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In [2]-[4], William Feller introduced the derivative of a function with respect to another
function, strictly increasing, in connection with a second order differential operator.

In this paper, we shall use as the definition of the derivative the unilateral limits of the
functions in a point, instead of the values, and we shall study some properties to obtain a
Leibniz-Newton formula for Riemann-Stieltjes integral.

In the sequel, I is an interval of the real line, x0 ∈ I̊, and f, g are real functions defined
on I. We shall suppose that the function g is strictly increasing on I and the unilateral
limits f(x0 − 0), f(x0 + 0) exist.

Definition 1 We define the left derivative of f with respect to g in x0, by

f
′s
g (x0) := lim

x↑x0

f(x)− f(x0 + 0)

g(x)− g(x0 + 0)
,

if x0 is a point of continuity of g (provided the limit exists), and

f
′s
g (x0) :=

f(x0 − 0)− f(x0 + 0)

g(x0 − 0)− g(x0 + 0)
,

if x0 is a point of discontinuity of g. The right derivative f
′d
g is defined symmetrically,

f
′d
g (x0) := lim

x↓x0

f(x)− f(x0 − 0)

g(x)− g(x0 − 0)
,

if x0 is a point of continuity of g (provided the limit exists), and

f
′d
g (x0) :=

f(x0 + 0)− f(x0 − 0)

g(x0 + 0)− g(x0 − 0)
,

if x0 is a point of discontinuity of g. If f
′s
g and f

′d
g are finite, we say that f is left respectively,

right differentiable with respect to g in x0.

Remark 2 It is clear that f
′s
g (x0) = f

′d
g (x0) in each point of discontinuity of g. Also, if x0

is a point of continuity of g and f is left or right differentiable function with respect to g
in x0, then the limx→x0 f(x) exists.

Remark 3 We notice that g
′s
g and g

′d
g exist and g

′
g(x0) = 1, x0 ∈ I̊.
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Definition 4 We define the derivative of f with respect to g in x0, as follows:

f ′g(x0) :=
f(x0 + 0)− f(x0 − 0)

g(x0 + 0)− g(x0 − 0)
,

if x0 is a point of discontinuity of g, and

f ′g(x0) := lim
x→x0

f(x)− l0
g(x)− g(x0)

,

(whenever this limit exists), if x0 is a point of continuity of g and there exists limx→x0f(x) =
l0 ∈ R. When the previous limit is finite, we say that f is a differentiable function with
respect to g in x0. As usual f is a differentiable function with respect to g on I if the
function f is differentiable with respect to g in each point of I.

Remark 5 It is easy to see that a necessary and sufficient condition for f to be a differ-
entiable function with respect to g in x0 is that f be a left and right differentiable function
with respect to g in x0 and f

′s
g (x0) = f

′d
g (x0).

Remark 6 If the limit limx→x0 f(x) exists and x0 is a point of discontinuity of g, then
f ′g(x0) = 0.

In the sequel, we give some properties of the differentiable functions in the meaning of
our definition, analogous with the properties of the differentiable function with respect to
an independent variable.

Theorem 7 (Fermat)
Let f, g : I → R be two functions which are continuous in x0 ∈ I̊. Assume that x0 is a point
of extremum of f . If f is a differentiable function with respect to g in x0, then f ′g(x0) = 0.

Proof. Let x0 be a point of minimum, i.e. there exists a neighbourhood V of x0, so that
f(x) ≥ f(x0), x ∈ V ∩ I. By Remark 2, it follows the existence of the limit limx→x0 f(x),
which is f(x0) by the continuity of f in x0. Therefore we get f(x)− f(x0) ≥ 0, ∀x ∈ V ∩ I.
Then, because g is a strictly increasing function,

f(x)− f(x0 + 0)

g(x)− g(x0 + 0)
≤ 0, for x < x0, x ∈ V ∩ I

and it follows f
′s
g (x0) ≤ 0. Similarly f

′d
g (x0) ≥ 0 and we have f ′g(x0) = 0. 2

Theorem 8 (Rolle)
Let f, g : [a, b] → R and let g be strictly increasing function. If f is a continuous function
on [a, b], differentiable with respect to g on (a, b), and f(a) = f(b), then there is at least
one zero of its derivative.
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Proof. If there are points x0 ∈ (a, b) where g is a discontinuous function then the
conclusion is true by Remark 6. Now, we prove that the assertion is true in the case when
g is a continuous function on (a, b). If f is a constant function, it follows at once, by
Definition 4, that f ′g(x0) = 0, x0 ∈ (a, b). Assume that f is not a constant function. Since
f is continuous on [a, b] it involves that f has an extremum c ∈ (a, b) and by Theorem 7,
we have f ′g(c) = 0. 2

Theorem 9 (Cauchy)
Let f, g, h : [a, b] → R and suppose that g is strictly increasing. If f, g, h are continuous
functions on [a, b], f, h are differentiable with respect to g on (a, b), and h′g(x) 6= 0, for
each x ∈ (a, b), then h(a) 6= h(b) and there is at least one point c ∈ (a, b) such that

f(b)− f(a)

h(b)− h(a)
=

f ′g(c)

h′g(c)
.

Proof. There would exist c ∈ (a, b) such that h′g(c) = 0, if we had h(a) = h(b) (by
Theorem 8). There is a contradiction and so h(a) 6= h(b). Consider ϕ : [a, b] → R,
with ϕ(x) = f(x) + λh(x), x ∈ [a, b]. It follows that ϕ is a continuous function on
[a, b], a differentiable function with respect to g on (a, b). From ϕ(a) = ϕ(b) we find
λ0 = (f(b) − f(a))/(h(b) − h(a)) and ϕ(x) = f(x) + λ0h(x) satisfies the conditions of
Theorem 8, i.e. there is at least one c ∈ (a, b) such that f ′g(c) + λ0h

′
g(c) = 0. The equality

follows at once. 2

Theorem 10 (Lagrange)
Let f, g : [a, b] → R and suppose that g is strictly increasing. If f, g are continuous
functions on [a, b], f is differentiable with respect to g on (a, b), then there is at least one
c ∈ (a, b) such that

f(b)− f(a) = f ′g(c)[g(b)− g(a)].

Proof. It follows immediately, applying Theorem 9, taking h = g and observing that
g′g(x) = 1, for each x ∈ (a, b). 2

Proposition 11 Let g : [a, b] → R be a strictly increasing function and assume that g has
a finite number of points of discontinuity. Let s : [a, b] → R be the jump component of g,
i.e. s(a) = 0 and for a < x ≤ b,

s(x) = [g(a + 0)− g(a)] +
∑
xk<x

[g(xk + 0)− g(xk − 0)] + [g(x)− g(x− 0)].

Then, the function s is a differentiable function with respect to g on (a, b).

3



Proof. For simplicity, we assume that g has only one point of discontinuity x0 ∈ (a, b)
because, in the general case the reasoning is analogous. We have

s(x) =





0, x ∈ [a, x0)
g(x0)− g(x0 − 0), x = x0

g(x0 + 0)− g(x0 − 0), x ∈ (x0, b].

Since s is a continuous function on (a, b)\{x0} it is clear that there exists s′g and s′g(x) = 0
for each x ∈ (a, b) \ {x0}. Then

s′g(x0) =
s(x0 + 0)− s(x0 − 0)

g(x0 + 0)− g(x0 − 0)
=

g(x0 + 0)− g(x0 − 0)− 0

g(x0 + 0)− g(x0 − 0)
= 1.

Consequently,

s′g(x) =

{
0, if x is a point of continuity of g
1, if x is a point of discontinuity of g.

2

Let us denote D[a.b] = {g : [a, b] → R : g is a strictly increasing function and the jump
component s of g is a differentiable function with respect to g on (a, b) }.
Proposition 12 If g ∈ D[a,b], then the continuous component of g, ḡ : [a, b] → R, ḡ(x) =
g(x)− s(x), where s is the jump component of g is a differentiable function with respect to
g on (a, b).

Proof. It is known (see [5], p. 269), that ḡ is an increasing continuous function on
[a, b]. We have

ḡ′g(x0) = lim
x→x0

ḡ(x)− ḡ(x0)

g(x)− g(x0)
= lim

x→x0

(
1− s(x)− s(x0)

g(x)− g(x0)

)
= 1− s′g(x0),

if x0 is a point of continuity of g and ḡ′g(x0) = 0, if x0 is a point of discontinuity of g. 2

Remark 13 If g satisfies the assumption of Proposition 11, then

ḡ′g(x) =

{
1, if x is a point of continuity of g
0, if x is a point of discontinuity of g.

Definition 14 Let f, g : I → R be two functions such that g is strictly increasing. A
primitive f with respect to g is any function F : I → R such that F ′

g(x) = f(x) for each
x ∈ I.

Proposition 15 If f is a continuous function on [a, b] and if g is strictly increasing finc-
tion on [a, b], then the function

F (x) =

∫ x

a

f(t)dg(t), ∀x ∈ [a, b]

(we understand the integral in the sense Riemann-Stieltjes) is a primitive of f with respect
to g on [a, b].
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Proof. Clearly, f is a Riemann-Stieltjes integrable function with respect to g on each
interval [a, x] ⊂ [a, b]. If x0 is a point of discontinuity of g, then applying the mean value
theorem, we have:

F ′
g(x0) =

F (x0 + 0)− F (x0 − 0)

g(x0 + 0)− g(x0 − 0)
= lim

h→0

F (x0 + h)− F (x0 − h)

g(x0 + h)− g(x0 − h)

= lim
h→0

∫ x0+h

x0−h
f(t)dg(t)

g(x0 + h)− g(x0 − h)
= lim

h→0

f(ξ)[g(x0 + h)− g(x0 − h)]

g(x0 + h)− g(x0 − h)

= lim
h→0

f(ξ) = f(x0).

We observe now that F is a continuous function on each point x0 of continuity of g. Indeed,
we have

|F (x)− F (x0)| =
∣∣∣∣
∫ x0

x

f(t)dg(t)

∣∣∣∣ ≤ M |g(x)− g(x0)| (M = max
x∈[a,b]

|f(x)|).

Like in [6], we have:

F ′
g(x0) = lim

x→x0

F (x)− F (x0)

g(x)− g(x0)
= lim

x→x0

∫ x0

x
f(t)dg(t)

g(x)− g(x0)

= lim
x→x0

f(ξ)[g(x)− g(x0)]

g(x)− g(x0)
= lim

x→x0

f(ξ) = f(x0).

2

Theorem 16 (Leibniz-Newton formula)
Assume that f is a Riemann-Stieltjes integrable function and it has primitives on [a, b] with
respect to the strictly increasing continuous function g. Il F is a continuous function on
[a, b] and it is a primitive of the function f with respect to g, then we get

∫ b

a

f(x)dg(x) = F (b)− F (a).

Proof. Applying Theorem 10, we have

F (b)− F (a) =
n∑

i=1

[F (xi)− F (xi−1)] =
n∑

i=1

F ′
g(ξi)[g(xi)− g(xi−1)]

=
n∑

i=1

f(ξi)[g(xi)− g(xi−1)] = Sg(f, ∆, ξ),

where Sg(f, ∆, ξ) is the Stieltjes sum for the functions f , g, for the sub-division ∆ and the
intermediate points (ξi). Since f is a Riemann-Stieltjes integrable function, the assertion
of the theorem follows at once. 2

In [1] is proved the following
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Theorem 17 Let f, g : [a, b] → R be two functions. Assume that:

1. g is an increasing function and (ak)k≥1 are its points of discontinuity;

2. f is a Riemann-Stieltjes integrable function with respect to g on [a, b].

Let us denote s and ḡ the jump component and the continuous component of g. Then f is
Riemann-Stieltjes integrable with respect to ḡ on [a, b] and we have

∫ b

a

f(x)dg(x) =

∫ b

a

f(x)dḡ(x) +
∞∑

k=1

f(ak)(s(ak + 0)− s(ak − 0)).

Remark 18 Assume that the hypotheses of Theorem 17 are satisfied, and g is a strictly
increasing function. If f has a primitive F with respect to ḡ and F is a continuous function
on [a, b], then using Theorem 16 we get

∫ b

a

f(x)dg(x) = F (b)− F (a) +
∞∑

k=1

f(ak)(s(ak + 0)− s(ak − 0)).

If f is a continuous function on [a, b], then we can take, by Propostion 15

F (x) =

∫ x

a

f(t)dḡ(t).
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