L(3−β)/(2−β)(mα,β). Since 3−β
2−β > 1,

using the second part of Lemma 3.3, we get

‖Tsg̃ − g̃‖L(3−β)/(2−β)(mα,β)
≤ 2‖g̃‖

L(3−β)/(2−β)(mα,β)
.
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By the Hölder inequality and the fact that |id| ∈ L3−β(mα,β), we get (3.24). Second, if β ≥ 2, we choose
γ < 1 close enough to 0 such that |id| ∈ L1/(1−γ)(mα,β). Since g̃ ∈ L1/γ(mα,β), using again Lemma 3.3,
we get

‖Ttg̃ − g̃‖L1/γ(mα,β) ≤ 2‖g̃‖L1/γ(mα,β).

Since |id| ∈ L1/(1−γ)(mα,β), we can apply the Hölder inequality and get (3.24) again.
We conclude thatM given by (3.23) is a square integrable true martingale. Moreover, we can compute

its quadratic variation

〈M〉t =

∫ t

0

∫
R

[ĝ(y + V̌s)− ĝ(V̌s)]
2ν(dy)ds, (3.25)

hence

E[〈M〉t] = t

∫∫
R2

[ĝ(x+ y)− ĝ(x)]2ν(dy)mα,β(dx) <∞. (3.26)

Step 2) Performing a simple time change in (3.22), we see that the process in (1.8) can be written

εθ(β+α
2−2)Xε

t = ε
αθ
2

[
ĝ
(
V̌t ε−αθ

)
− ĝ(V̌0)

]
− εαθ2 Mt ε−αθ . (3.27)

In this step, we show that the martingale term on the right hand side of the latter equality converges to
a Brownian motion by using Whitt's theorem (see Theorem 2.1 (ii) in [15], pp. 270-271). We need to
verify the hypotheses of this result. In order, since the function

x 7→
∫
R

[ĝ(x+ y)− ĝ(x)]2ν(dy) ∈ L1(mα,β),

by using (3.25) and the ergodic theorem (3.10), we deduce that

lim
ε→0
〈εαθ2 M• ε−αθ 〉t = lim

ε→0
ε
αθ
2

∫ tε−αθ

0

∫
R

[ĝ(y + V̌s)− ĝ(V̌s)]
2ν(dy)ds

= t

∫∫
R2

[ĝ(x+ y)− ĝ(x)]2ν(dy)mα,β(dx).

The condition (6) in [15], p. 271 is ful�lled. Again by (3.25), we see that 〈M〉 has no jump, hence the
condition (4) in [15], p. 270 is trivial. Let us note also that, by (3.22), the jumps of the martingale Mt

are J(Mt) := ĝ(V̌t) − ĝ(V̌t−). Therefore we deduce that the jumps of the martingale term on the right
hand side of (3.27) are

J
(
ε
αθ
2 Mt ε−αθ

)
:= ε

αθ
2

[
ĝ
(
V̌ε−αθt

)
− ĝ
(
V̌ε−αθt−

)]
≤ c εαθ2

[∣∣hp,γ(V̌ε−αθt)∣∣+
∣∣hp,γ(V̌ε−αθt−)∣∣+ 2

]
≤ 2c ε

αθ
2

[
sup
t∈[0,T ]

∣∣∣hp,γ(ε−θV εt )∣∣∣+ 1
]
,

by using the fact that |ĝ| ≤ c(hp,γ + 1) and (3.19). By Proposition 3.4,

lim
ε→0

E
[

sup
t∈[0,T ]

J
(
ε
αθ
2 Mt ε−αθ

)2]
= 0.

Therefore we can apply Whitt's theorem to deduce that
{
ε(αθ)/2Mt ε−αθ : t ≥ 0

}
converges in distribution

(as a process) toward κ
1/2
α,βB̌, where B̌ is a standard Brownian motion and

κα,β :=

∫∫
R2

[ĝ(x+ y)− ĝ(x)]2ν(dy)mα,β(dx) > 0. (3.28)

The constant κα,β is positive by noting that ν is absolutely continuous with respect to the Lebesgue
measure, that mα,β has a non-empty support, and that ĝ could not be a constant function, since Lĝ = id.
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Step 3) By using that |ĝ| ≤ c(hp,γ + 1), we get∣∣∣ĝ(V̌t ε−αθ)− ĝ(V̌0)
∣∣∣2 ≤ 4c2

(∣∣∣hp,γ(V̌t ε−αθ)∣∣∣2 +
∣∣∣hp,γ(V̌0)

∣∣∣2 + 2
)

hence, using Proposition 3.4,

lim
ε→0

E
[
εαθ sup

t∈[0,T ]

∣∣∣ĝ(V̌t ε−αθ)− ĝ(V̌0)
∣∣∣2] = 0

hence
{
ε(αθ)/2

[
ĝ
(
V̌t ε−αθ

)
− ĝ(V̌0)

]
: t ≥ 0

}
converges in probability toward 0, uniformly on compact sets.

Step 4) Our processes are valued in the Skorokhod space of càdlàg functions D([0,∞)) endowed with J1

(or simple) Skorokhod topology (see [16], �3.3). It is not di�cult to see that a sequence which converges
in probability toward 0, uniformly on compact sets, is also convergent in probability for J1 metric, hence
in distribution in J1 topology. Recall that in the Skorokhod space, the addition is not a continuous map
(see for instance [16], p. 84). In our case, the limits of the terms on the right hand side of equality (3.27)
are, respectively 0 and a Brownian motion which have continuous paths. By using the joint convergence
theorem (Theorem 11.4.5, p. 379 in [16]) and the continuous-mapping theorem (Theorem 3.4.3, p. 86 in
[16]), we obtain the conclusion of Theorem 1.1. �

Proposition 3.6. The constant κα,β in Theorem 1.1 given in (3.28) satis�es

κα,β = −2

∫
R

xĝ(x)mα,β(dx) > 0. (3.29)

Proof. Since, by (3.26) and (3.28), κα,β = 1
tE
[
M2
t

]
, for all t > 0, by taking t = εαθ and using Itô's

formula, we get

κα,β = ε−αθE
[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)−

∫ εαθ

0

V̌sds
)2]

= ε−αθ
{
E
[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)

)2]
+ E

[( ∫ εαθ

0

V̌sds
)2]
− 2E

[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)

)∫ εαθ

0

V̌sds
]}
. (3.30)

The �rst term on the right hand side of (3.30) can be written :

E
[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)

)2]
= 2

∫
ĝ(x)2mα,β(dx)− 2E

[
ĝ
(
V̌0)ĝ(V̌εαθ

)]
= 2

∫
ĝ(x)2mα,β(dx)

− 2E
[
ĝ(V̌0)E

(
ĝ
(
V̌εαθ

)
| V̌0

)]
= 2

∫
ĝ(x)2mα,β(dx)− 2E

[
ĝ(V̌0)

(
Tεαθ ĝ

)
(V̌0)

]
= 2

∫
ĝ(x)2mα,β(dx)− 2E

[
ĝ(V̌0)

(
ĝ(V̌0) +

∫ εαθ

0

(Tsid)(V̌0)ds
)]

= −2E
[
ĝ(V̌0)

∫ εαθ

0

(Tsid)(V̌0)ds
]

= −2

∫
ĝ(x)mα,β(dx)

∫ εαθ

0

(Tsid)(x)ds

= −2 εαθ
∫
xĝ(x)mα,β(dx)− 2

∫
ĝ(x)mα,β(dx)

∫ εαθ

0

(
(Tsid)− id

)
(x)ds.

By using the Hölder inequality, we prove that,

E

[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)

)2
]
∼ −2 εαθ

∫
xĝ(x)mα,β(dx), as ε→ 0. (3.31)

Indeed, if 2 − α
2 < β < 2, ĝ ∈ L3−β/2−β(mα,β) and lims→0 ‖(Tsid) − id‖L3−β(mα,β) = 0, and if β ≥ 2,

ĝ ∈ L
1
γ (mα,β) and lims→0 ‖(Tsid)− id‖L1/(1−γ)(mα,β) = 0.
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By using (3.24) and Fubini's theorem, the second term on the right hand side of (3.30) can be written

E
[( ∫ εαθ

0

V̌sds
)2]

=

∫ εαθ

0

ds

∫ s

0

E
(
V̌sV̌u

)
du =

∫ εαθ

0

ds

∫ s

0

E
(
V̌s−uV̌0

)
du

=

∫ εαθ

0

ds

∫ s

0

E
(
V̌0 (Ts−uid)(V̌0)

)
du =

∫ εαθ

0

duE
(
V̌0

∫ εαθ

u

(Ts−uid)(V̌0) ds
)

=

∫ εαθ

0

duE
[
V̌0

((
Tεαθ−uĝ

)
(V̌0)− ĝ(V̌0)

)]
=

∫ εαθ

0

du

∫
x
((
Tεαθ−uĝ

)
− ĝ
)

(x)mα,β(dx).

Once again by the Hölder inequality, we prove that

E

[(∫ εαθ

0

V̌sds
)2
]

= o(εαθ), as ε→ 0. (3.32)

Indeed, if 2− α
2 < β < 2 then id ∈ L3−β(mα,β), we can see that

lim
ε→0

sup
0≤u≤εαθ

‖(Tεαθ−uĝ)− ĝ‖L3−β/2−β(mα,β) = 0.

Similarly, if β ≥ 2 then id ∈ L1/(1−γ)(mα,β), we see that

lim
ε→0

sup
0≤u≤εαθ

‖Tεαθ−uĝ)− ĝ‖
L

1
γ (mα,β)

= 0.

Finally, the third term in (3.30) is analysed by using the Cauchy-Schwartz inequality and the behaviour
of the other terms. We get that

−2E
[(
ĝ
(
V̌εαθ

)
− ĝ(V̌0)

)∫ εαθ

0

V̌sds
]

= o(εαθ), as ε→ 0. (3.33)

Putting together (3.30)-(3.32), we obtain that

κα,β = −2

∫
xĝ(x)mα,β(dx) + o(1), as ε→ 0.

and the result is proved. �

3.3 Appendix

Proof of Lemma 2.3. Note that gβ is an odd function. Introduce ϕβ(x) = −
∫ +∞
x

2yecβ(y)dy. By the
continuity of gβ on [0, 1], it is su�cient to prove (2.3) for x > 1. Assume β ∈ [1,∞), then, since x > 1,

ϕβ(x) =

∫ +∞

x

z1−β
(
−2zβe−

2
β+1 z

β+1
)

dz ≥
∫ +∞

x

−2zβe−
2

β+1 z
β+1

dz = −e−
2

β+1x
β+1

,

hence ∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥ 1− x,

and (2.3) is true in this case. If β ∈ [0, 1), by integration by parts,

ϕβ(x) =

∫ +∞

x

z1−β(− 2zβe−
2

β+1 z
β+1)

dz = −x1−βe−
2

β+1x
β+1

+
1− β

2

∫ +∞

x

z−2β
(
− 2zβe−

2
β+1 z

β+1)
dz

≥ −x1−βe−
2

β+1x
β+1

− 1− β
2

x−2βe−
2

β+1x
β+1

,

hence, ∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥
∫ x

1

(
−y1−β − 1− β

2
y−2β

)
dy,
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and (2.3) follows. More generally, assume β ∈ [− n
n+2 ,

1−n
n+1 ), for an integer n ≥ 0. Set d0 = 1 and

dk := 2−k
k−1∏
j=0

((1 − β) − j(1 + β)), for k ≥ 1 integer. By the choice of n, we can see that dn > 0. If we

iterate n times the integration by parts, we get:

ϕβ(x) = −
n∑
k=0

dkx
(1−β)−k(1+β)e−

2
β+1x

β+1

+ dn

∫ +∞

x

z(1−β)−(n+1)(β+1)(−2zβe−
2

β+1 z
β+1

)dz.

Since (1− β)− (n+ 1)(β + 1) ≤ 0 we can write

ϕβ(x) ≥ −

(
n∑
k=0

dkx
(1−β)−k(1+β) + dnx

(1−β)−(n+1)(β+1)

)
e−

2
β+1x

β+1

.

By integrating, we have∫ x

1

e
2

β+1y
β+1

ϕβ(y)dy ≥
∫ x

1

(
n∑
k=0

dky
(1−β)−k(1+β) + dny

(1−β)−(n+1)(β+1)

)
dy,

and we easily deduce (2.3). The proof of (2.3) is complete for all β ∈ (−1,∞). �

Proof of Lemma 3.5. Recall that hp,γ(x) = (1 + |x|pγ)1/p and assume �rstly that |x| < 1. Since hp,γ
is continuously di�erentiable and equivalent to |x|γ at in�nity, there exists k > 0 such that

|hp,γ(x+ y)− hp,γ(x)| ≤ |y| sup
z∈[−2,2]

|h′p,γ(z)|1{|y|≤1} + k|y|γ1{|y|>1}.

The desired inequality is then clear. Secondly, assume that |x| ≥ 1. It is a simple computation to see
that for all z ≥ 0 and r > 0, there exists cr > 0, such that

(1 + z)r − 1 ≤ cr
(
z1{z≤1} + zr1{z>1}

)
.

We deduce that, for all (u, v) ∈ [0,∞)× [0,∞), there exist kr > 0 such that

(u+ v)r − ur = ur
[(

1 +
v

u

)r
− 1
]
≤ kr

(
vur−11{v≤u} + vr1{u<v}

)
. (3.34)

Since x 6= 0,

|hp,γ(x+ y)− hp,γ(x)| = |x|γ
∣∣∣∣( 1

|x|pγ
+
∣∣∣1 +

y

x

∣∣∣pγ)1/p

−
( 1

|x|pγ
+ 1
)1/p

∣∣∣∣
≤ |x|γ

[( 1

|x|pγ
+
(

1 +
∣∣y
x

∣∣)pγ)1/p

−
( 1

|x|pγ
+ 1
)1/p

]
.

Applying (3.34) with u = 1
|x|pγ + 1, v =

(
1 +

∣∣∣ yx ∣∣∣)pγ − 1 and r = 1
p , we obtain

|hp,γ(x+ y)− hp,γ(x)| ≤ k1/p|x|γ
[((

1 +
∣∣y
x

∣∣)pγ − 1
)1/p

1{i(x)≤|y|}

+
((

1 +
∣∣y
x

∣∣)pγ − 1
)( 1

|x|pγ
+ 1
) 1−p

p

1{|y|<i(x)}

]
.

Since i(x) > |x|, we can use again (3.34) to estimate the �rst term in the bracket on the right hand of
the latter inequality. We let u = 1, v =

∣∣ y
x

∣∣ and r = pγ and we get

|hp,γ(x+ y)− hp,γ(x)| ≤ k1/pkpγ |y|γ1{i(x)≤|y|} + k1/p|x|γ
((

1 +
∣∣y
x

∣∣)pγ − 1
)( 1

|x|pγ
+ 1
) 1−p

p

1{|y|<i(x)}.
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Since |x| ≥ 1, i(x)/|x| is bounded, and since p > 1, (1/|x|pγ + 1)(1−p)/p ≤ 1. Using that pγ > 2 and the fact
that |y|/|x| is bounded, we have the existence of a k′ > 0 such that((

1 +
|y|
|x|
)pγ − 1

)
≤ k′ |y|

|x|
.

Taking k = max(k1/pkpγ , k1/pk
′), we get the second inequality in the �rst part of Lemma 3.5.

We proceed with the second part and we note that, since pγ > 2, hp,γ is twice di�erentiable with

h′′p,γ(x) = γ |x|pγ−2
[
(γ − 1)|x|pγ + pγ − 1

]
(1 + |x|pγ)

1/p−2.

Moreover, since γ < α < 2, h′′p,γ ∈ L∞. We split (Lα,β hp,γ)(x) into three terms

Lα,βhp,γ(x) = −γ |x|pγ+β−1

(1 + |x|pγ)1−1/p
+

∫
|y|≤1

[
hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

]
ν(dy)

+

∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy).

The �rst term on the right hand side is equivalent to −γ|x|γ+β−1 at in�nity, while for the second term,
since |y| ≤ 1, we have∣∣∣hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

∣∣∣ ≤ y2 sup
|z|≤1

|h′′p,γ(x+ z)| ≤ y2‖h′′p,γ‖∞.

Hence ∣∣∣∣∣
∫
|y|≤1

[
hp,γ(x+ y)− hp,γ(x)− yh′p,γ(x)

]
ν(dy)

∣∣∣∣∣ ≤ cα‖h′′p,γ‖∞,
where cα :=

∫
|y|≤1

y2ν(dy). We use the �rst part of the lemma to estimate the third term on the right

hand side. There are two situations : if |x| ≥ 1, we get∣∣∣hp,γ(x+ y)− hp,γ(x)
∣∣∣ ≤ k(|y||x|γ−11{|y|≤i(x)} + |y|γ1{i(x)<|y|}).

Hence∣∣∣ ∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy)

∣∣∣ ≤ k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) + k

∫
{max(1,i(x))≤|y|}

|y|γν(dy)

≤ k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) + kc′α,γ ,

where c′α,γ :=
∫
{|y|>1} |y|

γν(dy). Since i(x) = O(|x|), as |x| → ∞,

k|x|γ−1

∫
{i(x)≥|y|>1}

|y|ν(dy) = O(|x|γ−1) +O(|x|γ−α), as |x| → ∞.

If |x| < 1, since |y| > 1,
|hp,γ(x+ y)− hp,γ(x)| ≤ k|y|γ ,

so ∣∣∣ ∫
|y|>1

[
hp,γ(x+ y)− hp,γ(x)

]
ν(dy)

∣∣∣ ≤ ∫
|y|>1

|y|γν(dy) < +∞.

Denote by u the continuous function −Lα,βhp,γ . Putting together the previous estimates, since β > 1
and 2

p < γ < α, we obtain that

u(x) ∼ |x|γ+β−1, as |x| → ∞,

and since γ > 2− β,
1 + |x| = o(u(x)), as |x| → ∞.
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Set K = [k−, k+] with

k+ := inf{x > 0 : y ≥ x⇒ u(y) > y + 1}, k− := sup{x < 0 : y ≤ x⇒ u(y) > −y + 1} ,

and
d := − inf

{x∈K}
(u(x)− 1− |x|), fp,α,β,γ(x) := u(x)1Kc + (1 + |x|)1K .

Then relations (3.17)-(3.18) hold true and the proof is complete. �
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