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1 Introduction

The theory of Lévy-type processes stays an active domain of research during the last
two decades. Heuristically, a Lévy-type process X with symbol ¢ : R x R? — C is a
Markov process which behaves locally like a Lévy process with characteristic exponent
q(a,-), in a neighbourhood of each point a € R?. One associates to a Lévy-type process
the pseudo-differential operator L given by, for f € C2(R?),

Lf(a) :=— /]Rd eg(a,a)f(a)de, where f(a):= (27r)_d/ e 1 f(g)da.

Ra

Does a sequence X (™ of Lévy-type processes, having symbols g, converges towards
some process, when the sequence of symbols ¢, converges to a symbol ¢?7 What can
we say about the sequence X (™ when the corresponding sequence of pseudo-differential
operators L, converges to an operator L? What could be the appropriate setting when
one wants to approximate a Lévy-type process by a family of discrete Markov chains?
This is the kind of question which naturally appears when we study Lévy-type processes.

It was a very useful observation that a unified manner to tackle a lot of questions
about large classes of processes is the martingale problem approach (see, for instance,
Stroock [22] for Lévy-type processes, Stroock and Varadhan [23] for diffusion processes,
Kurtz [19] for Lévy-driven stochastic differential equations...). Often, convergence results



are obtained under technical restrictions: for instance, when the closure of L is the
generator of a Feller process (see Kallenberg [15] Thm. 19.25, p. 385, Thm. 19.28, p.
387 or Bottcher, Schilling and Wang [3], Theorem 7.6 p. 172). In a number of situations
the cited condition is not satisfied. In the present paper we try to describe a general
method which should be the main tool to tackle these difficulties and, even, should relax
some of technical restrictions. We analyse sequences of martingale problems associated
to large class of operators acting on continuous functions and we look to Feller-type
features of the associated of solutions.

There exist many fundamental references where this kind of objects are studied.
In a pioneer work, Courrege [6] described the form of a linear operator satisfying the
positive maximum principle, as the sum of a second order differential operator and a
singular integral operator, and he made the connection with the infinitesimal generator
of a Feller semigroup. At the same period, Courrége and Priouret [7] studied a method
of construction and of decomposition of Markov processes with continuous paths, along
increasing sequences of terminal hitting times, by using the method of pasting together
processes on overlapping open sets. Hoh and Jacob [I1] discussed the martingale problem
for a large class of pseudo-differential operators, especially the martingale problem for
generators of Lévy type (see also the monograph of Jacob [14] on Feller semigroups
generated by pseudo-differential operators). The concept of the symbol of a Markov
process as a probabilistic counterpart of the symbol of a pseudo-differential operator
is often used. Hoh [I2] studied a class of pseudo-differential operators with negative-
definite symbols which generate Markov processes and solved the martingale problem for
this class of pseudo-differential operators, assuming the smoothness of its symbol with
respect to the space variable (see also [13]). Kiihn [17] considered a pseudo-differential
operator with continuous negative definite symbol such that the martingale problem
is well-posed on the space of smooth functions. She proved that the solution of this
martingale problem is a conservative rich Feller process under a growth condition on
the symbol. Bottcher and Schilling [2] gave a scheme to approximate a Feller process
by Markov chains in terms of the symbol of the generator of the process (see also [2]
for an application). Symbols are also used when studying SDE’s driven by Lévy noises.
Schilling and Schburr [21I] computed the symbol of the strong solution of a SDE driven
by a Lévy process and having a locally Lipschitz multiplicative coefficient and proved
that this strong solution is a Feller process, provided the coefficient is bounded (see also
[3]). Kiihn [18] proved that if the coefficient of the SDE is continuous and satisfies a
linear growth condition then a weak solution, provided that it exists, is also a Feller
process.

Let us briefly describe some of the ideas developed in the present paper. To begin
with, let us point out that the local Skorokhod topology on a locally compact Hausdorff
space S constitutes a good setting when one needs to consider explosions in finite time
(see [10]). Heuristically, we modify the global Skorokhod topology, on the space of
cadlag paths, by localising with respect to the space variable, in order to include the
eventual explosions. The definition of a martingale local problem follows in a natural
way: we need to stop the martingale when it exits from compact sets. Similarly, a



stochastic process is locally Feller if, for any compact set of S, it coincides with a Feller
process before it exits from the compact set. Let us note that a useful tool allowing to
make the connection between local and global objects (Skorokhod topology, martingale,
infinitesimal generator or Feller processes) is the time change transformation. Likewise,
one has stability of all these local notions under the time change.

We study the existence and the uniqueness of solutions for martingale local problems
and we illustrate their locally Feller-type features (see Theorem . Then we deduce a
description of the generator of a locally Feller family of probabilities by using a martingale
(see Theorem . Furthermore we characterise the convergence of a sequence of
locally Feller processes in terms of convergence of operators, provided that the sequence
of martingale local problems are well-posed (see Theorem and without supposing
that the closure of the limit operator is an infinitesimal generator. We also consider the
localisation question (as described in Ethier and Kurtz [§], §4.6, pp. 216-221) and we
give answers in terms of martingale local problem or in terms of generator (Theorems
and . We stress that a Feller process is locally Feller, hence our results, in
particular the convergence theorems apply to Feller processes. In Theorem 4.10| we give
a characterisation of the Feller property in terms of the locally Feller property plus an
additional condition. As a first example, let us consider the simple one-dimensional
SDE, dX; = dB; + b(X;)dt driven by a standard Brownian motion with b € C(R,R%).
The associated martingale local problem associated to the operator defined for compact
supported smooth functions f,

Lf(w) == 3 1"(2) + b)),

is well-posed by invoking the classical theory of Stroock and Varadhan [23] and the
localisation theorem. Moreover it can be proved by using the scale function (see [§])
that the solution is Feller if and only if:

/0 b(y)~'dy = oo = /OOO b(y) ' dy.

—00

Our results should be useful in several situations, for instance, to analyse the con-
vergence of a Markov chain towards a Lévy-type process under general conditions (im-
proving the results, for instance, Thm 11.2.3 from Stroock and Varadhan [23] p. 272,
Thm. 19.28 from Kallenberg [15], p. 387 or from Boéttcher and Schnurr [2]). Two
examples of applications are briefly presented in Remarks and Complete de-
velopment of some of these applications and of some concrete examples (as the Euler
scheme of approximation for Lévy-type process or the connection between the Sinai’s
random walk and the Brox diffusion describing the evolution of a Brownian particle into
a Brownian potential [4]) are the object of a separate work [9]. Let us also note that in
[9] we slightly modify the Brox’s diffusion by considering the evolution of a Brownian
particle in a very irregular potential getting in this case another interesting example of a
locally Feller process (see also Remarks and for other examples of locally Feller
processes which are not Feller processes). The method developed in the present paper



should apply for other situations. In a work in progress, we apply a similar method for
some singular stochastic differential equations driven by a-stable processes, other than
Brownian motion.

The paper is organised as follows: in the next section we recall some notations and
results obtained in our previous paper [10] on the local Skorokhod topology on spaces
of cadlag functions, tightness and time change transformation. Section 3 is devoted to
the study of the martingale local problem : properties, tightness and convergence, but
also the existence of solutions. The most important results are presented in Section
4. In §4.1 and §4.2 we give the definitions and point out characterisations of a locally
Feller family and its connection with a Feller family, essentially in terms of martingale
local problems. We also provide two corrections of a result by van Casteren [5] (see also
[18], p. 2 and [I7], p. 3603). In §4.3 we give a generator description of a locally Feller
family and we characterise the convergence of a sequence of locally Feller families. §4.4
contains the localisation procedure for martingale problems and generators. We collect
in the Appendix the most of technical proofs.

2 Preliminary notations and results

We recall here some notations and results concerning the local Skorokhod topology, the
tightness criterion and a time change transformation which will be useful to state and
prove our main results. Complete statements and proofs are described in an entirely
dedicated paper [10].

Let S be a locally compact Hausdorff space with countable base. The space .S could
be endowed with a metric and so it is a Polish space. Take A € S, and we will denote
by S2 O S the one-point compactification of S, if S is not compact, or the topological
sum S U{A}, if S is compact (so A is an isolated point). Denote C(S) := C(S,R), resp.
C(S2) := C(S?,R), the set of real continuous functions on S, resp. on S2. If Co(S)
denotes the set of functions f € C(S) vanishing in A, we will identify

Co(S) = {/ € C(52) ‘ F(8) =0}.

We endow the set C(S) with the topology of uniform convergence on compact sets and
Co(S) with the topology of uniform convergence.

The fact that a subset A is compactly embedded in an open subset U C S will be
denoted A € U. If z € (S2)®+, we denote

E(z) :=inf{t > 0| {zs}s<t & S}.

Here and elsewhere we denote Ry :={t € R: ¢ >0} and R} :={t € R:¢ > 0}.
Firstly, we introduce the set of cadlag paths with values in S2,

> =1
D(SA) = {:c € (58)R+ Vt >0, z¢ = limgy 25, and }

Vt >0, x4— ;= limgy x5 exists in SA




endowed with the global Skorokhod topology (see, for instance, Chap. 3 in []], pp.
116-147) which is Polish.
Secondly, we proceed with the definition of a set of exploding cadlag paths

vt > f(l‘), Tt = Au
D]OC(S) =L T E (SA)R7L Vi >0, 2y = limsu Ts,
Vt > 0s.t. {Ts}s<t €S, @ := limgyy x5 exists

Consider d an arbitrary metric on S2. A sequence (2*)ren in Dioe(S) converges to x if
and only if there exists a sequence (A*); of increasing homeomorphisms on R satisfying

Vt > 08t {25}s<t €S, lim supd(vs,25,) =0 and lim sup|\f —s| = 0.
k—oo s<t s k—oo g<t

It can be showed that Dj,.(S) endowed with this convergence is a Polish space (see
Theorem 2.4, p. 1187, in [10]). The topology associated to this convergence is called the
local Skorokhod topology.

In fact the global Skorokhod topology is the trace (of the local) topology from Dj,(S)
to D(S2) and a sequence (2*); from D(S?) converges to = € D(S?) for the global
Skorokhod topology if and only if there exists a sequence (A\*); in A such that

vVt >0, lim sup d(xs,xik,) — 0, and lim sup|\* — s/ =0.
k—oo g<t s k—oo g<t

We recover the usual Skorokhod topology on ID)(SA), as it is described, for instance, in
§16 pp. 166-179 from [I]. Note that in Theorem 2.4, p. 1187, from [I0] it is also proved,
as for the usual Skorokhod topology, that the local Skorokhod topology does not depend
on d but only on the topology on S.

We will always denote by X the canonical process on D(S?) or on Dj,.(S), without
danger of confusion. We endow each of D(S?) and Dy, (S) with the Borel o-algebra
F :=0(Xs, 0 < s < o) and a filtration F; := 0(Xs, 0 < s < t). As usual, we will
always denote by P(D(S2)) or P(Djec(S)) the set of probability measures on D(S2) or
on Djpe(S). We will always omit the argument X for the explosion time &(X) of the
canonical process. It is clear that £ is a stopping time. Furthermore, if U C S is an open
subset,

Vi=inf{t>0| X, gUor Xy U AE (2.1)

is a stopping time.

There are several ways to localise processes, for instance one can stop when they
leave a large compact set. Nevertheless this method does not preserve the convergence
and we need to adapt this procedure in order to recover continuity. Let us describe our
time change transformation.

Consider a positive continuous function g € C(S,R;) and following , we can
write

{g#0} .
T () :=inf{t > 0| g(xs—) Ag(ze) =0} A&(x).



For any x € Djo(S) and ¢t € Ry we denote
s > 71970} o / du > t} : (2.2)
0 9(7u)

We define a time change transformation, which is F-measurable,

g-X: Die(S) = Dic(S)
T = g,

77 (x) := inf {s >0

as follows: for ¢t € Ry

{g#0}

X (oroy _ 1f w=r ; X _(az0)_ exists and belongs to {g =0},

(B'X)t:{

X o otherwise.
t

(2.3)

The time change transformation will be a useful tool used to compare the local notions,
as local Skorokhod topology, martingale local problems or locally Feller processes, with
the usual (global) notions.

For any P € P(Dy,.(5)), we also define g- P the pushforward of P by x + g-z. Let
us stress that, 77 is a stopping time (see Corollary 2.3 in [10]). The time of explosion of
g- X is given by

00 if 797 < ¢ or Xe_ exists and belongs to {g = 0},
0 3ry Otherwise.
It is not difficult to see, using the definition of the time change (2.3)), that
V1,02 € C(S,Ry), Vo € Dioe(S), 91 (92 2) = (g102) - . (2.4)

In [I0] Proposition 3.9, p. 1199, a connection between Dy, (S) and D(S?) was given.
We recall here this result because it will be employed several times.

Proposition 2.1 (Connection between Di,c(S) and D(S2)). Let S be an arbitrary locally
compact Hausdorff space with countable base and consider

P: S = P[Dp(9))
a +— P,

a weakly continuous mapping for the local Skorokhod topology. Then for any open subset
U of S, there ezists g € C(S,R4) such that {g # 0} =U, foralla € S

g-P,(0<{<o00= Xe emists inU) =1,
and the application

g-P: § — P({0 <& <o0o= Xe_ exists in U})
a — g-P,

is weakly continuous for the global Skorokhod topology of D(S?).



Another useful result which we would like to recall from [10] is the following version
of the Aldous criterion of tightness: let (P,), be a sequence of probability measures on
P(Dyoe(S)). If for all t > 0, € > 0, and open subset U € S, we have:

lim sup sup P, (d(Xr,Xr) >e) — 0, (2.5)
n—oo 7’1§T2 0—0
’TQS(’Tl—‘r(S)/\t/\’TU

then {P,}, is tight for the local Skorokhod topology (see Proposition 2.9, p. 1190, from
[10]). In the supremum is taken over all F;-stopping times 71, 75.

Let (Gt)r>0 be a filtration of F containing (F;);>0. Recall that a family of probability
measures (Pgy)aes € P(Dioe(S))? is called (G;)i-Markov if, for any B € F, a — Py(B)
is measurable, for any a € S, P,(Xo =a) =1, and for any B € F, a € S and tp € Ry

Py (Xtg+t)t € B | Gyy) = Px, (B), P, — almost surely,

where P A is the unique element of P(D,.(S)) such that PA(§ = 0) = 1 and, as usual,
(Xto+¢)t is the shifted process. If the latter property is also satisfied by replacing to with
any (G);-stopping time, the family of probability measures is (G;);-strong Markov. If
G: = F; we just say that the family is (strong) Markov. If v is a measure on S® we
set P, := [P,v(da). Then the distribution of X, under P, is v, and P, satisfies the
(strong) Markov property.

To finish this section let us recall the following property of the time change stated in
Remark 3.4, p. 1196, from [10], used several times in the present paper, but not in that
one.

Proposition 2.2 (Strong Markov property and time change). Consider g € C(S,Ry)
and (Pg)a € P(De(S))5. If (Po)g is a (Fiy)i-strong Markov family, then (g-Pg)q is
also (Fit)e-strong Markov family.

For the sake of completeness we will provide the proof of Proposition in the
Appendix [A.2]

3 Martingale local problem

3.1 Definition and first properties

To begin with we recall the optional sampling theorem. Its proof can be found in
Theorem 2.13 and Remark 2.14. p. 61 from [g].

Theorem 3.1 (Optional sampling theorem). Let (€2, (G;)¢, P) be a filtered probability
space and let M be a cadlag (Gi)i-martingale, then for all (Giy)i-stopping times T and
o, with T bounded,

E[M; | Got] = Mrps, P-almost surely.

In particular M is a (Gi+)i-martingale. We denoted here Gyt := Ne>0Gite-



All along the paper the operators from Cy(S) to C(S), will be denoted as a subset
of Cy(S) x C(5), in other words its graph. This will be not a major notation constraint,
since in the following most of the operators are univariate.

Definition 3.2 (Martingale local problem). Let L be a subset of Cy(S) x C(S).

a) The set M(L) of solutions of the martingale local problem associated to L is the
set of P € P (Dpe(S)) such that for all (f,g) € L and open subset U € S:

taTU
F(Xpnrv) — / g9(X;)ds is a P-martingale (3.1)
0

with respect to the filtration (F;); or, equivalent, to the filtration (Fy4);. Recall
that 7U is given by (2.1). The martingale local problem should not be confused
with the local martingale problem (see Remark for a connection).

b) We say that there is existence of a solution for the martingale local problem if for
any a € S there exists an element P in M(L) such that P(Xg =a) = 1.

c) We say that there is uniqueness of the solution for the martingale local problem if
for any a € S there is at most one element P in M(L) such that P(Xy =a) = 1.

d) The martingale local problem is said well-posed if there is existence and uniqueness
of the solution.

Remark 3.3. 1) The hypothesis of continuity of g ensures the fact that is adapted
to the (non-augmented) canonical filtration (F;);.

2) By using the dominated convergence when U is growing towards .S, and by the previous
definition (3.1)), for all L € Co(S) x C(S), (f,g9) € LN (Co(S) x Cy(S)) and P € M(L),

we have that

tAE
f(Xy) — / 9(Xs)ds is a P-martingale.
0

Indeed, if (f,g) € Co(S) x Cp(S) the quantity in (3.1)) is uniformly bounded. Hence, if
L C Cy(S) x Cp(S), the martingale local problem and the classical martingale problem
are equivalent.

3) It can be proved that, for all L C Cy(S) x C(S), (f,9) € L and P € M(L) such that
P (¢ < oo implies {X}sce € S) =1,

we have

tAE
f(Xy) — / 9(Xs)ds is a P-local martingale.
0

Indeed let us denote 2 = {f < oo implies {X}sce € S } and introduce the family of
stopping times

oV =7V (Tl ueru_g), withU €S, T >0.



To obtain the assertion, we remark that, almost surely on 2, X T X TU, and, when
T — oo and U growing towards S, o”T grows to infinity.

4) We shall see that the uniqueness or, respectively, the existence of a solution for the
martingale local problem when one starts from a fixed point implies the uniqueness or
the existence of a solution for the martingale local problem when one starts with an
arbitrary measure (see Proposition .

5) Consider L C Cy(S) x C(S) and P € M(L). If (f,g) € L and U € S is an open
subset, then, by dominated convergence

_ tATY
E [f(Xt/\TU) Jff()] f(XO) —E [1/0 g(Xs)dS ]:O‘| 1:;_—;? g(XO) <>

Some useful properties concerning the martingale local problem are stated below:
Proposition 3.4 (Martingale local problem properties). Let L C Cy(S) x C(S) be.

1. (Time change) Take h € C(S,Ry) and denote

hL :={(f,bg) | (f,9) € L}. (3.2)

Then, for all P € M(L),
h-Pec ML) (3.3)

2. (Closure property) The closure with respect to Co(S) x C(S) satisfies

M (span(L)) =M(L). (3.4)

3. (Compactness and convexity property) Suppose that D(L) is a dense subset of
Co(S), where the domain of L is defined by

D(L) :={f € Co(S) | 3g € C(5), (f,9) € L}.
Then M(L) is a convex compact set for the local Skorokhod topology.

The following result provides a continuity property of the mapping L — M(L).

Proposition 3.5. Let L,,, L C Cy(S) x C(S) be such that

Y(£,9) €L, 3(fasgn) € L, such that  fr <% f, gu <> g (3.5)

n—oo
Then:

1. (Continuity) Let P™ P € P (Dyy.(S)) be such that P* € M(L,) and suppose that
{P"},, converges weakly to P for the local Skorokhod topology. Then P € M(L).

2. (Tightness) Suppose that D(L) is dense in Co(S), then for any sequence P™ €
M(Ly,), {P"},, is tight for the local Skorokhod topology.



The proofs of Propositions [3.4) and [3.5] are interlaced.

Proof of part[1] of Proposition[3.]]. Take (f,g) € L and an open subset U € S. If 51 <
- < s < s < tare positive numbers and ¢1,..., 9 € C(SA), we need to prove that

tntY

h-E [(f(XtATU) - f(XS/\TU) _/

AU

(hg)(Xu)dU> P1(Xsy) - pr(Xs) | = 0. (3.6)

We will proceed in two steps: firstly we suppose that U € {h # 0}. Recalling the
definition (2.2)), if we denote 7, := Tth ATV, we have, for all t € R,

h- Xt/\‘rU(h-X) =X (37)

and

tATU (5-X) tATY (h-X) T
/ (69)(h - X.)du = / (69) (X, )du = / o(X)du.  (38)
0 0 0

Hence by (3.7)-(3.8)) and using the optional sampling Theorem 3.1

tATU

b B Kf(XWU) 1) = [ (hg)(Xu)dU) P1(Xy) sok<Xsk>]

AtV

(bg)(Xu)du> 901(X51/\TU) t Sok(Xsk/\TU)‘|

ATU

=h-E [(f(XtATU) - f(XS/\TU) - /

= B[ (£000 = 106 = [ g @1, rlX,)| =0

Ts

Secondly, we suppose that U € S. Recall that d is the metric on S® and we introduce,
forn > 1, Uy := {a € Uld(a,{h = 0}) > n~'}. It is straightforward to obtain the
following pointwise convergences,

h- Xt/\TUn(b-X) njo b- Xt/\TU(h-X)a

JT O 000 X o [0 X

Therefore,
taTUn
FXipgin) = F ) = [ (hg) (X
sATUn
X tATY
" Xipgt) = FXopet) = [ () (X

Applying the first step to U,, € {h # 0} and letting n — oo, by dominated convergence

we obtain (3.6]). O

10



Proof of part[1] of Proposition|[3.5 By using Proposition [2.1] we know that there exists
h € C(S,R%) such that Djo.(S)ND(S2) has probability 1 under h-P™ and under h-P and
such that b - P™ converges weakly to b - P for the global Skorokhod topology of D(S2).
Let us fix (f,g) and (fy,gn) arbitrary as in (3.5) and then we can modify b such that
it satisfies furthermore hg,,hg € Co(S) and hg, %) hg. Indeed, for instance, we can
n oo
multiply b with a function from C(S;R% ) which is less than d(-, A)/(sup,en blgn — 9|)-
Let T be the set of ¢ € Ry such that h - P(X;— = X;) = 1, so Ry \T is countable.
Let 51 < --- < s, < s < t belonging to T and consider ¢y, ..., p; € C(S?). By using
of Proposition [3.4] and the first part of Remark

b8 (4060 = 2000 = [ o) (Xa)du) 1) )| =0, 89)

Noting that the sequences of functions f,, and hg, converge uniformly, respectively to
f and bg, and since ¢1,...p; are bounded, it can be deduced that the sequence of
functions (fn(X¢) — fn(Xs) — f;(bgn)(Xu)du)gol(Xsl) -+ (X5, ) converges uniformly
to the function (f(X;) — f(Xs) — fst(hg)(Xu)du)gpl(Xsl) -+ pr(Xs, ). This last function
is continuous b - P-almost everywhere for the topology of D(S%). Hence we can take the
limit, as n — oo, in (3.9) and we obtain that
t

08| (700 - 106) - [ 09)(0)du) 1) )| 0. (320)
Since T is dense in Ry, since f,hg, @1, ..., ¢, are bounded, by right continuity of paths
of the canonical process, and by dominated convergence, (3.10)) extends to s;,s,t € R..

Hence h-P € M({(f,hg)}), so using (2.4) and part [1]of Proposition[3.4, P = (1/p)-h-P €
M{(f,9)}). Since (f,g) € L was chosen arbitrary, we have proved that P € M(L). O

Proof of part[q of Proposition[3.]]. Tt is straightforward that M(span(L)) = M(L). Let

P € M(L). We apply part I of Proposition . to the stationary sequences P™ = P and
L,, = span(L) and to span(L). Hence P € M(span(L)) and the proof is done. O

Proof of part[d of Proposition[3.5. Take t € Ry and U € S an open subset. By using
Lemma and considering K := U and U := {(a,b) € S x S | d(a,b) < €}, we have

sup P, (d(X5, Xr,) > ¢) =20,

T1ST2 60
7'2§(7'1+5)/\TU/\t
hence (2.5) is satisfied and the Aldous criterion applies (Proposition 2.9 in [10]). O

Proof of part[3 of Proposition[3.]). It is straightforward that M(L) is convex. To prove
the compactness, let (P™),, be a sequence from M(L). We apply part [2| of Proposition
to this sequence and to the stationary sequence L, = L. Hence (P") is tight,
so there exists a subsequence (P™); which converges towards some P € P(Djoc(S)).
Thanks to part |1| of Proposition we can deduce that P € M(L). The statement of
the proposition is then obtained since P (Djo.(S)) is a Polish space. O

11



We end this section with another property concerning martingale local problems:

Proposition 3.6 (Quasi-continuity property of the martingale local problem). Let L be
a subset of Co(S) x C(S) and suppose that D(L) is a dense subset of Co(S). Then for
any P € M(L), P is (Fit)i-quasi-continuous. More precisely this means that for any
(Fiy )t-stopping times T,71,To . ..

X;, — X; P-almost surely on {Tn — T < oo}, (3.11)

n—oo n—oo

with the convention Xoo := A. In particular, for anyt >0, P(X;— = X;) =1,

P (Dyoe(S) ﬂ]D)(SA)) =P (£ € (0,00) = X¢_ eaists in SA) =1.

Moreover, for any open subset U C S, we have P(7Y < 0o = X v ¢ U) = 1, where 7V

is given by (2.1)).

Remark 3.7. Let us note that the quasi-continuity is needed to have X v ¢ U a.s.
even if the process is right-continuous. For instance, the real Markov process X; :=
Xo + (Bt — | Xo + Bt])1x,<1, with B a standard Brownian motion, is right-continuous
and we have X (1) = X0l x,>1 which belongs to (—o0, 1), provided Xy < 1. O

The proof of the previous proposition is technical and is postponed to the Appendix

JA.1l During this proof we use the result of the next lemma concerning the property

of uniform continuity along stopping times of the martingale local problem. Its proof is
likewise postponed to the Appendix

Lemma 3.8. Let L,,, L C Cy(S)x C(S) be such that D(L) is dense in Cy(S) and assume
the convergence of the operators in the sense given by . Consider K a compact subset
of S and U an open subset of S x S containing {(a,a)}qecs. For an arbitrary (Fiy)e-
stopping time 71 we denote the (Fy4)i-stopping time

7(71) = inf {t > Ti ‘ {(XTleS)}ﬁSSSt & Z’{}'

Then for each € > 0 there exist ng € N and 6 > 0 such that: for any n > ng, (Fit)i-
stopping times 71 < 72 and P € M(Ly) satisfying E[(r2 — 71)1(x, exy] < 0, we have

P(X, €Kk, 7(n) <m) <e¢,

with the convention X := A.

3.2 Existence and conditioning

Before giving the result of existence of a solution for the martingale local problem, let us
recall that X7 = X, for 7 a stopping time, and the classical positive maximal principle
(see [§], p-165):

Definition 3.9. A subset L C Cy(S) x C(S) satisfies the positive maximum principle if
for all (f,g) € L and ag € S such that f(ag) = sup,cg f(a) > 0 then g(ap) < 0.

12



The existence of a solution for the martingale local problem result will be a conse-
quence of Theorem 5.4 p. 199 from [§].

Theorem 3.10 (Existence). Let L be a linear subspace of Co(S) x C(S).

1. If there is existence of a solution for the martingale local problem associated to L,
then L satisfies the positive mazrimum principle.

2. Conversely, if L satisfies the positive maximum principle and D(L) is dense in
Co(S), then there is existence of a solution for the martingale local problem asso-
ciated to L.

Remark 3.11. 1) A linear subspace L C Cy(S) x C(S) satisfying the positive maximum
principle is univariate. Indeed for any (f, g1), (f,g2) € L, applying the positive maximum
principle to (0, g2 — g1) and (0, g1 — g2) we deduce that g; = go.

2) Suppose furthermore that D(L) is dense in Cy(.5), then as a consequence of the second
part of Proposition [3.4] and of Theorem the closure L in Co(S) x C(S) satisfies the

positive maximum principle, too. O

Proof of Theorem [3.10, Suppose that there is existence of a solution for the martingale
local problem, let (f,g) € L and ag € S be such that f(ag) = sup,eg f(a) > 0. If we
take P € M(L) such that P(Xy = ap) = 1, then, by the fifth part of Remark

ga0) = lim = (B [f(Xyu,r) | Fo] = f(a0)) <0,

so L satisfies the positive maximum principle.

Let us prove the second part of Theorem Consider Eo a countable dense subset
of L and Ly := span(Lg). There exists b € Co(S;R%) such that for all (f,g) € Lo:
hg € Co, hence L = Ly and hLg C Co(S) x Co(S). We apply Theorem 5.4 p. 199 in
[8] to the univariate operator hLg: for all a € S, there exists P € P(D(S2)) such that

P(Xp=a) =1 and for all (f,g) € hLg
t —~
f(Xe) — / g9(Xs)ds is a P-martingale.
0

We set P := Z5(X¢) the law of X¢ under P. Then P € P (D1oc(S) NID(S2)). Moreover,
for any (f,g) € hLg, open subset U € S, 51 < --- < s < s < tin Ry and ¢q,...,¢k €
C(5%),

AtV

E Kf(qu) — F(Xsnrv) —/ g(Xu)dU) P1(Xsy) - sOk(Xs;c)]

ATU
tATU

AU

E Kf(XmTU) — F(Xsnrv) —/ g(Xu)dU> P1(Xsy) - 'sozc(Xsk)l = 0.

13



Hence P € M(hLg). To conclude we use the first two parts of Proposition

M(L) = M(D) = M(Lo) = { - Q j Qe MlbLo)} .

So % -P € M(L) and the existence of a solution for the martingale local problem is
proved. O

Remark 3.12. Since F is the Borel o-algebra on the Polish space Dy, (S), we can use
Theorem 6.3, in [I5], p. 107. So, for any P € P (Dyo.(5)) and (Fi+)i-stopping time 7,

" . P-as. }
the regular conditional distribution Qx = % ((X7+t)t20 | ]—"T+) exists. It means that
there exists

Q: Dpe(S) — P (Dioe(5))
x — Q.

such that for any A € F, Qx(A) is Fr4-measurable and
P((X7+t)t20 €A | .7:T+) = Qx(A4) P-almost surely. O

The following proposition contains a near result as Theorem 4.2, p. 184 in [g].

Proposition 3.13 (Conditioning). Take L C Cy(S) x C(S), P € M(L), and a (Fi+)¢-
.7:7-+), then

P-a.s.
stopping time 7. As in Remark|3.19 we denote Qx =° fp((XTth)tzo

Qx € M(L), P-almost surely.

Proof. Let (f,g) bein L, s < --- < s, < s <t bein Ry, ¢1,...,¢ be in C(S*) and
U € S be a open subset. Here and elsewhere we will denote by EQ* the expectation
with respect to Q. Since

tatY
st B[ (Xpg) = FXnor) = [ (X)) ea(X) 0K,
P-as. (t+m)ATY
= ]lT<TUE|:(f(X(t+T)/\TU) - f(X(S+T)/\TU) - /( A g(XU)du)
P-
X @1(Xsy+r) - ok (Xsptr) —FTJr} =° 0,

we have
tATU

P (B[ (F(X0) — F(Xpe) = [

sATU

9(X)du)or(Xe) - ou(Xs,)] #0)

<P(rV<r<g. (312

Let L be a countable dense subset of L, C' be a countable dense subset of C(S2) and
Un € S be an increasing sequence of open subsets such that S = J,, U,. Then Qx €

14



M(L) if and only if for all (f,g) € L, keN,forany s; < - < s < s <tinQy, for
any ¢1,...,pr € C, and for n large enough

tATUn

B [(f(Xp) = F(opoin) = [ gl (X) - el X)) = .
SATHYm
Hence {Qx € M(L)} is in Fr-1 and by (3.12), P-almost surely Qx € M(L). O

Proposition 3.14. Set L C Cy(S) x C(S).

1. If there is uniqueness of the solution for the martingale local problem then for any
p € P(S2) there is at most one element P in M(L) such that £p(Xg) = p.

2. If there is existence of a solution for the martingale local problem and D(L) is
dense in Co(S), then for any u € P(S?) there exists an element P in M(L) such
that XP(X()) = M.

Proof. Suppose that we have uniqueness of the solution for the martingale local problem.
Let 4 be in P(S2) and P!, P2 € M(L) be such that Zp1(Xo) = Lp2(Xo) = p. As in
Remark B.12]let Q2 Q2 : §* = P(Dioc(S)) be such that

Ploas. P2-as.

Qk, = Lp (X | Fo), Q%, = Lp (X |F). (3.13)

Then, by Proposition Ql, Q2 € M(L) for y-almost all a, so, by uniqueness of the
solution for the martingale local problem, Q! = Q2 for y-almost all a. We finally obtain,

by (B.13), P! = [ Qu(da) = [ QZp(da) = P2,

Suppose that we have existence of a solution for the martingale local problem and
that D(L) is dense in Cy(S). Thanks to the property |3| in Proposition M(L) is
convex and compact. Hence the set

C:={peP(S?)|3IP € M(L) such that Lp(Xo) = u}

is convex and compact. Since there is existence of a solution for the martingale local
problem we have {d, | a € §2} C C so C = P(54). O

4 Locally Feller families of probabilities

In this section we will study a local counterpart of Feller families in connection with
Feller semi-groups and martingale local problems. The basic notions and facts on Feller
semi-groups can be found in Chapter 19 pp. 367-389 from [15].

4.1 Feller families of probabilities

Definition 4.1 (Feller family). A Markov family (Py), € P(Dioc(S)) is said to be
Feller if for all f € Cy(S) and ¢ € Ry the function

thl S — R
a Ea[f(Xt)]
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is in Cp(S). In this case it is no difficult to see that (73): is a Feller semi-group on
Co(S) (see p. 369 in [15]) called the semi-group of (P,),. Its generator L is the set of
(f,9) € Co(S) x Cy(S) such that, for all a € S

th(a)t_ f(a) E)} g(a)

and we call it the (Cy x Cp)-generator of (Pg),.

In [5] Theorem 2.5, p. 283, one states a connection between Feller families and
martingale problems. Unfortunately the proof given in the cited paper is correct only on
a compact space S. The fact that a Feller family of probabilities is the unique solution
of an appropriate martingale problem is stated in the proposition below. We will prove
the converse of this result in Theorem [£.9

To give this statement we need to introduce some notations. For L C Cy(S) x Cy(S)
we define

LA :=span (LU {(1ga,0)}) C C(52) x C(S2). (4.1)

We recall that we identified Co(S) by the set of functions f € C(S?) such that f(A) = 0.
The set of solutions M (L) C P(Diec(S?)) of the martingale problem associated to L
satisfies

VP € M(L?), P(Xpe S2= X eD(S?)) =0.

Without loss of the generality, to study the martingale problem associated to L2 it
suffices to study the set of solution with S®-conservative paths:

Mc(LA) = M(LA) N P(D(S?)) = {P € M(L?) | P(Xo € $4) =1} .

Indeed, the unique non-conservative solution of M(L?) is the process which leaves S
at time 0. In fact M.(L?) is the set consisting of P € P(D(S?)) such that for all

(fig)el
t
f(Xy) —/ 9(Xs)ds is a P-martingale. (4.2)
0

The following result is well-known and, for the sake of completeness, we provide its proof
below:

Proposition 4.2. If (T}); is a Feller semi-group on Co(S) with L its generator, then
there is a unique Feller family (Pg), with semi-group (13);. Moreover the martingale
problem associate to L® is well-posed and

MC(LA) = {Puluepsa)-
Remark 4.3. 1. For any P € M.(L?) the distribution of X™° under P satisfies

Lo(XT7) € Mo(L2) N P(Dioe(S)) € M(L).
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Moreover if D(L) is dense in Cy(S), thanks to Proposition
M(L) = M(L?) N P(Dioe(S)).

So if D(L) is dense in Cy(S) there is existence of a solution for the martingale problem
associated to L if and only if there is existence of a solution to the martingale problem
associated to L. Moreover the uniqueness of the solution for the martingale problem
associated to L imply uniqueness of the solution for the martingale problem associated
to L.

2. If S is compact and D(L) is dense in Cy(S) = C(5), then it is straightforward to
obtain M(L) = M.(L?). O

Proof of Proposition[4.3 The existence of a solution for the martingale problem is a con-
sequence of Theorem see for instance the Hille-Yoshida theorem (Theorem 19.11,
p. 375 in [I5]). Thanks to Proposition and using chain rule for conditioning, to
identify the finite dimensional distributions of solutions solving the martingale problem,
we need to prove that

VP € M(L?), vt > 0,¥f € D(L), E[f(X¢)] = E[T1f(Xo)].

Let 0 =t9p < -+ <tn41 =t be a subdivision of [0, ¢], then

N
E[f(Xy) | Fol - T.f(Xo) =Y E [T, f(Xip,) | Fo] =BT, f(X,) | Fo)
i=0
N
= ZE [E [ﬂ—ti+1f<Xti+1) | Ftl] - Tt—tif<Xti) | I0j| .

i=0

Moreover for each ¢ € {0,... N}, using martingales properties for the first part and

semi-groups properties, in particular that T;f € D(L) (see for instance Theorem 19.6,
p. 372 in [15]) for the second,

tit1
E Tt—tz‘+1 f(XtiJrl) | ft@} - Tt—tif(Xti) = E[/ LTt_ti+1 f(XS) - LTt—sf(Xti)dS } ‘th} ’
t;

SO
N tit1
B0 - T SEY. [ |1, f(0X) ~ LT f (43| s
i=0 “ti
By dominated convergence we can conclude. O

Before introducing the definition of a locally Feller family, let us state a result on an
application of a time change to a Feller family (see (2.3))):

Proposition 4.4. Let (P,), € P(Dy,e(S))° be a Feller family with (Co x Co)-generator
L. Then, for any g € Cy(S,R%), (g-Pqa)a is a Feller family with (Cy x Cop)-generator
gL, taking the closure in Co(S) x Co(S).
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Proof. Thanks to the property [1]in Proposition [3.4 and to the Proposition[4.2] the result
is only a reformulation of Theorem 2, p. 275 in [20]. For the sake of completeness we
give the statement of this result in our context: if L C Cg(S) x Co(5) is the generator
of a Feller semi-group, then for any g € Cy(S,R%), gL is the generator of a Feller
semi-group. O

4.2 Locally Feller families and connection with martingale problems

We are ready to introduce the notion of locally Feller family of probabilities. This is
given in the following theorem:

Theorem 4.5 (Definition of a locally Feller family). If (Py)s € P(Die(S))°, the fol-
lowing four assertions are equivalent:

1. (continuity) the family (P,)q is Markov and a — P, is continuous for the local
Skorokhod topology;

2. (time change) there exists g € C(S,R%) such that (g-Pg)q is a Feller family;

3. (martingale) there exists L C Co(S) x C(S) such that D(L) is dense in Co(S) and
(Pa)q is the unique solution solving the martingale local problem for L:

Vae S, PeM(L) and P(Xg=a)=1<= P =Py;

4. (localisation) for any open subset U € S there exists a Feller family (ﬁa)a such
that for any a € S

Lo, (X)) = (X7).

A family satisfying one of these equivalent conditions will be called a locally Feller family.
Moreover a locally Feller family (Py)q is (Fii)i-strong Markov and for all u € P(S?),
P, is quasi-continuous.

We give below the proof of Theorem but first let us make some remarks.

Remark 4.6. A natural question is how can we construct locally Feller families? We
give here answers to this question.

i) A Feller family is locally Feller.

ii) If g € C(S,R%) and (Py)q € P(Dioc(S))? is locally Feller, then (g - P,), is locally
Feller. This result is to be compared with the result of Proposition [£.4]

iii) If S is a compact space, a family is locally Feller if and only if it is Feller. This
statement is an easy consequence of the third part of the latter theorem and of
Proposition [£.4]
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iv) As consequence of the first assertion in Theorem m, if (Pa)a € P(Dioe(9))° is
locally Feller then the family
U — PDi(U))

a +—» fpa(X)

is locally Feller in the space U. Indeed, it is straightforward to verify that, for any
open subset U C 5, the following mapping is continuous,

DIOC(S) — DIOC(U)

: ~ if s < 7V
< with 7, := { 2, if s <77(2),
x > T

A otherwise. O

Proof of Theorem [/].5
Thanks to Proposition there exists g € C(S,R%) such that for all a € SA,
g Po(Doc(S) N (S2)) =1 and such that the mapping

§2 = P(Diee(S) ND(S2))
a g-P,

is weakly continuous for the global Skorokhod topology of ]D)(SA). Moreover we can
deduce that (P,), is (Fi4)i-strong Markov by using the following result

Lemma 4.7. Let (Py), € P(D1oe(S))° be such that a — Py is continuous for the local
Skorokhod topology. Suppose that for all a € S®: Po(Xo = a) = 1 and there exists a
dense subset T, C Ry such that for any B € F and tg € T,

P, ((Xig+t)t € B | Fiy) = Px, (B) Pg-almost surely.

Then (Pg)q is a (Fit)i-strong Markov family.

The proof of Lemma, [4.7]is postponed in Appendix and we proceed with the proof of
Theorem [4.5l By Proposition [2.2) we can deduce that (g-Pg), is (Fiy)¢-strong Markov.
Take a € S and t € R, we will prove that g-P,(X;— = X;) = 1. For any f € C(S%),
s <t and € > 0, by the Markov property

o B[ [T st 2] P g e [ [ sona.

Since a — g-P, is weakly continuous for the global topology and since x — % fog f(Xy)du
is continuous for the global topology,

g-Ex. E /Osf(Xu)du] SS—QEQ-EXF E /Osf(Xu)du]

By the triangle inequality and the dominated convergence theorem (see a similar rea-
soning following (A.5)) in Appendix [A.2)) we have

t+e

0B foB[l [ | A ] g B2 [T s00)a] 2]

t
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SO
t4¢

o B[l [ | ] T g b [ pna.

t

Hence letting ¢ — 0 we deduce g - E, [f(X}) | Fi—] g-Paas.

this is also true for f2 so we deduce

9-Eo (f(X2) — f(Xi-))’ =9 Eq [9-Ea [f2(X0) | Fi-] — f2(X0)]
—2¢-Eo [f(Xe-) (9 Eo [f(Xy) | Fi] = f(Xe-))] = 0.

f(X;—). Since f is arbitrary,

Since f is arbitrary, taking a dense sequence of C(S?), we get g- Po(X;— = X;) = 1.
Finally, for any t € R, and f € C(S?), since = — f(x;) is continuous for the global
Skorokhod topology on {X;_ = X;}, the function

SA = R
a — g-E.f(Xy)
is continuous, so (g - Pg), is a Feller family.
[2=[3 Let L be the (Cy x Cp)-generator of (g Py)q, then, by Proposition M(L) =
{9 Pu}ucp(sa) so by the first part of Proposition and by (2.4)),

1
M <9L> = {Pu}uep(sa)-
[3={7] Thanks to [3] from Proposition for the local Skorokhod topology,

{Pa}aES - S
P, = a

is a continuous injective function defined on a compact set, so a — P, is also continuous.
Let 7 be a (Fi4)i-stopping time and a be in S. As in Remark we denote

P,-a.s.
Qx =" Lo, (Xrit)izo | Frp)-
By using Proposition Qx € M(L), Ps-almost surely, so Qx = Px,_, P,-almost
surely, hence (Pg), is (Fiy)¢-strong Markov. The quasi-continuity is a consequence of
Proposition [3.6]
[Z={4} Take an open subset U € S and define for all a € S
~ g /A mingg

P,:=bH-P, where b:= -
ming g

By Proposition (ﬁa)a is Feller, and moreover, since X™ = CE X)TU,
VaeS, b, (XT) =% (X7).

=25,
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=11l Let U,, € S be an increasing sequence of open subsets such that S = |J,, U,,. For
each n € N there exists a Feller family (P7), such that

VCLGS, gpa (XTUH) :gpg (XTUn).
Denote Pg° := P, then thanks to LemmgA 1] stated in Appendix the mapping

(NU {o0}) x 8% = P(Di(9))
(n,a) = Py
is continuous. We can conclude that (P5°), is a Markov family by using:
Lemma 4.8 (Continuity and Markov property). Let

(NU {OO}) x SA = P(DZOC(S))
(n,a) = Pa

be a weakly continuous mapping for the local Skorokhod topology such that (PI), is a
Markov family for each n € N. Then (Pg°), is a Markov family.

The proof of this lemma is postponed one more time to Appendix The proof of
Theorem [£.5]is now complete. O

Since a locally Feller family on S is also Feller we can deduce from Theorem a
characterisation of Feller families in terms of martingale problem. The following theorem
is the converse of Proposition and provide a first correction of Theorem 2.5, p. 283
in [5] (see also [I8], p. 2 and [17], p. 3603).

Theorem 4.9 (Feller families — First characterisation). Let (Pg)q € P(Dye(S))° be, the
following assertions are equivalent:

1. (Pg)q is Feller;

2. the family (P,), is Markov, P, € P(D(S?)) for any a € S, and S® > a s P, is
continuous for the global Skorokhod topology;

3. there exists L C Co(S) x Co(S) such that D(L) is dense in Co(S) and
Vae 82, PeMJ(L?) and P(Xg=a) =1<= P =P,.
We recall that Pa is defined by PA(Vt >0, Xy = A) = 1.

Proof. Thanks to Proposition a Feller family in P(Djoc(S5)) continues to be Feller
also in P(D(S2)), so a family (Py), € P(Die(S))° is Feller if and only if the family
(Pa)q € 73(]1])(5&))5A is Feller. Since S2 is compact, using the third point of Remark
this is also equivalent to say that (P,),cga is locally Feller in S®. Hence the theorem
is a consequence of Theorem applied on the space S® and to Proposition O
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The following theorem provides a new relationship between the local Feller property
and the Feller property. With the help of Theorem we obtain another correction of
Theorem 2.5 p. 283 from [5] by adding the missing condition (see again [I8], p. 2
and [I7], p. 3603).

Theorem 4.10 (Feller families — Second characterisation). Let (Pg)q € P(Djoe(S))? be,
the following assertions are equivalent:

1. (Pg)q is Feller;
2. (Pg)q is locally Feller and

Vt >0, VK C S compact set, P, (X; € K) — 0; (4.3)
a—

3. (Pq)q is locally Feller and

Vvt >0, VK C S compact set, P, (TS\K <tA 5) —A> 0.
a—

Proof. [+{3 Take a compact K C S and ¢t > 0. There exists f € Co(S) such that
f > 1k. Since the family is Feller,

Pa(Xt S K) < Ea[f(Xt)] — 0.

a—A

[Z=[3 Take an open subset U € S such that K C U and define
7= inf {s >0 ) {(X0, Xu) bo<uss & U2 U ((S\K) x (S\K))}.

By the third assertion of Theorem and applying Lemma to K = K, U :=
U2 U ((S\K) x (S\K)), 71 :== 0 and 73 := &, we get the existence of N € N such that

t
supr(T < —) < 1.
be K N

By Theorem P, is quasi-continuous for any a € S, so P,(X s\x € K U{A}) = 1.
Denoting [r] the smallest integer larger or equal than the real number r, we have

Pa<3k EN, k<N, Xpni1 € U) > P, (TS\K <EAE, Xyyorfiyesi € U)

=E, |:]l{7_S\K<t/\E}EXTS\K (X, € U]|s:tN*1 [t~ N7S\K]—rS\K }

> Pa<TS\K <t/\§) {1 — Su}};P(T < tN_l)}a
€

SO

P, (r5\K <tneg) < >0 Pa(Xiew—1 € U)

< — 0, asa— A.
1 — supye i Pp(7 < tN-1)
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[3=]] Consider f € Co(S), t > 0 and € > 0. There exists a compact subset K C S such
that || f|| k- < &, and an open subset U € S such that K C U and

sup Po (75 <t A €) <.
agU

Employing the second assertion of Theorem we see that there exists g1 € C(S;RY)
such that (g1 - Po)q is Feller. Since U € S, there exists go € Cy(S,R7%) such that
g := g192 satisfies g € C(S, (0, 1]) and g(a) = 1, for a € U. Applying Proposition to
g2 we obtain that (g - P,), is Feller. Then for any a € S

|Eo[f(X0)] — Ealf((9- X)0)]| S Ba[ [£(Xe) — f((g- X)) Lppvopy]
< Eo| |f(X)[ T vy ] +Ea[1f((8- X)) L agy]-

By Theorem P, is quasi-continuous, so P, (X, v ¢ U) = 1, we have
Bo || 7(X0 L0 <ty | = B [Lgwcn By (/X)) 0]
= E, |:]1{TU<t}EXTU [|f(X8)‘]l{—rS\K<t/\§}] |s:t77U:|

+Ea[ Lo By [0 L groezing) e ]
<7l S;gPa(TS\K <ENE) + [[fllxe < (N1 + e,

and
E, [ |f(g- X1l ]1{7U<t}} =E, []l{TU<t}EXTU [1f(g- X)]] |5:t_7—Ui|
= Ea [0y Ex o [0 XL cingy) jomyro
+E, {ﬂ{TUq}EXTU [1f(g- Xo) | Tgrs\rsiney] |S:t,Tu}
< |Ifll iggPa(TS\K <EANE +[[fllxe < (ILfI[ + 1)e.
Hence

| Balf(X0)] = Ealf((g- X)) < 20|11 + D,

so, since a — E,[f((g- X)¢)] is in Cy(5), letting ¢ — 0 we deduce that a — E,[f(X})] is
in Cy(5), hence (P,), is Feller. O

Remark 4.11. There exist processes which are locally Feller, but not Feller. We recall
here two examples, the first provided by [16], p. 157 (see also [3], p. 52 or [17], p. 3603)
and the second by [21], p. 1379 (see also [1§], p. 3). A third example is given in Remark
The first example is the (deterministic) process

x = sgn()(2t +252) V2 >0
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which is the unique solution of the ODE
Ty = —xf, t >0, starting from xg.

This process is locally Feller as the unique solution of the martingale problem, but the
associated semi-group does not satisfy the Feller property, since limj, | o0 Ez [f(X¢)] =
f(1/3/2t) # 0, for f a suitable continuous positive function vanishing at infinity. The
second example is the strong solution of the stochastic integral equation

t
Xy =x0— / Xs_dNg, t >0, where N is a standard Poisson process.
0

Again this process is locally Feller as the unique solution of the martingale problem, but
the associated semi-group does not satisfy the Feller property. Indeed, it can be shown
that lim, | o0 Exzy [f(X¢)] # 0, for f a suitable continuous positive function vanishing
at infinity (see [21], p. 1379 for details). O

Remark 4.12. One can ask what is the connection between locally Feller family (pro-
cess) and a Markov family of probabilities whose associated semi-group maps Cp(5),
the set of bounded continuous functions on S, into Cp(S) 7 We will call this kind of
family Cy(S)-Feller. Here is an example of family Cy(.5)-Feller which is not locally Feller.
Define a Markov family on R as follows: let e; and es be two independent exponential
random variables with expectation 1, and define, for ¢ > 0:

X, if Xo € {—1,0,1},
Xi =0 Xolice, j(1xo/-1=1) + X0 Lo<t—es /(X0 =1)<ea/(1Xo|1=1) 1f 0 < [Xo| <1,
Xolice, /(1x0|-1) if 1 < |Xol.

This process jumps to X; © with intensity |X;|~* — 1, provided 0 < |X¢| < 1, and jumps
to 0 with intensity |X;| — 1, provided 1 < |X;|. We can see that its semi-group is given
by:

f(z) if 2 € {—1,0,1},
~(lz| 7t =1yt “1y(1 — o~ (a7t =1ty o~ (2| 1)t
Tf(z) = f(x)e + fz™hH( Jff(o)(l i e>_e(|x_1_1)t)2 if 0 < |z| < 1,
fz)eUel=Dt 1 £(0)(1 — e~ (=l=11) if 1 < |x|.

Since T; maps Cp(R) to Cp(R), the family is C,(R). But the Feller family is not tight
in the neighbourhood of Xy = 0, so the process is not locally Feller.

Finally, we recall an example already given in [10], p.1184, of a locally Feller process
which is not a Feller process. Consider the ODE

iy =(1—t)a?, t>0, xp€R.
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For any initial condition zg, the unique maximal solution is the deterministic process

t2 1 -1 oo, lf Zo € [07 2),
Ty = (2—t+) before tmax = 1—+/1—=2/zg, ifzy>2,
1+\/1—2/:L'0, if g < 0,

and x; := A, after fy.x. This trajectory is not continuous with respect to the initial
condition in the neighbourhood of zy = 2, hence the process is not Cy,(R)-Feller. Clearly,
the process is not Co(R)-Feller since it explode in finite time. O

4.3 Generator description and convergence

In this subsection we analyse the generator of a locally Feller family:

Definition 4.13. Let (P,), € P(Dioc(S))° be a locally Feller family. The (Co x C)-
generator L of (Pg), € P(Dioe(S))? is the set of functions (f, g) € Co(S) x C(S) such
that for any a € S and any open subset U € S

tatY
f(Xiprv) — / 9(Xs)ds is a P,-martingale.
0

We provide in Proposition that, for Feller families, the (Co x C)-generator is the
extension of the (Cy x Cp)-generator. Some authors call it the "extended generator”. In
the following we will always recall the space of which the graph of operator is a subset.

Theorem 4.14 (Generator’s description). Let (Pg)q € P(Djoe(S))° be a locally Feller
family and L its (Cy x C)-generator. Then D(L) is dense, L is a univariate closed
sub-vector space,

M(L) = {P,M},LLG”P(SA)v
L satisfies the positive mazimum principle and does not have a strict linear extension

satisfying the positive mazimum principle. Moreover for any (f,g) € Co(S) x C(S) we
have equivalence between:

1. (f,g9) € L;

2. for all a € S, there exists an open set U C S containing a such that

tim + (B [F(X,,0)] ~ () = g(a):

t—0

3. for all open subset U € S and a € U

tim + (B [F(X,,0)] ~ (@) = g(a).

t—0
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Proof. Let us denote by Ly the set of (f,9) € Co(S) x C(S) satisfying the statement
and Ls the set of (f,g) € Co(S) x C(S) satisfying the statement

Thanks to the third assertion of Theorem and Proposition we have M(L) =
{Pu}oep(say and D(L) is dense. By the point [2| of Proposition L is a closed linear
subspace. The fourth part of Remark [3.3] allows us to conclude that L is univariate, L
satisfies the positive maximum principle, and L C L3

It is straightforward that L3 - LQ Thanks to Theorem L does not have strict
linear extension satisfying the positive maximum pr1nc1ple We already proved that
L C L3 C Lz, and it can be verified, by using its definition, that L, satisfies the positive
maximum principle. Hence LQ L= L3 U

Remark 4.15. One can ask, as in Remark how can we obtain the generator of a
locally Feller family? A similar statement of first one in the cited remark is Proposition
The second one is straightforward: if g € C(S,R%) and if L is the (Cy x C)-
generator of (P,)q, then gL is the (Cg x C)-generator of (g-P,),, as we can see by using

from Proposition O

Proposition 4.16. Let (Py)s € P(Dyoe(S))° be a Feller family, Lo its (Co x Co)-

generator and L its (Co x C)-generator. Then taking the closure in Co(S) x C(S)
Lo=LnN (C(](S) X C(](S)), and L = f@

Proof. Firstly, we have Ly C L N (Co(S) x Co(S)) by Proposition Hence L N
(Co(S) x Co(S)) is an extension of Lo satisfying the positive maximum principle, so by
a maximality result (a consequence of Hille-Yoshida’s theorem, see for instance Lemma
19.12, p. 377 in [15]), Lo = LN (Co(S) x Co(9)).
Secondly, take (f,g) € L. Let h € C(S,R%) be a bounded function such that hg €
» . ——Co(8)xCo(5)
Co(S). Thanks to Prop051t10nthe (Co x Cp)-generator of (h-Py), is hLg :
Moreover the (Cy x C)-generator of (h-P,), is hL. Hence applying the first step to the
family (b - P,), we deduce that

bL Co(S)XCO(S

C()(S)XC()( )

= (HL) N (Co(S) x Co(S)),

T Co(S)xCS),

so (f,bg) € hLo and (f,g) € H

Theorem 4.17 (Convergence of locally Feller family). For n € NU {oc}, let (P), €
P(Doe(S))° be a locally Feller family and let Ly, be a subset of Co(S) x C(S). Suppose

that for any n € N, L,, is the generator of (Pl')a, suppose also that D(L«) is dense in
Co(S) and
M(Los) =P} yep(sa)-
Then we have equivalence between:
1. the mapping
(NU{oo}) x P(52) = P (Die(S))
(n, 1) > Py

is weakly continuous for the local Skorokhod topology;
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2. for any an,a € S such that a, — a, Py converges weakly for the local Skorokhod
topology to P2°, as n — oo;

a ’
3. for any (f,9) € Lso, there exist (fn,gn) € Ly such that fp Co, Iy on <, g.
n—oo n—oo

Remark 4.18. 1) For Feller processes a convergence theorem of same type could be
deduced by using the previous result and some argument to get tightness for global
Skorokhod topology from tightness for local Skorokhod topology (see also Remark 2.12,
p. 1191 in [10]).

2) An improvement with respect to the classical result of convergence Theorem 19.25,
p. 385, in [15], is that one does not need to know that L, is the generator of the family,
but only the fact that the martingale local problem is well-posed. Let us point out that
it is, in general, not known that L., is a generator. O

Proof of Theorem[{.17. It is straightforward that The implication is a con-
sequence of Proposition [3.5

We prove that We can suppose that L is the generator of (P5°),. It is straight-
forward to obtain that

(N U {OO}) xS% = P (Dloc(s))
(n,a) — P

is weakly continuous for the local Skorokhod topology. Thanks to Proposition [2.1] on
the connection between Do (S) and D(S2), there exists h € C(S,R* ) such that, for any
n € NU{oco} and a € 5,

b - P (Dioc(S) ND(S2)) = 1,

and the mapping
(NU{oc}) x §& = P (D(S2))
(n7 CL) = h : PTaL

is weakly continuous for the global Skorokhod topology. Thanks to Theorem (P,
is a Feller family, for all n € N U {oo}. From Remark and Proposition we
deduce that: hL, N (Co(S) x Cy(S)) is the (Cy x Co)-generator of (P7), for n € N,
hLso N (Co(S) x Co(S)) is the (Cy x Co)-generator of (P°), and

DL N (Co(S) x Co(9) " gL
Take arbitrary elements a,ai,a92... € SA and t,t1,t2... € Ry such that a, — a and
tn — t, then b - Py converges weakly for the global Skorokhod topology to b - Pg°. By
Theorem h - P2° is quasi-continuous, so h - P3°(X;— = X;) = 1. Hence, for any
fe Co(S)
b-Eq, [f(Xe,)] — b-EZF[f(Xy)].
n—oo

From here we can deduce that, for any ¢t > 0

lim supsup |6 - EZ[f(X,)] - b- EX[/(X,)]| = 0.

n—oo Sft acsS

27



Here and elsewhere we denote by E!' the expectation with respect to the probability
measure P!'. Hence by Trotter-Kato’s theorem (cf. Theorem 19.25, p. 385, [15]), for
any (f,9) € hLoo N (Co(S) x Co(S)) there exist (fn,gn) € hLn N (Co(S) x Co(S)) such
that (fy,gn) — (f,9), so it is straightforward to deduce statement O

Remark 4.19. We present here an application of Theorem Let us denote by Y
the discrete time canonical process on (S*)N and we endow (S®)N with the canonical
o-algebra. A family (P,), € P ((SA)N)S is said to be a discrete time locally Feller
family if there exists an operator T': Co(S) — Cy(5), called transition operator, such
that for any a € S: Po(Yp =a) =1 and

VneN, Vf € Co(S), Eo(f(Yar1) | Yo, Yn) = Lpyun)TF(Ya) Pa-as.  (44)

We set, for u € P(S?), P, := [ P,u(da), where P the probability defined by P (Vn €
N, Y,, = A) = 1. The following result can be thought as an improvement of Theorem
19.28, p. 387 in [I5]:
Theorem (Discrete-time approximation) Let L be a subset of Co(S) x C(S) with D(L)
a dense subset of Co(S), such that the martingale local problem associated to L is well-
posed, and let (Pg)q € P(D1oe(S)) be the associated continuous time locally Feller fam-
ily. For eachn € N we introduce (P?), € P((S*)N) a discrete time locally Feller family
having the transition operator T,,. Denote by Ly, the operator (T,, —id)/e,, where (ey)n
18 a sequence of positive constants converging to 0. There is equivalence between,
a) for any pin, i € P(S?) such that p, — pu weakly, Zpﬁn ((YLt/an)t) P(DLC()S))

n—oo

P,

ER

n—oo

b) for any an,a € S such that a, — a, .i”pgn ((YLt/an)t P.;

c) for any f € D(L), there exists a sequence (fn)n € Co(S)N such that f, COT(S;) f,
Lofo <2 Lf.
n—oo

The detailed proof of this result is developed in §3 from [9] and it is based on the applica-
tion of Theorem Furthermore, this theorem is useful to deduce a characterisation
of the convergence towards Lévy-type operators, and also a classical Donsker’s type
theorem which allows to simulate Lévy-type processes (see also [9]). O

4.4 Localisation for martingale problems and generators

We are interested to the localisation procedure. More precisely, assume that U is a
covering of S by open sets and let (PY),csuecy be a doubly indexed probability family,
such that: for each U € U, (PY), is a locally Feller family, and, for all Uy, Us € U and
a€sS

.,%P;h (XTUlmUQ) = XPGUQ (XTUlm{]Q) .
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We wonder if there exists a locally Feller family (P,), such that for all U € i/ and a € S
Lo, (X)) = Loy (X7 ?

An attempt to give an answer to this question needs to reformulate it in terms of gen-
erators of locally Feller families. This reformulation is suggested by the following:

Proposition 4.20. Let Ly, La C Co(S) x C(S) be such that D(L1) = D(Lsa) is dense in
Co(S) and take an open subset U C S. Suppose that

- the martingale local problem associated to L1 is well-posed, and,
- for all a € U there exists P? € M(Ly) with P*(Xo = a) = 1.
Then
VP2 € M(Ly), IP' € M(Ly),  Zp2 (X7 ) = % (X7) (4.5)

if and only if
V(f,9) € La, guv = (L1 f)v-

We postpone the proof of this proposition and we state two results of localisation.

Theorem 4.21 (Localisation for the martingale problem). Let L be a linear subspace
of Co(S) x C(S) with D(L) dense in Co(S). Suppose that for all a € S there exist a
neighbourhood V' of a and a subset L of Co(S) x C(S) such that the martingale local
problem associated to L is well-posed and such that

{(F.av) | (f9) € L} = {(f.v) | (f.9) € L} (4.6)
Then the martingale local problem associated to L is well-posed.

Proof. Thanks to Theorem to prove the existence of a solution for the martingale
local problem it suffices to prove that L satisfies the positive maximum principle. Let
(f,g) € Land a € S besuch that f(a) = max f > 0. Then there exist a neighbourhood V'
of a and a subset L of Cy(S) x C(S) such that the martingale local problem associated
to L is well-posed and . In particular, by Theorem L satisfies the positive
maximum principle and so B
g(a) = Lf(a) <0.

To prove the uniqueness of the solution for the martingale local problem, we take
P!, P2 ¢ M(L) and an arbitrary open subset V & S. By hypothesis and using the

relative compactness of V', there exist N € N, open subsets Uy, ...,Uy C S and subsets
Ly,...,Ly C Co(S) x C(S) such that V' € ,, Uy, such that for all 1 < n < N the
martingale local problem associated to L,, is well-posed and such that

{(F.90) | (Fr9) € L} = {(figu.) | (£.9) € La}.

At this level of the proof we need a technical but important result:
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Lemma 4.22. Let U be an open subset of S and L be a subset of Co(S) x C(S) such that
D(L) is dense in C(S) and the martingale local problem associated to L is well-posed.
Then there exist a subset Lo of L and a function by of C(S,Ry) with {hy # 0} = U such
that L = Ly, such that hoLo C Co(S) x Co(S) and such that: for any b € C(S,R,) with
{h # 0} = U and sup,cy(h/ho)(a) < oo, the martingale problem associated to (hLg)>
is well-posed in D(S?). Recall that (hLo)> is defined by and that the associated
martingale problem is defined by .

We postpone the proof of this lemma to the Appendix (see and we proceed
with the proof of our theorem.

Applying Lemma there exist a subset D of Cy(S) and a function h of C(S,Ry)
with {h # 0} = V such that for all 1 <n < N: L, = Ly |p, hLn |p C Co(S) x Co(S) and
the martingale problem associated to (bLn u))A is well-posed. Denote Lyy1 := D x {0}
and UN*! := §2\V. We may now apply Theorem 6.2 and also Theorem 6.1 pp. 216-217,
in [8] to hL|p and (Un)1<n<n+1 and we deduce that the martingale problem associated
to ([]L|D)A is well-posed. Hence h - P! =h-P? so

v

Lor(XT) = L2 (XT).

We obtain the result by letting V' to grow towards S. This ends the proof of the theorem
except to the proof of Lemma which is postponed to O

Theorem 4.23 (Localisation of generator). Let L be a linear subspace of Cy(S) x C(S5)
with D(L) dense in Co(S). Suppose that for all subsets V. € S there exists a linear

subspace L of Co(S) x C(S) such that L is the generator of a locally Feller family and

{(Fogw) | (Fg) e L} = {(F.o0) | (f.9) € I} .

Then L is the generator of a locally Feller family.

Proof. Thanks to Theorem the martingale local problem associated to L is well-
posed, let (P2°), the locally Feller family associate to L. Let Lo, be the generator of
(Pg%)q. Let U,, € S be an increasing sequence of open subsets such that S = |J,, U, and
let L, C Co(S) x C(S) be such that for all n € N, L,, is the generator of a locally Feller
family (P7), and

Then by using Proposition [£.20] for all n € N and a € S
Lo (X7) = 2y (x77). (4.8)

At this level we use a result of localisation of the continuity stated and proved in
Lemma Therefore, by (4.8) the mapping

(NU{oo}) x S = P(Die(S))
(n,a) = Py
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is weakly continuous for the local Skorokhod topology. Hence by Theorem for any
f € D(Loo) there exists a sequence (f,)n, € D(L)Y such that (f,, Lnfn) — (f, Lo f),
n—oo

so by (4.7) (fn, Lfn) — (f, Loof). Hence L = L is the generator of a locally Feller
n o
family. The proof of the theorem is complete except for the proof of Proposition[d.20] [

Proof of Proposition[4.20. Suppose (4.5). For each a € U, take an open subset V' C U,
P! € M(Ly) and P2 € M(Ly) such that a € V € S and P}(Xy = a) = P?(Xg =a) = 1.
By using the fifth part of Remark we have for each (f,g) € Lo

T 1 2 T 1 1 _
g(a) = lim = (B2 [f(X,prv)] = fla)) = lim 7 (B [f(Xy00)] = f(0) = Lif(a).
For the converse, by Lemma [4.22] there exists h € C(S,Ry) with {f # 0} = U such that
the martingale local problem associated to hL; = hLs is well-posed. Take P? € M(Lo)
and let P! € M(Ly) be such that %p1(Xo) = Zp2(Xo), then h-PL h- P2 € M(hL1) so
h-P! =bh-P? and hence ([4.5) is verified. O

Remark 4.24. We present here an application of Theorem by using symbols.
We say that a function ¢ : R¢ x R — C is bi-continuous and negative definite if
(a,a) — q(a,q) is continuous and, for each a € R?, o — q(a, ) is negative definite.
Then, for f € C2(R?), the formula

—q(a,V)f(a):=— /d ei“'aq(a,a)f(oz)da, where f(a) = (27r)d/d e v f(q)da.
R R
defines a pseudo-differential operator —q(-, V) which maps C*(R?) into C(R?) and it
satisfies the positive maximum principle. The following result can be thought as an
improvement of Theorem 11.2.3, p. 272, in [23]:
Theorem (Well-posedness and localisation under ellipticity) Let ¢ : R x RY — C be a
bi-continuously negative definite function satisfying the following ellipticity condition:

Va €R?, 38,1 >0, Ya e R?,  |q(a,a)| > Blal".

Then the martingale local problem associated to —q(-, V) is well-posed.
Let us sketch the proof of this result. Take ag € R? and £ > 0. Set ¢(a) := g(ap, a) and

q(CL,O&), lf ‘CL—(IO‘ S€/2,
Ge(a, @) := ¢ (2= 2la —aol/e)q(a, @) + (2la — aol/e = 1)¢p(a), ife/2 <la—aol <e,
(o), if e < |a — ag.

Thanks to Theorem [£.23] to get the result it suffices to prove that, for € small enough,
the martingale local problem associated to —gc(+, V) is well-posed. Clearly —1)(V) is the
generator of a positive semi-group on (Co(R?) NL*(R?), | - [loc + || - [|2). We prove that
—q:(+, V) is a small perturbation of —(V), or, more precisely we show that

() 19V f = ¢ V) fllz < (22) 1 (V).f = a=(, V) flloo
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and
(o) (V) f = (5 V) flloo < (2m)2C(e) (¥ (V)" + 1) f|2,

where n is an appropriate integer, C' € (0, 00) is a constant depending on n, 3,7, and

la(a, @) — q(ag, )|
w(e) = sup e

a,0€R?, |a—ap|<e

decreases to 0, as ¢ — 0 . We deduce that —g.(-, V) is the generator of a semi-group on
Co(RY)NL2(R?) hence in particular the generator of a Feller semi-group. The inequality
(%) is a simple consequence of Holder’s inequality. To get (xx) we can write,

@< 55T

Va e R neN*, [o(V)f(a) - q(a,V)f H H Y1) fH

e

Thanks to Plancherel theorem, ||(¢/" + 1)f]l2 = (27)~%2|(1)(V)™ + 1)f||2, and by the
ellipticity hypothesis, since the real part of ¢ is positive,

Pla) - qg(a a) ’ w(e)( +|af?)
Pla)™ + T 1V (Bl —1)

1+ |af?
B |almm —1)

To get (xx) we choose n := | (44d)/2n]+1 and we set C? = / (1 v )Qdo"
Rd

A Appendix: proof of technical results
A.1 Proofs of Proposition and Lemma

Proof of Lemma([3.8 Take a metric p on S and ap € K, then there exists 9 > 0 such
that B(ag,4e9) € S and {(a,b) € S?* | a € K, p(a,b) < 3e9} C U. Define

1, if p(a, ao) < €0,
fla):=< 0, if p(a,ag) > 2¢eq,
2 — M, if g0 < p(a, CLQ) < 250.

€0

Then
feCy(S), 0<f<1, Va€ Blageo), fla)=1 and {f # 0} C B(a,3z).

Take > 0 be arbitrary. There exist (f,g) € L and a sequence (fyn,gn) € Ly, such
that || f — f|| < n and the sequence (fy,gn)n converges to (f,g) for the topology of
Co(S) x C(S). Consider 11 < 79, (Fi4)¢-stopping times and take n € N. Assume that
P € M(L,). For € < 3¢y we denote

= inf {t > 7'1‘13 >&or sup p(X;,Xs) > 5}.

T71<s5<t
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If V € S is an open subset such that V' D B(ag,4ep), if t > 0 and € < 3¢, we can write

E [fn (Xt/\TV/\Og/\TQ )]I{XT1 eB(ao,ao)mIC}}

t/\TV/\UE/\T2
=E [(fn(Xt/\TV/\n) +[ gn(XS)dS)]l{XTI €B(ao,e0)NK}

ATV ATL

> E [f(Xt/\TV/\Tl)]l{XTIEB(ao,Eo)ﬁ}C}] - H]?_ an (Al)

t/\TV/\O'g/\TQ
+E [/ gn(Xs)dS]l{Xfl EB(aO,eo)ﬂK}‘|
t

ATV ATy
> P (X, € Blag,e0) NK) —PEAT <71 <€) —n—|f— fall
—E[(72 — m)1x,, exy) - 19l Bao e0)-
Splitting on the events {o. > 7o}, {o. <t ATV Am}and {t ATV < 0. <}
E [fn(Xt/\Tv/\Ug/\Tg)]l{XnEB(ao,Eo)ﬂlC}]
< P (X7, € Blag,e0) NK, 0c > 1) +n+ | f — fall (A.2)
+E[fu(Xo)Lix, eBlagen)y) T P(Xn €K, t <m2) +n+[If = full

Hence by (A1) and (A-2),
P (X, € B(ag,e0) NK, 7(11) < 72) < P(Xy, € Blag,£0) NK, 0. < 1)
<3n+3f—fall + PEAT <71 <€) +E[(r2 — T1x, ext] - 190l Bapaeo)
+ E[fn(XUE)]l{Xrl GB(ao,So)}] + P(XTl € K? t < TQ)'
Since the limit lim.43., X, exists and it belongs to S*\B(X,,3s0) we have

limsup B[ f(Xo )1 (x,, eBlaneco)}] < IfnllBao,2¢0)e
e13¢e0

< IF = Fall + 15 = U+ 1B 220y < IF = Fall 6,
SO
P (X, € B(ag,e0) NK, 7(11) < m2) <4dn+4|f — fall —i—P(t/\TV <7 <¢)
TE[(r2 — m)1(x, exy] - 90l Bapaey) + P(Xn € K, ¢ < 72).
Letting ¢ — oo and V' growing to S, P(t ATV <1 < §) tends to 0, hence
P(XTl € B(ag,e0) NK, 7(m1) < 7'2)
<dn+4|f = ful + El(r2 — m)1x,, eyl - 19l Bag,4e0) + P (Xr €K, 72 = 00).

So letting n — oo, E[(12 — T1)1(x, exy] — 0 and n — 0, we deduce that for each £ > 0
there exist ng € N and § > 0 such that: for any n > ng, (Fi4+)¢-stopping times 7 < 7o
and P € M(Ly) satistying E[(r2 — 71)1{x, ex}] < 0 we have

P(AXT1 € B(a0,€0) nK, T(Tl) < 7'2) <e.
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We conclude since ag was arbitrary chosen in X and by using a finite recovering of the
compact K. O

Proof of Propositior|3.6,
Step 1: we prove the (Fi+)i-quasi-continuity before the explosion time &. Let 1,,T
be (Fi+)i-stopping times and denote 7, := inf,,>p T, T 1= Sup,,cy 7n and

e { limy, 0o X5,, if the limit exists,
LA, otherwise.

Let d be the metric on S® and take € > 0, ¢t > 0 and an open subset U € S. Since

lim BE[FAtArY —Fontarl] =0,

n—oo
by Lemma applied to K := U and U = {(a,b) € S? | d(a,b) < e} we get

P(X;, ninrv € Uy d(Xz ninrvs Xapgnrv) 2 €) — 0.

n—oo

Hence

P(F<tATY, d( Xz, X7) >e) =P(7, <7 <tATY, d(X5,,X57) > ¢)
< P(Xz,ninrv €U, d( Xz, ninrvs Xipgnst) > €).
Letting n — oo on the both sides of the latter inequality we obtain that
P(F<tATY, d(A Xz)>¢) =0.
Then, successively if ¢ — oo, U growing to S and € — 0 it follows that
P(T <00, {Xs}scz €S, A# Xz) =0.
We deduce

P(X’T'n —++ Xr, T njgo T < 00, {Xs}s<7' G S)

n—oo

=P(A# Xz, m — 7= T < o0, {Xs}ser €S5) =0. (A.3)
Step 2: we prove that P (Dec(S) N ]D)(SA)) = 1. Let K be a compact subset of S and

take an open subset U € S containing K. For n € N define the stopping times

[ 07
Ty, = inf {t > 0op ’ {Xs}anSSSt & S\K}’
Ont1 :=1nf {t > 7, | {Xs}r<s<t €U}

Let Vi € S\K be an increasing sequence of open subset such that S\K = (J, Vi, and
denote 7% := inf {t > 0, | {Xs}o,<s<t & Vi}. Then, by (A23)

P(Xx 5 X,y 7 < 00, {Xohoar, €5) =0,

n
k—o0
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so {m, < &} = {X,, € K} P-almost surely. Thanks to Lemma applied to K := K
and U :=U? U ((S\K) x (S\K))

supP(XTn e K, opt1 <Tn +€) — 0.
neN e—0

For € > 0,

P({ <00, {X}sce @ Sand Vi <, 3s € [1,€), Xs € K)
gP(Hn,szn, Tim <§<Tm+€) < supP(Tn <£<Tn—|—5)
neN

< supP(XTn €K, opi1 <7y +€)7
neN

so letting ¢ — 0 we obtain
P(f <00, {Xs}scg @ Sand Vt <, 3s € [t,§), X, € K) =0. (A.4)

Letting K growing towards S, we deduce from (A-4)) that P (Dio(S) ND(S2)) = 1.
Step 3. Let 7,, T be (Fit)-stopping times. By the first step X,, — X, P-a.s. on
n—oo

{Tn n:zo T < 00, {Xs}s<7' S S}a

by the second step this is also the case on
{’Tn — T =€ <00, {Xs}ser & S},
n—oo

and this is clearly true on {Tn — T >¢£ }, so the proof is done. O
n—oo

A.2 Proofs of auxiliary results used to define locally Feller families

We provide here proofs of Lemmas and4.8] the statement and the proof of Lemma
[A73] but also the proof of Proposition 2.2} all used during the proof of Theorem [£.5]

Proof of Lemmal[{.7] Let 7 be a (Fit);-stopping time, let a € S be and let F' be a
bounded continuous function from Dy,.(S) to R. For each n € N* chose a discrete
subspace T? C T, such that (¢, +n~]NT? is not empty for any ¢ € R* , and define

T i=min{t € T} | 7 < t}.
Hence 7, is a (F;)¢-stopping time with value in T} , so
E.[F (Xr,1¢)t) | Fr,]) = Ex, F Ps-almost surely.

Since 7 < 7, < 7+n "' on {7 < oo} and a + P, is continuous, lim, Ex, F=ExF.
We have

E, |Ea [F((XT-I-t)t) | -7:7-&-] - E, [F((XTn+t)t) | ]:Tn”
< E, |Ea [F ((Xr-i-t)t) | -’TT-&-] —E, [F ((XT-i-t)t) ‘ }—Tn” (A‘5)
T Eo[F (X710)e) = F (X7 10)0)] -
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On the right hand side, the first term converges to 0 (see, for instance, Theorem 7.23,
p. 132 in [15]) and the second term converges to 0 by dominated convergence. Hence

E.[F (Xr44)t) | Fr4] = Ex.F  Pg-almost surely,

50 (Pg)q is a (Fiy )e-strong Markov family. O

Lemma A.1 (Localisation of continuity). Set S an arbitrary metrisable topological
space, consider U, C S, an increasing sequence of open subsets such that S = J,, U,.

Let (P)an € P(DZOC(S))§XN be such that
1. for each n € N, a — PV is weakly continuous for the local Skorokhod topology,

2. foreachngmcmdaegY

Loy (XT7) = Loy (X7 (A.6)

Then there exists a unique family (P3°), € P(DIOC(S))g such that for any n € N and
acS

Lo (XT) = Loy (X7). (A7)
Furthermore the mapping

(NU{oo}) xS = P(Diel(S))

(n,a) > P (A8)

is weakly continuous for the local Skorokhod topology.

Before giving the proof of this lemma let us recall that in Theorem 2.11, p. 1190,
in [10], one obtains an improvement of the Aldous criterion of tightness stated in (2.5)).
More precisely a subset P C P (Dyoc(5)) is tight if and only if

Vt >0, Ve >0, YVopen U €S, sup sup P(R>¢) — 0, (A.9)
PcP ni<m<ms 6—=0
3 (T1+8)AtATY

where the supremum is taken along 7; stopping times and with

d(Xr, X)) Nd( X4y, Xry) 0 <1 <,
R = d(Xq—Qf,Xm)/\d(XTQ,XTS) if0<7’1 = To,
d( X, Xr,) if 71 = 0.

Proof of Lemma[A.1l The uniqueness is straightforward using that X Ton converge to X
pointwise for the local Skorokhod topology as n — oco.

Let us prove that for any compact subset K C S, the set {P}/ | a € K, n € N} is
tight. If U € S is an arbitrary open subset, there exists N € N such that U C Uy.

36



Consider ¢ and € two strictly positive real numbers. By the continuity of a — P7, the
set {P? | a € K, 0 <n < N} is tight, so using the characterisation (A.9) we have

sup sup P)(R>¢) — 0.
0<n<N  1i<m<m3 50
a€K < (ri+8)Atarl

Since U C Uy, forallm > N and a € K,

Loy (X7) = Loy (X)),

hence
sup sup P} (R>¢)= sup sup P)(R>¢) — 0.
neN, aeK T1<12<T3 0<n<N 71 <19<T3 0—0
T3< (1 +8)AATY a€K  m3<(r+6)AATY

So, again by (A.9), {P? | a € K, n € N} is tight.

Hence, if a € S, then the set {P"}, is tight. Fix such a, there exist an increasing
sequence ¢(k) and a probability measure P° € P(Djo.(S)) such that ps) converges
to Po° as k — oo. Fix an arbitrary n € N, there exists kg € N such that ¢(kg) > n
and U, € Ug(y,). Thanks to Proposition there exists g € C(S,R;) such that

Up(ko) = {g # 0} and such that g-P7* converges to g-P5° weakly for the local Skorokhod

topology, as k — co. By using (A.6) we have, for each k > ko, g - Pf(k) =g- Pf(ko), SO
g-P>*=g- P?*) Hence we deduce

Lop (X77) = L) (X77) = Loy (X77).

Let us prove that the mapping in (A.8]) is weakly continuous for the local Skorokhod
topology. Since we already verified the tightness it suffices to prove that: for any se-
quences ng € NU {oo}, a; € S such that ny — oo and ap — a € S as k — oo and
such that the sequence Py* converges to P € P(Dioc(S)), then P = Pg°. Fix an arbi-
trary N € N, there exists kg € N such that ny, > N and Uy & Uny, - As previously,
by using Proposition again, tl;ere exists g € C(9, ]lij) such that Uy, = {g # 0},
g- Pg* converges to g- P and g- P,.° converges to g-P,", as k — co. Thanks to (A.7)
g- Pt =g Py for k> ko, s0 g- P =g-Pg" =g-P. This yields

Lo (X)) = Lo (X7,
and letting N — oo we obtain that P = Py°. O

Proof of Lemma[{.8 Using Proposition there exists g € C(S,R%) such that for all
(n,a) € (NU{oo}) x S&, P(Dioc(S) ND(S?)) = 1 and such that (n,a) — P is weakly
continuous for the global Skorokhod topology from D(S?). For all n € N, by Lemma
(P?)a is (Fis)s-strong Markov, so, by Proposition (g-P)g is (Fiq)-strong
Markov.
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Take a € S and denote T, := {t eRy |g-P20(Xt_ =X = 1}, so T, is dense in Ry.
Let t € T, be and consider F, G two bounded function from D(S?) to R continuous for
the global Skorokhod topology, we want to prove that

9 B [F ((Xt45)s) G (Xens)s)] = 9 - EZ° [9 EX [F]G ((Xins)s) } (A.10)
For any n € N, by the Markov property we have
8- B2 [F ((X11,)s) G (Xins)s) | = 8- Bl g EX,[FIG (Xin)s) |- (A11)

The mappings

D(S2) — R and D(S2) — R
r = F((Ti4s)s) G (ins)s) z g EF[FIG (zins)s)
are continuous on the set {X;— = X;} for the global topology. Hence, since g - EV
converges to g - E2° weakly for the global topology and g - P°(X;— = X;) = 1, we have
8- EL|F((X00)0) G (Xino)s) | = 0 BZ[F(Xiss)s) G (Xins)s) |, (A12)
0B [0 BRIFIG (Xin)s) | — 0B [0 BRIFIG (Xens)s) | (A.13)

Since (n,b) — g - P} is continuous for the global topology, using the compactness of S A
we have

sup |g-ElF —g-E°F| — 0. (A.14)

aesSA n—oo
We deduce (A.10) from (A.11))-(A.14) and so
9-EX[F((Xtts)s) | Fi] = 9-EX[F], g-Pg-almost surely,

so, by Lemma (g - P°), is (Fig)e-strong Markov. Applying Proposition to
(g-P2°), and 1/g, and using (2.4), we deduce that (Pg°), is (Fi4)i-strong Markov. [

To be complete, we finally provide the

Proof of Proposition[2.3. Let us first verify that if (P,), is a (F;);-strong Markov fam-
ily, then (g-Pg), is a (F;)¢-Markov family, for any g € C7°(S, R, ), where

C79(S,R;):={g: S — Ry | {g =0} is closed and g is continuous on {g # 0}}.

Recall that by (2.3) (g-X): = X0, where t — 7} is the solution of 7} = Q(Xrtﬂ) (see also

Remark 3.2, p. 1195, in [10]). Then clearly (g- X); € F.s and {(g-X); # X_rtg} € Fra.
Moreover it is straightforward to prove that

(9-X): # X.o implies that g((g-X);) =0, and (g- Xi4e)s is constant,
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and
(g-X) = X,s implies that (g Xite)s = (g~ XTthr.)s.

Assume that (Pg).cs is a (F;)¢-strong Markov family. Using the latter remarks, for any
t €Ry, a € S® and B € F, we can write, Pg-a.s.,

Py ((9-Xive)s € B | Fro) =Pu((9- Xrpa)s € B, g- Xo = X

Fre)
+ P, ((g “Xite)s €B, g- Xy # XTtg

=P, (5- (Xrsa)s € B ) Fre) Lgxi=x,g} + Pa ((6-X0)s € B | Fro) Lo XX 5}
=Px,(9- X €B) =g -Pyx.(B).

Frs)

Hence (g - Pgy)aes is a (F¢)-Markov family.
If (Pg), is a (Fy+ )e-strong Markov family, then for any (]-'(Ttg)+)t—stopping time o,

{re<ty= |J{o<q ¥<t}er,
q€Q4

so 75 is a (Fu+ )¢-stopping time. Using the same argument as before we obtain that

(9-Pu)a is a (Fy+)i-strong Markov family. O

A.3 Proof of Lemma [4.22]

Before proving the Lemma let us note that thanks to Propositions and
if (Po)a € P(Dioe(S))? is locally Feller then for any open subset U C S there exists
ho € C(S,Ry) such that U = {hg # 0} and (ho - Py), is locally Feller. This fact does not
ensure that the martingale local problem associated to hoL is well-posed as is stated in
Lemma [£:22] During the proof we will use two preliminary results.

Lemma A.2. Let L be a subset of Co(S) x C(S) such that D(L) is dense in Cqy(S5)
and U be an open subset of S, then there exist a subset Lo of L and a function by of
C(S,Ry) with {ho # 0} = U such that L = Ly, such that hoLy C Co(S) x Co(S) and
such that: for any b € C(S,Ry) with { # 0} = U and sup,e;(h/ho)(a) < oo and any
P e M. ((hLo)?), P(X =X7") =1.

Proof. Take Ly a countable dense subset of L and let d be a metric on S®. For any
n € N* there exist M,, € N and (@, m)1<m<nr, € (S2\U)M» such that

My,
SA\U ¢ U B(anm,n ).

m=1

For each 1 < m < M, there exist (fnm,gnm) € Lo such that

1—n"Y14+n7Y ifd(a,anm) >2n""t,
fam(a) € [-n~H1+n7 if n7t <d(a,anm) > 2n"1,
[-n~1,n1] if n=! < d(a,anm)-
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Take ho € Co(S,Ry) with {ho # 0} = U, such that hog € Cy(S) for any (f,g) € Lo and
such that for any n € N* and 1 < m < M,

1
‘|h0HB(an7m,4n*1) Hgn,mH < -

3

Hence L = Lo and hLy C Co(S)xCo(S). Let h € C(S,R) be such that {h # 0} = U and
C = sup,ep(h/ho)(a) < co. Let P € M, ((hL)>) be such that there exists a € S\U
with P(Xo = a) = 1. We will prove that

P(Vs >0, X, =a) =L (A.15)
Take t € Ry and n € N. There exists m < M,, such that d(a, anm) < % If we denote

—1
P 7_B((JL,?m )’

then

Blfun (X)) = foan(@) + B [ 00C) g0 (X105

1+tC

< (@) + 810 50ty lmm | <

Since P(T < oo =d(Xsa)> §) =1, by (3.6]) in the proof of Proposition we have

n

E[fn,m(Xt/\T)] = E[fn,m<XT>]l{‘r§t}] + E[fn,m(Xt)]l{Kfﬂ

1 1 1
>(1—= <t)— = — <t)— =
>(1-P(r<t)— Plt<n)=P(r<t)—,

>0 2+ tC

P(r<i) <"

n

Hence we obtain

2
P(Vs € [0,4], d(X,,a) <3/n) >P(t<7)>1— tltc,

By taking the limit with respect to n and ¢ we obtain (A.15).
To complete the proof let us consider an arbitrary P € M, ((hLO)A). As in Remark
[B.12] we denote

-a.s.

P
QX = gp ((XTU+t)tZO | ‘FTU) .
Thanks to Proposition P-almost surely Qx € M ((bL)A), and thanks to from
Proposition P-almost surely Qx(Xo = a) = 1 with a = X, € S8\U on {7V < c}.
By using the previous case and by applying (A.15]) we get that P-almost surely Qx (Vs >
0,Xs=a) =1, with a = X, € SA\U on {7V < oc}. Hence P(X = X7 ) = 1. O

Lemma A.3. Let L be a subset of Co(S) x Co(S) such that the martingale problem
associated to L is well-posed. Then the martingale problem associated to L™ is well-posed
if and only if P(X = X7 ) =1 for all P € Mc(L®) (in other words P € P(Dpe(S))) -
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Proof. Assume that the martingale problem associated to L® is well-posed and take
P € M. (L?). Then .,Sfp(XTS) € M(L?), so by uniqueness of the solution P =
Zp(X™°) and so P(X = X™°) = 1. For the converse, let P!, P2 € M(L?) be such
that Zp1(Xo) = Lp2(Xo). Then PL P2 € P(Dyy(S)) so PL, P2 € M(L), hence P! =
P2, O

Proof of Lemma[{.23. Let Ly and by be as in Lemma and take h € C(S,Ry) with
{h # 0} = U and sup,cr;(h/ho)(a) < co. The existence of a solution for the martingale
problem associated to (hLg)*> is given by the existence of a solution for the martingale
problem associated to L. Let P!, P2 € M.((hLo)?) be such that .Zp:1(Xo) = Lp2(Xo).
Thanks to Lemma and Lemma for an open subset V' & U, there exist g €
C(S,R%) and a dense subset L; of Lo such that g(a) = h(a) for any a € V, €L, C
Co(S) x Co(S) and the martingale problem associated to (gL1)? is well-posed. Hence
we may apply Theorem 6.1 p. 216 from [§] and deduce that Zpl(XTv) = Yp2 (XTV).
Letting V' growing towards U we deduce that fpl(XTU) = XPQ(XTU) and so, since
Pi(X = X7 ) =1for i € {1,2}, we conclude that P! = P2, O
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