Open problems on Numerical range and functional calculus

Michel CROUZEIX

October 2006

Abstract

Functional calculus based on the numerical range is an almost uncharted field of research, with plenty of open questions. In this paper we propose a list of such problems.

1 Introduction.

In this paper we are concerned with the functional calculus based on the numerical range. The main result on this subject is (cf. [4]):

There exists a best constant \mathcal{Q} such that

$$\|p(A)\| \le \mathcal{Q} \sup_{z \in W(A)} |p(z)|,\tag{1}$$

• for all polynomial functions $p : \mathbb{C} \to \mathbb{C}$,

• for all square matrices $A \in \mathbb{C}^{d,d}$, for all values of d.

Furthermore we have the estimate $2 \leq Q \leq 11.08$.

Let us precise our notation. The set $W(A) := \{v^*Av; v \in \mathbb{C}^d, \|v\|^2 = v^*v = 1\}$ is the numerical range of $A \in \mathbb{C}^{d,d}$, $\|v\| = (v^*v)^{1/2}$ is the usual Euclidean norm of the column vector $v, \|M\| := \sup\{\|Mv\|; v \in \mathbb{C}^n, \|v\| = 1\}$ is the operator norm of the matrix $M \in \mathbb{C}^{m,n}$.

It is remarkable that the inequality (1) admits a completely bounded version. More precisely: There exists a best constant Q_{cb} such that

$$||P(A)|| \le \mathcal{Q}_{cb} \sup_{z \in W(A)} ||P(z)||,$$
(2)

- for all polynomial functions $P : \mathbb{C} \to \mathbb{C}^{m,n}$, for all values of m and n,
- for all square matrices $A \in \mathbb{C}^{d,d}$, for all values of d.
- Furthermore we have the estimates $2 \leq Q \leq Q_{cb} \leq 11.08$.

Here P is matrix-valued $P(z) = (p_{ij}(z))$, with each entry $p_{ij} \in \mathbb{C}[z]$ being a polynomial; the matrix $P(A) \in \mathbb{C}^{md,nd}$ is constituted of $m \times n$ blocks of size $d \times d$, the (i, j)-th block being $p_{ij}(A)$.

Note that, in the case of a normal matrix A, we have better estimates $||p(A)|| \leq \sup_{z \in \sigma(A)} |p(z)|$ and $||P(A)|| \leq \sup_{z \in \sigma(A)} ||P(z)||$, where $\sigma(A)$ denotes the spectrum of A (and it is well known that $\sigma(A) \subset W(A)$). The interest of (1) is to provide estimates for non-normal matrices.

The surprising thing is that these constants \mathcal{Q} and \mathcal{Q}_{cb} are universal. There is no dependence on the matrix A, on its size, on the degree of polynomials used, nor on m and n for \mathcal{Q}_{cb} . This universality allows us to extend the inequalities to any bounded linear operator $A \in \mathcal{L}(H)$ on a complex Hilbert space H (and even to unbounded operators), and also to any continuous function p (resp. P) on $\overline{W(A)}$ which is holomorphic in the interior of the numerical range. We refer to [4] for these extensions and for some applications.

Some open problems. A challenging question is to obtain the exact values of Q and Q_{cb} , or at least to essentially improve the upper bound 11.08. Our proof of this estimate is quite involved and clearly not optimal. We conjecture that $Q = Q_{cb} = 2$. Two sub-problems are the following: is Q = 2? and is $Q = Q_{cb}$?

In case of a positive answer to the second question, it will be interesting to understand what the difference is in our situation with respect to the context of the Halmos conjecture: *polynomially bounded implies completely bounded* (which is now known to be false [11]).

We are afraid that our conjecture is a too difficult problem. In order to formulate easier questions to consider we introduce the constants

$$\mathcal{Q}(d) := \sup_{A,p} \{ \|p(A)\| ; A \in \mathbb{C}^{d,d}, p : \mathbb{C} \to \mathbb{C} \text{ polynomial}, \ |p(z)| \le 1 \text{ in } W(A) \},$$
$$\mathcal{Q}_{cb}(d) := \sup_{A,P,m,n} \{ \|P(A)\| ; A \in \mathbb{C}^{d,d}, P : \mathbb{C} \to \mathbb{C}^{m,n} \text{ polynomial}, \ \|P(z)\| \le 1 \text{ in } W(A) \}.$$

It is easily verified that these constants increase with d; furthermore $\mathcal{Q} = \sup_d \mathcal{Q}(d)$ and $\mathcal{Q}_{cb} = \sup_d \mathcal{Q}_{cb}(d)$. We have succeeded to show [1] that $\mathcal{Q}(2) = \mathcal{Q}_{cb}(2) = 2$, but failed with the questions $\mathcal{Q}(3) = \mathcal{Q}_{cb}(3)$ and $\mathcal{Q}(3) = 2$; a fortiori the analogue questions are open for d > 3. (The numerical experiments seem to confirm that $\mathcal{Q}(3) = 2$).

More generally it would be interesting to find a proof really different of our for the estimate $Q \leq 11.08$.

What are the corresponding constants if we restrict our matrices A to be real, $A \in \mathbb{R}^{d,d}$? Same question with Toeplitz or Hankel type matrices ?

Same question with nilpotent matrices ? (the answer is 2 for matrices such that $A^2 = 0$). Does there exist some extension of our inequalities to two commuting matrices ?

2 Problems related to a matrix

Let $A \in \mathbb{C}^{d,d}$ be a square matrix and Ω be a bounded convex domain of the complex plane such that $\overline{\Omega} \supset \sigma(A)$ (spectrum of A). We introduce the quantities

$$\begin{split} \psi_{\Omega}(A) &:= \sup_{p} \{ \| p(A) \| \, ; p \, : \mathbb{C} \to \mathbb{C} \text{ polynomial}, \ |p(z)| \leq 1 \text{ in } \Omega \}, \\ \psi_{cb,\Omega}(A) &:= \sup_{P,m,n} \{ \| P(A) \| \, ; P \, : \mathbb{C} \to \mathbb{C}^{m,n} \text{ polynomial}, \ \| P(z) \| \leq 1 \text{ in } \Omega \}, \\ \psi(A) &:= \sup_{p} \{ \| p(A) \| \, ; p \, : \mathbb{C} \to \mathbb{C} \text{ polynomial}, \ |p(z)| \leq 1 \text{ in } W(A) \}, \\ \psi_{cb}(A) &:= \sup_{P,m,n} \{ \| P(A) \| \, ; P \, : \mathbb{C} \to \mathbb{C}^{m,n} \text{ polynomial}, \ \| P(z) \| \leq 1 \text{ in } W(A) \}. \end{split}$$

Note that these functions are constant on the orbit

 $Ob(A):=\{U^*AU\,; U\in \mathbb{C}^{d,d}, U^*U=I\}.$

Clearly the functions $\psi_{\Omega}(A)$ and $\psi_{cb,\Omega}(A)$ are decreasing with respect to Ω (for the embedding order), and

$$\psi(A) = \sup_{\Omega} \{ \psi_{\Omega}(A) \, ; \Omega \supset W(A) \}, \quad \psi_{cb}(A) = \sup_{\Omega} \{ \psi_{cb,\Omega}(A) \, ; \Omega \supset W(A) \}.$$

Furthermore, according to [13], the values of $\psi_{cb,\Omega}(A)$ nor of $\psi_{cb}(A)$ do not change if in the corresponding definition we restrict the values of m and n to be m = n = d.

We have

 $\mathcal{Q}(d) = \max\{\psi(A); A \in \mathbb{C}^{d,d}\}, \quad \mathcal{Q}_{cb}(d) = \max\{\psi_{cb}(A); A \in \mathbb{C}^{d,d}\}.$

This is clearly true if we replace *max* by *sup*, but it is not difficult to see that the bounds are effectively attained.

Remark. The presented definitions are still valid if A is a bounded operator on a Hilbert space. Gilles Pisier has shown [11] that the Halmos conjecture: " $\psi_D(A) < +\infty$ implies $\psi_{cb,D}(A) < +\infty$ ", where D denotes the unit disk, is false. Consequently the relation $\psi_{\Omega}(A) = \psi_{cb,\Omega}(A)$ cannot be true for all matrices. However the problem $\psi(A) = \psi_{cb}(A)$ is, to our knowledge, open.

The use of a conformal map a from Ω onto the unit disk D allows us to restrict our studies to the case of the unit disk. Indeed, we then have (cf. for instance [3]) $\psi_{\Omega}(A) = \psi_{D}(a(A))$ and $\psi_{cb,\Omega}(A) = \psi_{cb,D}(a(A))$; furthermore if the eigenvalues of a matrix B are in the interior of the unit disk, then $\psi_{D}(B)$ is attained by a Blaschke product with at most d-1 terms. More precisely we have

$$\psi_D(B) := \sup_{\zeta_j} \{ \|g(B)\| ; g(z) = \prod_{j=1}^r \frac{z - \zeta_j}{1 - \overline{\zeta_j} z}, \ \zeta_1, \dots, \zeta_r \in D, \ r \le q - 1 \}.$$

For the completely bounded analogue quantity, a Paulsen theorem [9] provides the characterisation

$$\psi_{cb,D}(B) := \min_{S} \{ \|S\| \, \|S^{-1}\| \, ; S \in \mathbb{C}^{d,d}, \|S^{-1}BS\| \le 1 \}.$$

If the numerical range of A is a disk, it is known [1] that $\psi(A) \leq \psi_{cb}(A) \leq 2$ (this is in particular the case if $A^2 = 0$).

If A is a 2×2 matrix then [1] $\psi(A) = \psi_{cb}(A) \leq 2$; furthermore $\psi(A) = 2$ implies that W(A) is a disk. More generally, if A is a quadratic matrix (of any size), then $\psi(A) = \psi_{cb}(A) \leq 2$, and $\psi(A) = 2$ implies that W(A) is a disk. Indeed, using [14] Theorem 1.1, A is then unitarily similar to a direct sum of 1×1 and 2×2 matrices.

Some open problems. Find an efficient method for the computation of $\psi_D(B)$. For 2×2 matrices there exists an explicit formula, but even for 3×3 matrices, we have only succeeded to use optimisation algorithms, without guarantee of convergence towards the global maximum.

Similarly we do not know a reliable algorithm for computing the matrix S in the Paulsen characterisation of $\psi_{cb,D}(B)$. To my knowledge there is no constructive proof of the corresponding theorem.

Do we have $\psi(A) \leq \psi_{cb}(A) \leq 2$, if $A^3 = 0$?

Do we have $\psi(A) \leq \psi_{cb}(A) \leq \mathcal{Q}(3)$, if A is a cubic matrix ?

Is the map $A \mapsto \psi(A)$ continuous, if we assume $A \neq \lambda I$? It is easy to verify that this map is lower semicontinuous, and continuous if all the eigenvalues of A are in the interior of the numerical range W(A) (then it suffices to use the Cauchy formula on the boundary). It is not continuous if the matrix A tends to λI ; indeed

$$\psi \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = 1 \text{ and } \psi \begin{pmatrix} \lambda & \varepsilon \\ 0 & \lambda \end{pmatrix} = 2.$$

A fortiori the same question is open for $\psi_{cb}(\cdot)$

We define

$$\psi_{D,k}(B) := \sup_{p} \{ \|p(B)\| ; p : \mathbb{C} \to \mathbb{C}, \ |p(z)| \le 1 \text{ in } D, \text{ with at most } k \text{ zeros in } D \}.$$

where p denotes a generic holomorphic function in D. Is this bound $\psi_{D,k}(B)$ (with $k \ge 1$) attained by a Blaschke product p with at most k factors ?

3 Constants related to a convex domain

Let $\Omega \neq \mathbb{C}$ be a (non-empty) convex domain in the complex plane, not necessarily bounded. We define the constants

$$C(\Omega, d) := \sup_{A, r} \{ \| r(A) \|; A \in \mathbb{C}^{d, d}, \ W(A) \subset \Omega, \ r : \mathbb{C} \to \mathbb{C}, \ |r(z)| \le 1, \forall z \in \Omega \},$$

 $C_{cb}(\Omega,d) := \sup_{A,R,m,n} \{ \|R(A)\|; A \in \mathbb{C}^{d,d}, \ W(A) \subset \Omega, \ R : \mathbb{C} \to \mathbb{C}^{m,n}, \ \|R(z)\| \le 1, \forall z \in \Omega \}.$

$$C(\Omega) := \sup_{d} C(\Omega, d), \qquad C_{cb}(\Omega) := \sup_{d} C_{cb}(\Omega, d)$$

In these definitions, r and R denote rational functions. (This choice has been made for treating together the bounded and unbounded domain cases, but for a bounded Ω it would have sufficed to only consider polynomials r and R without change of the values. Similarly, the condition $W(A) \subset \Omega$ could be replaced by $W(A) \subset \overline{\Omega}$).

We have

$$\mathcal{Q}(d) = \sup_{\Omega} C(\Omega, d), \quad \mathcal{Q} = \sup_{\Omega} C(\Omega), \quad \mathcal{Q}_{cb}(d) = \sup_{\Omega} C_{cb}(\Omega, d), \quad \mathcal{Q}_{cb} = \sup_{\Omega} C_{cb}(\Omega)$$

Remarks.

1) The previous constants depend only on d and on the shape of Ω . More precisely, if φ is a similarity: $\varphi(z) = a + b z$, or an anti-similarity: $\varphi(z) = a + b \overline{z}$, $a, b \in \mathbb{C}$, $b \neq 0$, we have $C(\Omega) = C(\varphi(\Omega)), \ldots, C_{cb}(\Omega, d) = C_{cb}(\varphi(\Omega), d)).$

2) A classical result of J. von Neumann [12] asserts that $C(\Omega) = 1$, if Ω is a half-plane; as soon as the notion of "completely bounded" has appeared, it has been remarked that in this case we also have $C_{cb}(\Omega) = 1$.

3) Obviously $C(\Omega) \leq C_{cb}(\Omega)$ and $C(\Omega, d) \leq C_{cb}(\Omega, d)$. Furthermore, the last two constants are increasing (perhaps not strictly) functions of d.

Except of the old half-plane inequality, the first result on this subject is quite recent. In the nice paper [7] an estimate $C(\Omega) < +\infty$ is given for any bounded convex domain Ω ; in [1] we have shown that this result is still valid in completely bounded form, and improved the estimate to

$$C_{cb}(\Omega) \le 2 + \pi + \inf_{\omega \in \partial \Omega} \operatorname{TV}(\log |\sigma - \omega|);$$

here $\operatorname{TV}(\log |\sigma - \omega|)$ is the total variation of $\log(|\sigma - \omega|)$ as σ runs on $\partial\Omega$. (A slightly better estimate can be deduced from Lemma 9 in [4]).

A similar approach provides the inequality

$$C_{cb}(\Omega) \le 1 + \frac{2}{\pi} \int_{\alpha}^{\pi/2} \frac{\pi - x + \sin x}{\sin x} \, dx,$$

if Ω contains a sector with angle 2α , $0 < \alpha \leq \frac{\pi}{2}$. For a sector $\Omega = S_{\alpha}$ (with angle $2\alpha \leq \pi$) we have obtained the more precise estimates [5], [1], [2],

$$\frac{\pi \sin \alpha}{2\alpha} \le C(S_{\alpha}) \le C_{cb}(S_{\alpha}) \le \frac{\pi - \alpha}{\pi} \Big(2 - \frac{2}{\pi} \log \tan \left(\frac{\alpha \pi}{4(\pi - \alpha)} \right) \Big), \quad \text{for} \quad \alpha \in (0, \pi/2],$$

and

$$C(S_{\alpha}) \le C_{cb}(S_{\alpha}) \le 2 - \frac{2\alpha}{\pi} + \frac{2\cos\alpha}{\pi\sqrt{1 + 2\cos2\alpha}} \arccos\left(\frac{\cos(\pi - 2\alpha)}{\cos\alpha}\right), \quad \text{for} \quad \alpha \in [0, \pi/3].$$

The second bound is better than the first if $\alpha \leq .22 \pi$ and is still valid if we replace the sector S_{α} by (a domain limited by) a branch of hyperbola of angle 2α . In [2] we derive the bound $C_{cb}(\mathcal{E}) \leq 2 + 2/\sqrt{4-e^2}$ for an ellipse \mathcal{E} of eccentricity e and $C_{cb}(\mathcal{P}) \leq 2+2/\sqrt{3}$ for a parabola \mathcal{P} . The estimate $C_{cb}(S_0) \leq 2+2/\sqrt{3}$ is also known for a strip, S_0 [5].

The only exact values known are for the half-plane case $C(\Pi) = C_{cb}(\Pi) = 1$ and for the disk case $C(D) = C_{cb}(D) = 2$, see [1]. The other bounds, and in particular the general bound $C_{cb}(\Omega) \leq 11.08$, are very pessimistic.

Open problems.

• Is it true that $C(\Omega, d) = C_{cb}(\Omega, d)$ for any convex domain Ω ?

(It is known from [10] that $C(\Omega, 2) = C_{cb}(\Omega, 2)$.)

- Is it true that $C_{cb}(S_0) \leq 2$? (We especially mention this case, since then the constraint $W(A) \subset S_0$ is quite simple.)
- Is it possible to estimate $C_{cb}(S_{\alpha})$ from the knowledge of $C_{cb}(S_0)$ and of $C_{cb}(S_{\pi/2}) = 1$? (By some interpolation trick à la Marcel Riesz.)
- Does the condition $C(\Omega, d) = 2$ imply Ω is a disk ? (This is the case if d = 2, see [3].)
- Is $C(\Omega)$ (resp. $C(\Omega, d)$) a continuous function of Ω (for instance with respect to the Hausdorff distance)? (The lower semi-continuity is easily seen.) At least, is $C(\Omega)$ converging to 2 as Ω tends to the unit disk?
- Is $\mathcal{Q} = \sup_{\Omega} C(\Omega)$ (resp. $\mathcal{Q}_{cb} = \sup_{\Omega} C_{cb}(\Omega)$) attained by some domain Ω ? (This is the case for $\mathcal{Q}(d)$ and $\mathcal{Q}_{cb}(d)$). Is it attained by a domain Ω which is symmetric with respect to the real axis ?
- Is $C(\Omega, d)$ (resp. $\sup_{\Omega} C_{cb}(\Omega, d)$) attained by some matrix A? (This is the case for $C(\Omega, d)$, if Ω is bounded with an analytic boundary [3], and then attained by a Blaschke product r.)
- In the case where the boundary of Ω is a branch of hyperbola with angle 2α , is the equality $C(\Omega, d) = C(S_{\alpha}, d)$ valid ?
- In the case where Ω is symmetric with respect to the real axis, does the value of $C(\Omega, d)$ (resp. $C_{cb}(\Omega, d)$) change, if in the definition we restrict the matrices A to have real entries? More generally is it possible to deduce some properties for some matrices A which realise $C(\Omega, d)$ from the symmetries of Ω ?

- Find a numerical method for the computation of $C(\Omega, d)$, Ω given, d = 2, 3, ...
- (I have only (partially) succeeded to do this for the strip S_0 and $d \leq 8$; it is known that $C(S_0, 2) = 1.5876598...$ and from my numerical experiments I have obtained the values $C(S_0, 4) = 1.6723401..., C(S_0, 6) = 1.72662..., C(S_0, 8) = 1.764577...,$ but I cannot be sure that my optimisation algorithm has not converge to a local maximum.)
- My numerical experiments suggest that for the quarter plane $S_{\pi/4}$ we have $C(S_{\pi/4}, 4) = \sqrt{2}$. Is this true and is it true for all d?

4 Some personal comments on the numerical range

We refer to [8] for a general exposure on the numerical range. This section is only devoted to few remarks.

The numerical range of a matrix is a compact and convex subset of the complex plane. Except in the 2×2 case (where it is an ellipse), its boundary is quite involved. From the convexity we know that it is the intersection of all tangent half-planes which contain it. More precisely, if we write $A = B + i C \in \mathbb{C}^{d,d}$, with B and C self-adjoint, if we set $P_A(u, v, w) := \det(uB + vC + wI)$, and if we denote by $w_m(u, v)$ the largest root of $P_A(u, v, .) = 0$ (all the roots are real since B and C are self-adjoint), then

 $W(A) = \{ z = x + iy ; \ x \cos \alpha + y \sin \alpha + w_m(\cos \alpha, \sin \alpha) \le 0, \text{ for all } \alpha \in [0, 2\pi] \}.$

This provides an (exterior) approximation of W(A) by computing a finite number of values of $w_m(\cdot, \cdot)$.

The tangential approach for the numerical range is simpler than the Cartesian one. From the previous formula we see that W(A) is a part of the algebraic curve with tangential equation $P_A(u, v, w) = 0$. This curve is of class d, which means that the polynomial P_A is of degree d. The Cartesian equation of this curve is generically of degree $\frac{d(d-1)}{2}$, which is the maximal degree given by the Plücker relations.

An interesting characteristic of the numerical range is its good behaviour with respect to perturbations. If A and B denote two bounded operators on a Hilbert space, the Hausdorff distance $d_H(W(A), W(B))$ is bounded by ||A - B||. The variational approach is a powerful tool for the analysis of P.D.E. problems. The assumptions are then generally imposed on the sesquilinear form $\langle Au, u \rangle$ (for instance in the Lax-Milgram Theorem) and can be translated in terms of localisation of the numerical range of a unbounded operator A. Furthermore, many numerical approximations (finite element methods, spectral methods, wavelets,...) use approximate sesquilinear forms $\langle A_h u_h, u_h \rangle$. The corresponding numerical range $W(A_h)$ then naturally inherits analogue properties to those of W(A).

5 Supporting arguments for my conjecture

I have proposed the conjecture Q = 2 in [3] (but I have been working on this for two years), I have tried to prove it, and also to find a counter-example, but up to now without success.

The main argument in favour of my conjecture is a symmetry reason. We have $\mathcal{Q} = \sup_{\Omega} C(\Omega)$, where Ω varies among the non empty bounded convex sets. The constant $C(\Omega)$ depending only on the shape of Ω , it is natural to think that the upper bound could be attained by a fully symmetric set, i.e., by a disk, but in this case $C(\Omega) = 2$. Another natural candidate

for realising the upper bound is the very flat case where Ω is the strip S_0 . For the strip it is known that $C(S_0, 2) = 1,58766...$ and I have obtained by numerical computations the values $C(S_0, 4) = 1,672..., C(S_0, 6) = 1,726..., C(S_0, 8) = 1,765..., ...$ (by an empirical extrapolation this seems to confirm that $C(S_0) \leq 2$). But the complexity of computations drastically enlarges with the dimension d...

I have succeeded to show that $\mathcal{Q}(2) = 2$ [3]. I have made many numerical tests for 3×3 matrices and I am convinced that, if $\mathcal{Q}(3)$ were larger than 2, I would have succeeded to exhibit a 3×3 matrix with $\psi(A) > 2$. I have particularly explored the neighbourhood of matrices A such that W(A) is a disk (which implies $\psi(A) \leq 2$) and $\psi(A) = 2$, and numerically verified that $\psi(A)$ then corresponds to a local maximum.

References

- C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets, *Math. Z.* 252, no. 2, (2006), 345–365.
- [2] B. Beckermann, M. Crouzeix, Operators with numerical range in a conic domain, preprint.
- [3] M. Crouzeix, Bounds for analytic functions of matrices, Int. Equ. Op. Th. 48, (2004), 461–477.
- [4] M. Crouzeix, Numerical range and functional calculus in Hilbert space, preprint, available from http://perso.univ-rennes1.fr/michel.crouzeix/
- [5] M. Crouzeix, B. Delyon, Some estimates for analytic functions of strip or sectorial operators, Arch. Math., 81 (2003), 553-566.
- [6] M. Crouzeix, Operators with numerical range in a parabola, Arch. Math., 82 (2004), 517-527.
- [7] B. & F. Delyon, Generalization of Von Neumann's spectral sets and integral representation of operators, Bull. Soc. Math. France, 1, (1999), 25–42.
- [8] K. E. Gustafson, D. K. M. Rao, Numerical Range, Universitext, Springer-Verlag, 1997.
- [9] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Univ. Press, 2002.
- [10] V. Paulsen, K-spectral values for finite matrices, J. Operator Theory, vol. 18, no 2, (1987), 249–263.
- [11] G. Pisier, A polynomially bounded operator on a Hilbert space which is not similar to a contraction, J.Amer. Math. Soc. 10 (1997), 351–369.
- [12] J. von Neumann, Eine Spektraltheorie f
 ür allgemeine Operatoren eines unit
 ären Raumes, Math. Nachrichten 4 (1951) 258–281.
- [13] R. Smith, Completely bounded maps between C* algebras, J. London Math. Soc. 27 (1983) 157–166.
- [14] S. H. Tso, P. Y. Wu, Matricial ranges of quadratic operators, Rocky Mountain J. Math. 29, no 3, (1999) 1139–1152.

Institut de Recherche Mathématique de Rennes, UMR CNRS n° 6625 Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex, France michel.crouzeix@univ-rennes1.fr