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ABSTRACT
We characterise the convergence of a certain class of discrete time Markov processes
towards locally Feller processes in terms of convergence of martingale problems. We
apply our results of approximation to get results of convergence towards diffusions
behaving into singular potentials. As a consequence we deduce the convergence of
random walks in random medium towards diffusions in random potential.
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1. Introduction

During the last two decades a lot of interest has been shown in the study of diffusions
in random environment. A well known model is the dynamic of a Brownian particle
β in a potential. It is often given by the solution of the one-dimensional stochastic
differential equation

dXt = dβt −
1

2
V ′(Xt)dt,

where V : R → R. Thanks to the regularising property of the Brownian motion one
can consider very general potentials, for example cadlag functions (see Mandle [10]).
In particular, it can be supposed that the potential is a Brownian path (see Brox
[1]), a Lévy path (see Carmona [2]) or other random path (Gaussian and/or fractional
process ...).

The study of the convergence of sequences of general Markov processes is one of
usual questions. The present paper consider this question in the setting of the preceding
model. A usual way to obtain convergence results is the use of the theory of Feller
processes. In this context there exist two corresponding results of convergence (see, for
instance Kallenberg [7], Theorems 19.25, p. 385 and 19.27, p. 387). However, on one
hand, when one needs to consider unbounded coefficients, technical difficulties could
appear in the framework of Feller processes. On the other hand the cited results of
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convergence impose the knowledge of a core of the generator. This could not be the
case in some probabilistic constructions. Detailed overviews on these topics and many
other references on the subject can be found in [6], [8].

Our method to tackle these difficulties is to consider the context of the martingale
local problems and of locally Feller processes, introduced in [4]. In this general frame-
work we have already analysed the question of convergence of sequences of locally
Feller processes, employing the setting of the local Skorokhod topology on the space
of cadlag processes (see [3]). In the present paper we add the study of the convergence
for processes indexed by a discrete time parameter towards processes indexed by a con-
tinuous time parameter. We obtain the characterisation of the convergence in terms
of convergence of associated operators, by using the uniform convergence on compact
sets, and hence operators with unbounded coefficients could be considered. Likewise,
we do not impose that the operator is a generator, but we assume only the well-posed
feature of the associated martingale local problem. Indeed, it could be more easy to
verify the well-posed feature (see for instance, Stroock [13] for Lévy-type processes,
Stroock and Varadhan [14] for diffusion processes, Kurtz [9] for Lévy-driven stochastic
differential equations and forward equations...).

When studying a Brownian particle in a potential, we prove the continuous depen-
dence of the diffusion with respect to the potential, using our abstract results. We
point out that it can be possible to consider potentials with very few constraints. In
particular we consider diffusions in random potentials as limits of random walks in
random mediums, as an application of an approximation of the diffusion by random
walks on Z. An important example is the convergence of Sinai’s random walk [12]
towards the diffusion corresponding to a Brownian movement in a Poisson potential
(recovering Thm. 2 from Seignourel [11], p. 296), or towards the diffusion correspond-
ing to a Brownian movement in a Brownian potential, also called Brox’s diffusion
(improving Thm. 1 from Seignourel [11], p. 295) and, more generally, towards the
diffusion corresponding to a Brownian movement in a Lévy potential.

The considerations on locally Feller processes are also applied to Lévy-type processes
in order to get (or to improve) sharp results of convergence for discrete and continuous
time sequences of processes towards Lévy-type process, in terms of Lévy parameters,
but also simulation methods and Euler schemes (see for instance [5], §4.4).

Let us describe the organisation of the paper. The next section contains notations
and statements from our previous paper [4], which are very useful for an easy reading
of the present paper. In particular, we recall the necessary end sufficient conditions for
the existence of solutions for martingale local problems and also for the convergence of
continuous time locally Feller processes. Our main results are given in Sections 3 and 4.
Section 3 is devoted to the study of sequences of discrete time locally Feller processes,
while Section 4 contains its applications to the diffusions evolving in a potential. The
appendix collect the statements of auxiliary results already proved in [4].

2. Martingale local problem setting and related results

Let S be a locally compact Polish space. Take ∆ 6∈ S, and we will denote by S∆ ⊃ S the
one-point compactification of S, if S is not compact, or the topological sum S t {∆},
if S is compact (so ∆ is an isolated point). We will denote by A b U the fact that a
subset A is compactly embedded in an open subset U ⊂ S. If x ∈ (S∆)R+ we denote
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the explosion time by

ξ(x) := inf{t ≥ 0 | {xs}s≤t 6b S}.

The set of exploding cadlag paths is defined by

Dloc(S) :=

x ∈ (S∆)R+

∣∣∣∣∣∣
∀t ≥ ξ(x), xt = ∆,
∀t ≥ 0, xt = lims↓t xs,
∀t > 0 s.t. {xs}s<t b S, xt− := lims↑t xs exists

 ,

and it is endowed with the local Skorokhod topology which is also Polish (see Theorem
2.4 in [3], p. 1187). A sequence (xk)k∈N in Dloc(S) converges to x for the local Skorokhod
topology if and only if there exists a sequence (λk)k of increasing homeomorphisms on
R+ satisfying

∀t ≥ 0 s.t. {xs}s<t b S, lim
k→∞

sup
s≤t

d(xs, x
k
λks

) = 0 and lim
k→∞

sup
s≤t
|λks − s| = 0.

The local Skorokhod topology does not depend on the arbitrary metric d on S∆, but
only on the topology on S.

Denote by C(S) := C(S,R), respectively by C(S∆) := C(S∆,R), the set of real
continuous functions on S, respectively on S∆, and by C0(S) the set of functions
f ∈ C(S) vanishing in ∆. We endow the set C(S) with the topology of uniform
convergence on compact sets and C0(S) with the topology of uniform convergence. An
operator L from C0(S) to C(S), will be denoted as a subset of C0(S)× C(S).

We proceed by recalling the notion of martingale local problem (not to be confused
with the local martingale problem, see Definition 3.2 in [4], p. 135). The canonical
stochastic process on Dloc(S) will be always denoted by X. We endow Dloc(S) with
the Borel σ-algebra F := σ(Xs, 0 ≤ s <∞) and the filtration Ft := σ(Xs, 0 ≤ s ≤ t).
The set M(L) of solutions of the martingale local problem associated to L is the set
of probabilities P ∈ P (Dloc(S)) such that for all (f, g) ∈ L and open subset U b S:

f(Xt∧τU )−
∫ t∧τU

0
g(Xs)ds is a P-martingale

with respect to the filtration (Ft)t or, equivalent, to the filtration (Ft+)t. Here τU is
the stopping time given by

τU := inf {t ≥ 0 | Xt 6∈ U or Xt− 6∈ U} . (1)

Theorem 3.10 from [4], p. 139, provides a result of existence of solutions for martingale
local problem. We recall its statement since it will be one of our main tools in Section
4:

Theorem 2.1. Let L be a linear subspace of C0(S) × C(S) such that its domain
D(L) := {f ∈ C0(S) | ∃g ∈ C(S), (f, g) ∈ L} is dense in C0(S). Then, there is equiv-
alence between

i) existence of a solution for the martingale local problem: for any a ∈ S there
exists an element P in M(L) such that P(X0 = a) = 1;
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ii) L satisfies the positive maximum principle: for all (f, g) ∈ L and a0 ∈ S, if
f(a0) = supa∈S f(a) ≥ 0 then g(a0) ≤ 0.

The martingale local problem is said well-posed if there is existence and uniqueness
of the solution, which means that for any a ∈ S there exists an unique element P in
M(L) such that P(X0 = a) = 1.

A family of probabilities (Pa)a ∈ P(Dloc(S))S is called locally Feller if there exists
L ⊂ C0(S)× C(S) such that D(L) is dense in C0(S) and

∀a ∈ S : P ∈M(L) and P(X0 = a) = 1⇐⇒ P = Pa.

(see also Definition 4.5 in [4], p. 144). The
(
C0×C

)
-generator of a locally Feller family

(Pa)a ∈ P(Dloc(S))S is the set of functions (f, g) ∈ C0(S) × C(S) such that, for any
a ∈ S and any open subset U b S,

f(Xt∧τU )−
∫ t∧τU

0
g(Xs)ds is a Pa-martingale.

It was noticed in Remark 4.6(ii) from [4], p. 144, that if h ∈ C(S,R∗+) and if L is the
C0 × C-generator of a locally Feller family, then

hL := {(f, hg) | (f, g) ∈ L} is the C0 × C-generator of a locally Feller family. (2)

A family of probability measures associated to a Feller semi-group constitutes a
natural example of locally Feller family (see Theorem 4.10 from [4], p. 147). We recall
that a Feller semi-group (Tt)t∈R+

is a strongly continuous semi-group of positive linear
contractions on C0(S). Its (C0×C0)-generator is the set L0 of (f, g) ∈ C0(S)×C0(S)
such that, for all a ∈ S

lim
t→0

1

t

(
Ttf(a)− f(a)

)
= g(a).

It can be proved that the martingale associated to L0 admits a unique solution (conse-
quence of Proposition 4.2 in [4], p. 142), and if L denotes the C0(S)×C(S)-generator
of the associated Feller family, then taking the closure in C0(S)× C(S), we have

L0 = L ∩
(
C0(S)× C0(S)

)
and L = L0 (3)

(see Proposition 4.16 in [4], p. 151).
The following result of convergence is essential for our further development in Sec-

tion 4, and it was stated in Theorem 4.17 from [4], p. 151. As was already pointed out
in the introduction, an improvement with respect to the classical result of convergence
(see for instance Theorem 19.25, p.385, in [7]), is that one does not need to know
the generator of the limit family, but only the fact that a martingale local problem is
well-posed.

Theorem 2.2 (Convergence of locally Feller family). For n ∈ N ∪ {∞}, let (Pn
a)a ∈

P(Dloc(S))S be a locally Feller family and let Ln be a subset of C0(S)×C(S). Suppose
that for any n ∈ N, Ln is the generator of (Pn

a)a, suppose also that D(L∞) is dense in
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C0(S) and

∀a ∈ S : P ∈M(L∞) and P(X0 = a) = 1⇐⇒ P = P∞a .

Then we have equivalence between:

a) the mapping (
N ∪ {∞}

)
× P(S∆) → P (Dloc(S))

(n, µ) 7→ Pn
µ

is weakly continuous for the local Skorokhod topology, where Pµ :=
∫

Paµ(da)
and P∆(X0 = ∆) = 1;

b) for any an, a ∈ S s.t. an → a, Pn
an converges weakly for the local Skorokhod

topology to P∞a , as n→∞;

c) for any f ∈ D(L∞), for each n ∃fn ∈ D(Ln) s.t. fn
C0−→

n→∞
f , Lnfn

C−→
n→∞

L∞f .

3. Convergence of discrete time locally Feller families

We start our study by introducing a discrete time version of the notion of locally Feller
family.

Definition 3.1 (Discrete time locally Feller family). Denote by Y the discrete time
canonical process on (S∆)N and endow (S∆)N with the canonical σ-algebra. A family

(Pa)a ∈ P
(
(S∆)N

)S
is said to be a discrete time locally Feller family if there exists

an operator T : C0(S) → Cb(S), called transition operator, such that for any a ∈ S:
Pa(Y0 = a) = 1 and

∀n ∈ N, ∀f ∈ C0(S), Ea (f(Yn+1) | Y0, . . . , Yn) = 1{Yn 6=∆}Tf(Yn) Pa-a.s. (4)

If P∆ denotes the probability defined by P∆(∀n ∈ N, Yn = ∆) = 1, then for µ ∈
P(S∆), Pµ :=

∫
Paµ(da) satisfies also (4).

The following theorem contains a result of convergence of a discrete time locally
Feller family towards a continuous time locally Feller family. The main difference
with respect to Theorem 19.27, p.387, in [7], is that one does not need to know the
generator of the limit family, but only the fact that a martingale local problem is well-
posed (hence from this point of view it could be considered as a slightly improvement).
In the following brc will denote the integer part of a real number r.

Theorem 3.2 (Convergence). Let L ⊂ C0(S) × C(S) be an operator with D(L) a
dense subset of C0(S), such that the martingale local problem associated to L is well-
posed. Let (Pa)a ∈ P(Dloc(S))S be the associated continuous time locally Feller family.
For each n ∈ N we introduce (Pn

a)a ∈ P((S∆)N)S a discrete time locally Feller family
having its transition operator Tn. We denote the operator Ln := (Tn − id)/εn, where
(εn)n is a sequence of positive numbers converging to 0, as n→∞. There is equivalence
between:

a) for any µn, µ ∈ P(S∆) s.t. µn −→
n→∞

µ weakly, LPnµn

(
(Ybt/εnc)t

) P(Dloc(S))−→
n→∞

Pµ ;
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b) for any an, a ∈ S s.t. an −→
n→∞

a, LPnan

(
(Ybt/εnc)t

) P(Dloc(S))−→
n→∞

Pa ;

c) for any f ∈ D(L), there exists (fn)n ∈ C0(S)N s.t. fn
C0(S)−→
n→∞

f , Lnfn
C(S)−→
n→∞

Lf .

Proof. Set Ω := (S∆)N×RN
+ and G := B(S∆)⊗N⊗B(R+)⊗N. For any µ ∈ P(S∆) and

n ∈ N, we denote

Pnµ := Pn
µ ⊗ E(1)⊗N, (5)

where E(1) is the exponential distribution with expectation 1. We also set

Yn : Ω → S and(
(yk)k, (sk)k

)
7→ yn

En : Ω → R+(
(yk)k, (sk)k

)
7→ sn,

(6)

and introduce the standard Poisson process, Nt := inf
{
n ∈ N

∣∣ n+1∑
k=1

Ek > t
}

, t ≥ 0.

Step 1) For each n ∈ N we set

Znt := YNt/εn . (7)

Consider the following slightly modified assertions concerning the processes Zn:

a′) for any µn, µ ∈ P(S∆) s.t. µn → µ, LPnµn (Zn)
P(Dloc(S))−→
n→∞

Pµ ;

b′) for any an, a ∈ S s.t. an → a, LPnan (Zn)
P(Dloc(S))−→
n→∞

Pa .

We claim that a′)⇔ b′)⇔ c).
We will prove that for all µ ∈ P(S∆), LPnµ(Zn) ∈ M(Ln). Setting Gnt :=
σ(Ns/εn , Z

n
s , s ≤ t), it is enough to prove that, for each f ∈ C0(S) and 0 ≤ s ≤ t,

Enµ
[
f(Znt )− f(Zns )−

∫ t

s
Lnf(Znu )du

∣∣∣∣ Gns ] = 0. (8)

Let us introduce the (Gnt )t-stopping times τnk := inf
{
u ≥ 0

∣∣Nu/εn = k
}

. Then, for all
k ∈ N, we split

Enµ
[
f(Znt∧(τnk+1∨s))− f(Znt∧(τnk ∨s))

∣∣∣ Gnt∧(τnk ∨s)

]
= A1 +A2, (9)

where

A1 := 1{t>τnk ,s<τnk+1}E
n
µ

[
(f(Yk+1)− f(Yk))1{τnk+1≤t}

∣∣∣ Gnt∧(τnk ∨s)

]
,

A2 := 1{t>τnk ,s<τnk+1}E
n
µ

[
(f(Yk+1)− f(Yk))1{τnk+1−τnk ∨s≤t−τnk ∨s}

∣∣∣ Gnτnk ∨s] .
By using the definition of the transition operator Tn and the fact that (Nu/εn)u is a
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Poisson process, we get for all k ∈ N,

A1 = 1{t>τnk ,s<τnk+1}(Tnf(Yk)− f(Yk))
(

1− e−(t−τnk ∨s)/εn
)
,

A2 = 1{t>τnk ,s<τnk+1}Lnf(Znτnk ∨s)εn

(
1− e−(t−τnk ∨s)/εn

)
. (10)

Similarly, we also can split, for all k ∈ N,

Enµ

[∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

]
= B1 +B2, (11)

with

B1 := 1{t>τnk ,s<τnk+1}Lnf(Znτnk ∨s)E
n
µ

[
t ∧ τnk+1 − τnk ∨ s

∣∣∣ Gnt∧(τnk ∨s)

]
,

B2 := 1{t>τnk ,s<τnk+1}Lnf(Znτnk ∨s)E
n
µ

[
(t− τnk ∨ s) ∧ (τnk+1 − τnk ∨ s)

∣∣∣ Gnτnk ∨s] .
Once again, since the distribution of τnk+1 − τnk is exponential we get, for all k ∈ N,

B1 = 1{t>τnk ,s<τnk+1}Lnf(Znτnk ∨s)

∫ ∞
0

(1/εn)e−u/εn((t− τnk ∨ s) ∧ u)du

B2 = 1{t>τnk ,s<τnk+1}Lnf(Zn(10)τnk ∨s)εn

(
1− e−(t−τnk ∨s)/εn

)
. (12)

Gathering (10) in (9), respectively (12) in (11) and then subtracting (11) from (9), we
get, for all k ∈ N,

Enµ

[
f(Znt∧(τnk+1∨s))− f(Znt∧(τnk ∨s))−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

]
= 0. (13)

Recalling the definition of the stopping times τnk and by summing on k ∈ N, we also
get

Enµ
[
f(Znt )− f(Zns )−

∫ t

s
Lnf(Znu )du

∣∣∣∣ Gns ]
=
∑
k≥0

Enµ

[
Enµ

[
f(Znt∧(τnk+1∨s))− f(Znt∧(τnk ∨s))−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣∣∣ Gnt∧(τnk ∨s)

] ∣∣∣∣∣ Gns
]
.

By using (13) we end up with (8). As a consequence, for each n ∈ N,
LPnµ(Zn) ∈ M(Ln). Invoking Theorem 2.2 applied to Ln and L, our claim

a′)⇔ b′)⇔ c) is achieved.

Step 2. To carry out the proof we need to establish the following result.

Lemma 3.3. For n ∈ N, let (Ωn,Gn,Pn) be a probability space, let Zn : Ωn → Dloc(S)

and Γn : Ωn → C(R+,R+) be a increasing random bijection. Define Z̃n := Zn ◦Γn. If,
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for each ε > 0 and t ∈ R+,

Pn
(

sup
s≤t
|Γns − s| ≥ ε

)
−→
n→∞

0,

then for any P ∈ P(Dloc(S)),

LPn(Zn) −→
n→∞

P ⇔ LPn(Z̃n) −→
n→∞

P,

where the limits hold for the weak topology associated to the local Skorokhod topology.

We postpone the proof of this result and we finish the proof of the theorem. Recalling
(5) and (6), and setting for all t ≥ 0 and n ∈ N,

Γnt := εn

bt/εnc∑
k=1

Ek + (t/εn − bt/εnc)Ebt/εnc+1

 , (14)

it is readily seen, by (7), that for any t ≥ 0 and n ∈ N, Ybt/εnc = ZnΓnt . By showing that

∀t ≥ 0, ∀ε > 0, sup
µ∈P(S∆)

Pnµ
(

sup
s≤t
|Γns − s| ≥ ε

)
−→
n→∞

0, (15)

and employing the latter lemma, we can conclude that a) ⇔ a′) and b ⇔ b′), so we
ends up with a)⇔ b)⇔ c).

Step 3. It remains to verify our claim (15). This is quite classical but for the sake of
completeness we sketch its proof. Denote by dre the smallest integer larger or equal
than the real number r. Fix t ≥ 0, ε > 0, n ∈ N and µ ∈ P(S∆). Since Γn is a
continuous piecewise affine function, we have

sup
s≤t

∣∣Γns − s∣∣ ≤ sup
k∈N

k≤dt/εne

∣∣Γnkεn − kεn∣∣ = sup
k∈N

k≤dt/εne

∣∣∣εn k∑
i=1

Ei − kεn
∣∣∣ = εn sup

k∈N
k≤dt/εne

∣∣Mk

∣∣
with Mk :=

∑k
i=1Ei−k. Owing again (5) and (6), we see that the discrete martingale

(Mk)k satisfies Enµ[M2
k ] = kEnµ[(E1− 1)2] = k. Hence, applying Markov’s and maximal

Doob’s inequalities, we get

Pnµ
(

sup
s≤t
|Γns − s| ≥ ε

)
≤ Pnµ

(
εn sup

k≤dt/εne
|Mk| ≥ ε

)
≤ ε2

n

ε2
Enµ

[
sup

k≤dt/εne
M2
k

]

≤ 4ε2
n

ε2
Enµ
[
M2
dt/εne

]
=

4dt/εneε2
n

ε2
≤ 4(t+ εn)εn

ε2
−→
n→∞

0.

The proof of Theorem 3.2 is complete except for Lemma 3.3.

Lemma 3.3 is obtained as a consequence of a more general result stated and proved
below:
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Lemma 3.4. Let E be a Polish topological space, for n ∈ N, let (Ωn,Gn,Pn) be a

probability space and consider random variables Zn, Z̃n : Ωn → E. Suppose that for
each compact subset K ⊂ E and each open subset U ⊂ E ×E containing the diagonal
{(z, z) | z ∈ E},

Pn
(
Zn ∈ K, (Zn, Z̃n) 6∈ U

)
−→
n→∞

0. (16)

Then, for any P ∈ P(E),

LPn(Zn) −→
n→∞

P implies LPn(Z̃n) −→
n→∞

P, (17)

where the limits hold for the weak topology on P(E).

Proof. Suppose that LPn(Zn) −→
n→∞

P, so for any bounded continuous function f :

E → R, En[f(Zn)] −→
n→∞

∫
fdP. E being a Polish space, the sequence (LPn(Zn))n is

tight. Pick an arbitrary ε > 0 and let K be a compact subset of E such that

∀n ∈ N, Pn(Zn 6∈ K) ≤ ε. (18)

By (16) applied to K and U := {(z, z̃) | |f(z̃)− f(z)| < ε}, we obtain

Pn
(
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

)
−→
n→∞

0.

We split successively∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣ ≤ ∣∣∣En[f(Zn)]−
∫
fdP

∣∣∣+ En
∣∣∣f(Z̃n)− f(Zn)

∣∣∣
≤
∣∣En[f(Zn)]−

∫
fdP

∣∣+ En
[∣∣f(Z̃n)− f(Zn)

∣∣1{Zn∈K,|f(Z̃n)−f(Zn)|≥ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn∈K,|f(Z̃n)−f(Zn)|<ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn 6∈K}].

Hence, by using (18), we endup with

∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣
≤
∣∣∣En[f(Zn)]−

∫
fdP

∣∣∣+ 2‖f‖Pn
(
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

)
+ ε
(
1 + 2‖f‖

)
.

Letting successively n→∞ and ε→ 0, we conclude that LPn(Z̃n) −→
n→∞

P.

Proof of Lemma 3.3. We denote by Λ̃ the space of increasing bijections λ from R+

to R+. For t ∈ R+, we set ‖λ− id‖t := sups≤t |λs − s|. Since

∀λ ∈ Λ̃, ∀t ∈ R+, ∀ε > 0, ‖λ− id‖t+ε < ε⇒ ‖λ−1 − id‖t < ε,
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the hypotheses of Lemma 3.3 are symmetric with respect to Z and Z̃, so it suffices
to prove only one implication. Suppose LPn(Zn) −→

n→∞
P and we prove, by applying

Lemma 3.4, that LPn(Z̃n) −→
n→∞

P. Let K be a compact subset of Dloc(S) and U be

an open subset of Dloc(S) × Dloc(S) containing the diagonal {(z, z) | z ∈ Dloc(S)}. It
will be sufficient to prove the following assertion

∃t ≥ 0, ∃ε > 0, ∀z ∈ K, ∀λ ∈ Λ̃, ‖λ− id‖t < ε⇒ (z, z ◦ λ) ∈ U. (19)

Indeed, if we pick t and ε given by (19), then

Pn
(
Zn ∈ K, (Zn, Z̃n) 6∈ U

)
≤ Pn (‖Γn − id‖t ≥ ε) −→

n→∞
0,

and we employ Lemma 3.4 to conclude that LPn(Z̃n) −→
n→∞

P as desired.

To verify (19) we assume that it is false, so we can find two sequences (zn)n ∈
KN and (λn)n ∈ Λ̃N such that, for all n ∈ N, (zn, zn ◦ λn) 6∈ U and for all t ≥ 0,
lim
n→∞

‖λn − id‖t → 0. By compactness of K, possibly by taking a subsequence, there

exists z ∈ K such that zn → z, as n→∞. It is then straightforward to obtain

U 63 (zn, zn ◦ λn) −→
n→∞

(z, z) ∈ U.

This is a contradiction with the fact that U is open, so (19) is verified.

4. Convergence towards diffusions evolving in a potential

Let us recall that L1
loc(R) denotes the space of locally integrable functions, and a

continuous real function f is called locally absolutely continuous if its distributional
derivative f ′ belongs to L1

loc(R). We introduce the set of potentials

V :=
{
V : R→ R measurable

∣∣ e|V | ∈ L1
loc(R)

}
.

It is straightforward to prove that there exists a unique Polish topology on V such
that a sequence (Vn)n in V converges to V ∈ V if and only if

∀M ∈ R+, lim
n→∞

∫ M

−M

∣∣eV (a) − eVn(a)
∣∣ ∨ ∣∣e−V (a) − e−Vn(a)

∣∣ da = 0.

Notation 4.1. For a potential V ∈ V , we introduce the operator

LV :=
1

2
eV

d

da
e−V

d

da
(20)

as the set of couples (f, g) ∈ C0(R)×C(R) such that f and e−V f ′ are locally absolutely
continuous and g = 1

2eV (e−V f ′)′.

Remark 4.2. Let us notice that it is a particular case of the operator DmD
+
p de-

scribed in [10], pp. 21-22. Heuristically, the solutions of the martingale local problem
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associated to LV are solutions of the stochastic differential equation

dXt = dβt −
1

2
V ′(Xt)dt,

where β is a standard Brownian motion.

We can state now the main results of this section. The first theorem contains some
properties of the operator LV and will be obtained as an application of Theorems 2.1
and 2.2 (or Theorems 3.10 and 4.17 in [4]).

Theorem 4.3 (Diffusions in a potential).

(1) For any potential V ∈ V , the operator LV is the generator of a locally Feller
family.

(2) For any sequence of potentials (Vn)n in V converging to V ∈ V for the topology
of V , the sequence of operators LVn converges to LV , in the sense of the third
statement of the convergence Theorem 2.2.

The second theorem gives an approximation result of a diffusion in a potential by
using a sequence of random walks. Its will be based on the result Theorem 3.2 in the
preceding section.

Theorem 4.4 (Approximation by random walks on Z). For (n, k) ∈ N×Z, let qn,k ∈ R
and εn > 0 be. For all n ∈ N, in accordance with Definition 3.1, let (Pn

k)k ∈ P(ZN)Z

be the unique discrete time locally Feller family such that

Pn
k(Y1 = k + 1) = 1−Pn

k(Y1 = k − 1) =
1

eqn,k + 1
.

We introduce the sequence of potentials in V given by

Vn(a) :=

ba/εnc∑
k=1

qn,k1a≥εn −
−ba/εnc−1∑

k=0

qn,−k1a<0 ,

such that Vn converges for the topology of V to a potential of V , say V . Let (Pa)a be the
locally Feller family associated with LV . If εn → 0, then, for any sequence µn ∈ P(Z)
such that their pushforwards with respect to the mappings k 7→ εnk converge to a
probability measure µ ∈ P(R), we have

LPnµn

(
(εnYbt/ε2

nc)t
) P(Dloc(S))−→

n→∞
Pµ.

Before proving these two theorems, we state and prove an important consequence
concerning the connection between a random walk and a diffusion in random environ-
ment. Several examples of application of the following result will be then discussed.

Corollary 4.5. For each n ∈ N, let (Ωn,Gn,Pn) be a probability space and consider
the random variables

(qn,k)k : Ωn → RZ, (Znk )k : Ωn → ZN and εn : Ωn → R∗+ .

11



Suppose that for any n ∈ N and k ∈ N, Pn-almost surely,

Pn
(
Znk+1 = Znk + 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

eqn,Zk + 1
,

Pn
(
Znk+1 = Znk − 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

e−qn,Zk + 1
= 1− 1

eqn,Zk + 1
. (21)

For any n ∈ N and a ∈ R, introduce a random potential belonging to V ,

Wn(a) :=

ba/εnc∑
k=1

qn,k1a≥εn −
−ba/εnc−1∑

k=0

qn,−k1a<0 . (22)

Furthermore, on a probability space (Ω,G,P), consider two random variables W : Ω→
V and Z : Ω→ Dloc(R), such that the conditional distribution of Z with respect to W
satisfies, P-a.s.

LP (Z | W ) ∈M(LW ). (23)

Assuming that εn converges in distribution to 0, that εnZ
n
0 converges in distribution to

Z0 and that Wn converges in distribution to W for the topology of V , then (εnZ
n
bt/ε2

nc
)t

converges in distribution to Z for the local Skorokhod topology.

Proof of Corollary 4.5. Let F : Dloc(R) → R be a bounded continuous function.
For any a ∈ R, V ∈ V and ε ∈ R∗+, let Pa,V,ε ∈ P(ZN) be the unique probability
measure such that Pa,V,ε(Y0 = ba/εc) = 1, and such that Pa,V,ε-almost surely, for all
k ∈ N,

Pa,V,ε (Yk+1 = Yk + 1 | Y0, . . . , Yk) = 1−Pa,V,ε (Yk+1 = Yk − 1 | Y0, . . . , Yk)

=

∫ εYk

εYk−ε
eV (a)da

/ ∫ εYk+ε

εYk−ε
eV (a)da.

Furthermore, let Pa,V,0 ∈ P(Dloc(R)) be the unique probability measure belonging to
M(LV ) and starting from a. Define the bounded mapping G : R × V × R+ → R as
follows:

G(a, V, ε) := Ea,V,ε
[
F
(
εYb•/ε2c

)]
and G(a, V, 0) := Ea,V,0 [F (X)] . (24)

An application of Theorem 4.3, shows that the mapping G is continuous at every point
of R× V × {0}. Thus,

En [G(εnZ
n
0 ,Wn, εn)] −→

n→∞
E [G(Z0,W, 0)] . (25)

Combining the definitions (21) and (24) we can write

En
[
F
(
εnZ

n
b•/ε2

nc
)]

= En
[
En
[
F
(
εnZ

n
b•/ε2

nc
)∣∣εn, Zn0 , (qn,`)`∈Z

]]
= En [G(εnZ

n
0 ,Wn, εn)] .

(26)
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Gathering (25) on the right hand side of (26), and invoking (23)-(24), we obtain

En
[
F
(
εnZ

n
b•/ε2

nc
)]
−→
n→∞

E [G(Z0,W, 0)] = E
[
E
[
F (Z)

∣∣Z0, W
]]

= E [F (Z)] .

We conclude that (εnZ
n
bt/ε2

nc
)t converges in distribution to Z.

Example 4.6. Let us describe three examples of application.
1) Let (qk)k be an i.i.d sequence of centred real random variables with finite variance

σ2 and suppose that qn,k =
√
εnqk. Suppose also that W is a Brownian motion with

variance σ2. Then, by Donsker’s theorem, (Wn) given by (22) converges in distribution
to W , so we can apply Corollary 4.5 to deduce the convergence of a random walk in a
random i.i.d. medium (introduced by Sinai in [12]) to the diffusion corresponding to a
Brownian movement in a Brownian potential (introduced by Brox in [1]). We recover
in this manner Theorem 1 from [11], p. 295, without a technical hypothesis imposing
that the common distribution of the random variables qk is compactly supported.

2) Fix this time a deterministic q ∈ R∗ and also λ > 0. Suppose that for each
n ∈ N, (qn,k)k is an i.i.d sequence of random variables such that Pn(qn,k = q) =
1 − Pn(qn,k = 0) = λεn. Suppose also that W (a) = qNλa, where N stands for a
standard Poisson process on R. Then, it is classical (see for instance [2]), that (Wn)
given by (22) converges in distribution to W . So we can apply Corollary 4.5 to deduce
the convergence of Sinai’s random walk to the diffusion corresponding to a Brownian
movement in a Poisson potential. We recover now Theorem 2 from [11], p. 296.

3) More generally, suppose that for each n ∈ N, (qn,k)k is an i.i.d sequence of random
variables. Likewise, suppose that (Wn) given again by (22), converges in distribution
to some Lévy process W . We can apply Corollary 4.5 to deduce the convergence of
Sinai’s random walk to the diffusion corresponding to a Brownian movement in a Lévy
potential (introduced in [2]).

We go further and detail the proofs of Theorems 4.3 and 4.4. To achieve this, we
need to state two more auxiliary results contained in Lemma 4.7 and Remark 4.8. The
proof of the lemma is essentially an application of the second chapter of [10] and it
will postponed at the end of this section.

Lemma 4.7. Let V be a potential in V and let h ∈ C(R,R∗+) be a function such that,
for all n ∈ N,

inf
n≤|a|≤n+1

h(a) ≤ 1

n

[ ∫ n+1

n

∫ a

0
eV (b)−V (a)dbda ∧

∫ n+2

n+1

∫ n+1

n
eV (a)−V (b)dbda

∧
∫ −n
−(n+1)

∫ 0

a
eV (b)−V (a)dbda ∧

∫ −(n+1)

−(n+2)

∫ −n
−(n+1)

eV (a)−V (b)dbda

]
(27)

Then, with the notations (20) and (2), the operator (hLV ) ∩
(
C0(R) × C0(R)

)
is the

(C0 × C0)-generator of a Feller semi-group.

Remark 4.8. Consider a1, a2 ∈ R and let V : [a1 ∧ a2, a1 ∨ a2] → R be a measur-
able function such that e|V | ∈ L1([a1 ∧ a2, a1 ∨ a2]). For any absolutely continuous
function f ∈ C([a1 ∧ a2, a1 ∨ a2],R) such that e−V f ′ is absolutely continuous and
g := 1

2eV (e−V f ′)′ is continuous, we have two elementary but useful representations.
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Firstly, we can write

f(a2) = f(a1) +

∫ a2

a1

f ′(b)db,

and we deduce

f(a2) = f(a1) +

∫ a2

a1

eV (b)

(
(e−V f ′)(a1) + 2

∫ b

a1

e−V (c)g(c)dc

)
db , (28)

Furthermore, we can also develop

f(a2) = f(a1) + (e−V f ′)(a1)

∫ a2

a1

eV (b)db+ 2g(a1)

∫ a2

a1

∫ b

a1

eV (b)−V (c)dcdb

+ 2

∫ a2

a1

∫ b

a1

eV (b)−V (c)(g(c)− g(a1))dcdb. (29)

This last equality will be useful to show that some operators satisfy the positive
maximum principle.

Proof of Theorem 4.3. We are now ready to give the proof of the first part of
theorem as an application of Theorem 2.1. Firstly, by using the result of Lemma 4.7
and, by quoting (2) and (3), we deduce that the operator

L̃ :=
1

h
(hLV ) ∩

(
C0(R)× C0(R)

)
is the generator of a locally Feller family. Here the closure is taken in C0(R)× C(R),

and it is straightforward that L̃ ⊂ LV . Secondly, thanks to the representation (28),

it is also straightforward to obtain LV = LV . Invoking (29), we can deduce that LV

satisfies the positive maximum principle. Finally, using Theorem 2.1 we deduce the
existence result for the martingale local problem associated to LV . We conclude that
LV = L̃ is the generator of a locally Feller family.

We proceed with the proof of the second part of Theorem 4.3. Let us denote by
(Pn

a)a and (P∞a )a the locally Feller families associated, respectively, to LVn and LV .
Thanks to Theorem 2.2, it is enough to prove that for each sequence of real numbers
(an)n converging to a∞ ∈ R, Pn

an converges weakly to P∞a∞ for the local Skorokhod
topology. According to Lemma A.2 in the Appendix (see also Lemma 4.22 from [4], p.
154), for M ∈ N∗, there exists hM ∈ C(R, [0, 1]) such that

{hM 6= 0} = (−2M, 2M), {hM = 1} = [−M,M ],

and, for all n ∈ N, the martingale local problems associated to hML
V and to hML

Vn

are well-posed. For n ∈ N and M ∈ N∗, we denote by (Pn,M
a )a and (P∞,Ma )a the locally

Feller families associated, respectively to hML
Vn and hML

V . For n ∈ N, define the
extension of hML

Vn :

L̃n,M :=
{

(f, g) ∈ C0(R)× C(R)
∣∣∣ g =

1

2
hMeVn(e−Vnf ′)′1(−2M,2M)

}
,
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where f and e−Vnf ′ are supposed to be locally absolutely continuous only on

(−2M, 2M). By (29) it is straightforward to obtain that L̃n,M satisfies the positive

maximum principle, so using Theorem 2.1, L̃n,M is a linear subspace of the generator of

the family (Pn,M
a )a. We will prove that the sequence of operators (L̃n,M ) converges to

the operator hML
V in the sense of the third statement of Theorem 2.2. Pick f ∈ D(L)

and define fn ∈ C0(R) by

fn(a) :=


f(a), a /∈ (−2M − n−1, 2M + n−1),

f(0) +

∫ a

0
eVn(b)

[
(e−V f ′)(0) + 2

∫ b

0
e−Vn(c)LV f(c)dc

]
db, a ∈ [−2M, 2M ],

with fn affine function on [−2M − n−1,−2M ] and on [2M, 2M + n−1]. Hence fn ∈
D(L̃n,M ) and L̃n,Mfn = hML

V f . We can deduce the upper bound

‖fn − f‖ ≤ sup
a∈[−2M,2M ]

|fn(a)− f(a)|+ sup
2M≤|a1|,|a2|≤2M+n−1

0≤a1a2

|f(a2)− f(a1)|.

Since f is continuous, the second supremum in the latter equation tends to 0. By using
the expression of fn and the convergence Vn → V , it is straightforward to deduce from
(28) that

sup
a∈[−2M,2M ]

|fn(a)− f(a)| −→
n→∞

0.

Hence lim
n→∞

‖fn − f‖ = 0, so according to Theorem 2.2,

Pn,M
an −→

n→∞
P∞,Ma∞ . (30)

At this level we need to employ Lemma A.1 in the Appendix (see also Proposition
4.15 from [4], p. 153): for all M ∈ N∗ and n ∈ N ∪ {∞},

LPn,Man

(
Xτ (−M,M)

)
= LPnan

(
Xτ (−M,M)

)
. (31)

Finally, we use a result of localisation of the continuity contained in Lemma A.3 in
the Appendix (see also Lemma A1 from [4], p. 159) combining (30) and (31) and also
letting M →∞, we conclude that Pn

an −→n→∞ P∞a∞ .

Proof of Theorem 4.4. For n ∈ N, define the continuous function ϕn : R×R→ R+

given by

ϕn(a, h) := 2

∫ a+h

a

∫ b

a
eVn(b)−Vn(c)dcdb.

For each a ∈ R, it is clear that ϕn(a, ·) is strictly increasing on R+ and ϕn(a, 0) = 0.
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Furthermore, since Vn is constant on the interval
[
εnda/εne, εn(da/εne+ 1)

)
,

ϕn(a, 2εn) ≥ 2

∫ εn(da/εne+1)

εnda/εne

∫ b

εnda/εne
eVn(b)−Vn(c)dcdb = ε2

n.

Hence, there exists a unique ψ1,n(a) ∈ (0, 2εn] such that

ϕn(a, ψ1,n(a)) = ε2
n. (32)

Using the continuity of ϕn and the compactness of [0, 2εn], it is straightforward to
obtain that ψ1,n is continuous. In the same manner, we can prove that, for each a ∈ R,
there exists a unique ψ2,n(a) ∈ (0, 2εn] such that

ϕn(a,−ψ2,n(a)) = ε2
n, (33)

and that ψ2,n is continuous. Introduce the continuous function pn : R → (0, 1) given
by

pn(a) :=

∫ a

a−ψ2,n(a)
eVn(b)db

/∫ a+ψ1,n(a)

a−ψ2,n(a)
eVn(b)db. (34)

Also define a transition operator Tn : C0(R)→ C0(R) by

Tnf(a) := pn(a)f(a+ ψ1,n(a)) + (1− pn(a))f(a− ψ2,n(a)).

According to Definition 3.1, we can denote by (P̃n
a)a ∈ P

(
RN)R the discrete time

locally Feller family with Tn as a transition operator. For any k ∈ Z, since Vn is
constant on [εnk, εn(k + 1)) and on [εn(k − 1), εnk), we have

ϕn(εnk,±εn) = 2

∫ εn(k±1)

εnk

∫ b

εnk
dcdb = ε2

n

and therefore ψ1,n(εnk) = ψ2,n(εnk) = εn. Furthermore

pn(εnk) :=

∫ εnk
εn(k−1) eVn(b)db∫ εn(k+1)
εn(k−1) eVn(b)db

=
εneVn(εn(k−1))

εneVn(εn(k−1)) + εneVn(εnk)
=

1

1 + eqn,k
,

hence for any f ∈ C0(R),

Tnf(εnk) :=
1

1 + eqn,k
f(εn(k + 1)) +

1

1 + e−qn,k
f(εn(k − 1)).

We deduce that for any µ ∈ P(Z) and n ∈ N, LPnµ(εnY ) = P̃n
µ̃ , where µ̃ is the

pushforward measure of µ with respect to the mapping k 7→ εnk.
We shall now use Theorem 3.2 of convergence of discrete time Markov families. If

f ∈ D(LV ), we need to prove that there exists a sequence of continuous functions
fn ∈ C0(R) converging to f such that (Tnfn−fn)/ε2

n converges to LV f . By the second
part of Proposition 4.3, there exists a sequence of continuous functions fn ∈ D(LVn)
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such that fn converges to f and LVnfn converges to LV f . Applying (29) to fn and Vn
and recalling (32) and (33), we can write, for all a ∈ R and n ∈ N,

f(a+ ψ1,n(a)) =f(a) + (e−V f ′)(a)

∫ a+ψ1,n(a)

a
eV (b)db+ ε2

nL
Vnfn(a)

+ 2

∫ a+ψ1,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb,

and

f(a− ψ2,n(a)) =f(a)− (e−V f ′)(a)

∫ a

a−ψ2,n(a)
eV (b)db+ ε2

nL
Vnfn(a)

+ 2

∫ a−ψ2,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb.

Hence by (34), for all a ∈ R and n ∈ N,∣∣∣∣Tnfn(a)− fn(a)

ε2
n

− LVnfn(a)

∣∣∣∣
≤ 2pn(a)

ε2
n

∣∣∣ ∫ a+ψ1,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb

∣∣∣
+

2(1− pn(a))

ε2
n

∣∣∣ ∫ a−ψ2,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb

∣∣∣
≤ sup
|h|≤2εn

|LVnfn(a+ h)− LVnfn(a)|.

It is not difficult to deduce that (Tnfn − fn)/ε2
n converges to LV f . Therefore we can

apply Theorem 3.2 of convergence of discrete time Markov families, so for any sequence
µn ∈ P(Z) such that µ̃n converges to a probability measure µ ∈ P(R), we have

LPnµn

(
(εnYbt/ε2

nc)t
)

= LP̃n
µ̃n

(
(Ybt/ε2

nc)t
) P(Dloc(S))−→

n→∞
Pµ,

where µ̃n are the pushforwards of µn with respect to the mappings k 7→ εnk.

Proof of Lemma 4.7. As was already announced this proof is essentially an appli-
cation of the second chapter of [10]. For the sake of completeness we give here few
details.

As was quoted in Remark 4.2, the operator hLV coincides on C0(R)× C0(R) with
the operator DmD

+
p ⊂ C(R) × C(R), on the extended real line R, described in [10],

pp. 21-22, where

dm(a) :=
2e−V (a)

h(a)
da and dp(a) := eV (a)da.
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Applying our hypothesis(27) we can obtain∫ ∞
0

∫ a

0
dm(b)dp(a) ≥ lim sup

n→∞

∫ n+2

n+1

∫ n+1

n
dm(b)dp(a) ≥ lim sup

n→∞
2n =∞,∫ ∞

0

∫ a

0
dp(b)dm(a) ≥ lim sup

n→∞

∫ n+1

n

∫ a

0
dp(b)dm(a) ≥ lim sup

n→∞
2n =∞,∫ 0

−∞

∫ 0

a
dm(b)dp(a) ≥ lim sup

n→∞

∫ −n−1

−n−2

∫ −n
−n−1

dm(b)dp(a) ≥ lim sup
n→∞

2n =∞,∫ 0

−∞

∫ 0

a
dp(b)dm(a) ≥ lim sup

n→∞

∫ −n
−n−1

∫ 0

a
dp(b)dm(a) ≥ lim sup

n→∞
2n =∞.

Thus, according to the definition given in [10], pp. 24-25, the boundary points −∞
and +∞ are natural. Thanks to Theorem 1 and Remark 2 p. 38 in [10], DmD

+
p is the

generator of a conservative Feller semi-group on C(R). Furthermore by steps 7 and 8
from [10], pp. 31-32,

DmD
+
p f(−∞) = DmD

+
p f(+∞) = 0, ∀f ∈ D(DmD

+
p ),

so that the operator

(hLV ) ∩ C0(R)× C0(R) = DmD
+
p ∩ C0(R)× C0(R)

is the (C0 × C0)-generator of a Feller semi-group.
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Appendix A.

We recall below the statements of three results already proved in [4] and used in
the proofs of Theorem 4.3. We refer the interested reader to the paper [4] for the
introductory contexts and complete proofs of each lemma.

Lemma A.1 (cf. Proposition 4.20 in [4], p. 153). Let L1, L2 ⊂ C0(S)×C(S) be such
that D(L1) = D(L2) is dense in C0(S) and assume that the martingale local problems
associated to L1 and L2 are well-posed. Let P1 ∈ M(L1) and P2 ∈ M(L2) be two
solutions of these problems having the same initial distribution and let U ⊂ S be an
open subset. If for all f ∈ D(L1), (L2f)|U = (L1f)|U , then LP2

(
XτU

)
= LP1

(
XτU

)
.

Lemma A.2 (cf. Lemma 4.22 in [4], p. 154). Let U be an open subset of S and L
be a subset of C0(S)×C(S) with D(L) is dense in C(S). Assume that the martingale
local problem associated to L is well-posed. Then there exists a function h0 ∈ C(S,R+)
satisfying {h0 6= 0} = U , such that for all h ∈ C(S,R+) with {h 6= 0} = U and
supa∈U (h/h0)(a) <∞, the martingale local problem associated to hL is well-posed.

Lemma A.3 (cf. Lemma A.1 in [4], p. 159). Let (Um)m∈N be an increasing sequence
of open subsets such that S =

⋃
m Um. For n,m ∈ N ∪ {∞}, let Pn,m ∈ P(Dloc(S)) be

such that

i) for each m ∈ N, Pn,m −→
n→∞

P∞,m, weakly for the local Skorokhod topology,

ii) for each m ∈ N and n ∈ N ∪ {∞}, LPn,m

(
XτUm

)
= LPn,∞

(
XτUm

)
.

Then Pn,∞ −→
n→∞

P∞,∞, weakly for the local Skorokhod topology.
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