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ABSTRACT. We consider the annulud i of complex numbers with modulus and inverse
of modulus bounded byz > 1. We present some situations, in which this annulus is a
K-spectral set for an operatet, and some related estimates.

1. Introduction. Let us consider the annuluér := {z € C;R™! < |z| < R} with

R > 1; Ag is the intersection of two disks of the Riemann sphdge = D, N Do, with
Dy :={2€C;|z] < R}andDy := {z € CU{c};|2|! < R}. LetA € B(H) be a
bounded operator acting on a complex Hilbert spcd he aim of this paper is to present
some assumptions on the pai9,, A) and (D2, A), ensuring that the annuludr is a
(complete)K -spectral set for.

Recall that, for a fix constarit’ > 1, a closed subseX of the complex plane which
contains the spectrum(A) is called ak -spectral set for if the inequality

[fAI < K| flx,  with [[f]x :=sup[f(z)],
zeX

holds for all bounded rational functiorfs(from C into C) on X. Furthermore, itk = 1,
the setX is said to be a spectral set fdr, [5]. We also consider rational functiors =
(fi;) on X with values in the set/,;(C) of complexd x d matrices; therF'(A) = (f;;(A))
becomes a linear operator éff. The setX is said to be a complet&-spectral forA if
the inequality

(A < K[IFllx,  with [[Fx := SEEI\F(Z)H,

holds for all bounded rational functiod on X with values inM;(C), and for all values
of d. In the casd{ = 1, the setX is said to be completely spectral fdr

There exists a best constaitR) (resp.C.;(R)) such that each bounded rational func-
tion f on Ag, with values inC (resp. inM;(C)), may be written ag’ = f1 + fa (resp.
F=F+ FQ), with

[fillp, < CR) [[fllar and [ f2llp, < C(R)[|f]|.4r
(resp.  [[F1[p, < Ceb(R)[[Fllagr and |[|F2[[p, < Ceb(R) [|F|.az)-
It has been noticed, for instance i, [6, 7], that, if D, is a K;-spectral set fordA and

if D, is a Ks-spectral for the same operatdr then Ag is a K-spectral set ford, with
K < C(R)(Ky + K»). Similarly, if D, is a completel{;-spectral set ford and if Dy
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is a completel(s-spectral set for, thenAr is a completel(-spectral for4, with K <
Ce(R)(K1 + K2). In Section 2, we obtain some estimates4fR) and ofC.;,(R) that
improve the ones given ir’] and in [3]. In particular we show thaf'(R) = C.,(R) = 1.5
if R > 2.3919, andlimp_; C(R) = limg_1 Ce(R) = +oo. We do not know whether
C(R) = Cg(R) forall R > 1.

The previous result is not fully satisfactory, in partiautar R closed tol. Indeed, there
exist situations in which the previous estimates may bengtyomproved. For instance, it
is shown in P, Theorem 1.2] that, iD; is a spectral set fad and D is a spectral set fad
(orequivalently if| A|| < Rand| A~ < R), thenAp is a completes ( R)-spectral set for
A, with K(R) <2+ \/%. In particular we havés (R) < 2+2/+/3, for all R, while
the previous estimat& (R) < 2 C.,(R) blows up asR — 1. In Section 3, we consider
the assumptions @(A) < R andw(A~!) < R”, wherew(A) := sup{|(Av,v)|;v €
H,||lv|| = 1} is the numerical radius ofl. We will say thatA4y is a numerical annulus
for A if these assumptions are satisfied. This situation infeas tie setsD; and D,
are completely 2-spectral fot [1]; therefore, it follows from the previous part that the
annulusAg is completelyK (R)-spectral forA with K (R) < 4 C.,(R). Using a method

. R2_1
similar to [2], we show thatK (R) < 4 + T for R > 2. More generally,

if we add to the hypothesis4y is a numerical annulus fot” the assumption§ A|| < 72

-1 < 2 i i < 1
and||A~Y| < 72, with VR < 7 < R, we show the estimat& (R, 1) < 4 + T
with v = Igj—;;. Note also that this estimate is still validif < 7 < /R, but in this
case the inequalitied|| < R and| A~ < R are satisfied, and then a better estimate

K(R) < 2+ = holds.

From the well-known inequalities(A) < || 4] < 2w(A) andw(A) w(A™) > 1, we
conclude that there exists a best (i.e. minimal) functiguch that the inequality

IA]l < w(A) o(Vw(A)w(A~1))

holds for all bounded operator$ with bounded inverses. The functignis defined on
the interval[l, +o00) with values in[1,2]. In [1(], Stampfli has shown that the equality
w(A)w(A~1) = 1 holds, if and only ifA = AU, with A > 0 andU is a unitary operator;
thereforep(1) = 1. In Section 4, we prove the estimates

max(1 4+ vV1—22, 2 — 27 < p(z) < min(1 4 ¢ (z—1)4, 2 — coz™?),

for some positive constants andc,. In particular this shows that, it (4) < 1+4¢ and
w(A~1) < 14¢, then there exists a unitary operatdsuch that| A —U|| < cz /4.

2. Decomposition of bounded rational functions in an annulus.Let f be a bounded
rational function in the annulud z. Then,f may be written ag’ = fi + f2, with rational
functionsf; bounded inD; and f» bounded inD». Note that, iff = ¢1 + 2 is another
decomposition, withp; andy2 holomorphic in the interior oD, and in the interior of-,
respectivelyy- being furthermore assumed bounded at infinity, then thetiome, — f, =
fa—p2 is holomorphic in the interior oD, and in the interior oD-, thus in all the complex
plane ; furthermore the functiap, — f; is bounded in the unit disk whilg—y- is bounded
in the complementary of the unit disk. So, the function- f; = fo — 2 is holomorphic
and bounded in all the complex plane, therefore it is constnis shows the uniqueness,
up to an additive constant, of the decompositios f; + fs.
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From now on, we use the notations
[fllar = sup [f(2), [fillp, = sup [f1(2)l,  [[f2llp, = sup |fa(2)].
zEAR z€Dy z€D>
Lemma 2.1. There exists a best constarit R) such that all bounded rational functions in
Apr may be written in the fornf = f; + f2, with
[fillpy < C(R) [ fllax and | fallp, < C(R)[|f]|.ax-

Furthermore, the following estimates hold

1 [™|R?>+4e?
< —2 < il b
(a) C(R) < max (1.5,1+§1 RZM), ) CR <1+ |||,
(c) C(R) > 15, (d) C(R) > 3log 7.
Proof. From the Cauchy formula, we may wrife= f; + f> with
_1 Y _ L/ 11
fl(z) - 27 ~/6D1f(0') (gfz 20’) do and fQ(Z) - 2 asz(U) (crfz 20) d07

by using a counterclockwise orientation @D, and a clockwise fo® D,. The functions
f1 and fs are rational functions bounded ip; and inDs, respectively.

a) We consider the Laurent series expansjdn) = >, ., a,2", then
fi(2) = 3a0 + Z anz" and fa(z) = tao + Z anz".
n>1 n<—1

Without loss of generality, we may assume thall 4,, = 1 andag > 0. We note that, for
R <r <R,

n —_——n __ 1 o 0 —nif 1 o i0 —nif
anr™ +a—,r = o /) (1—f(re’))e dH—E/O (1—f(rei?))e " do
1 o —nif 0
:——/ e Re (1—f(re™)) do.
0

™

Using the fact thaRe (1 — f(re'?)) > 0, which follows from|| f|| 4, = 1, we get
27
lanr™ +a—,r™"| < l/ Re (1—f(re?))df = 2(1—ao),
T Jo

and then, by taking = R andr = R~ !,
lanR" +a—, R7"| <2(1—ap), |anR™™+a=, R"| <2(1—ayp);

thus
lan|R™ < 2(1—ag) + |a_n| R7" < 2(1—ag)(1 + R™*") + |a,|R™>",
and
—n 2(1_0’0)
R

We note that, on the bounda®\D-,

ag _n ap 1
[ fillL=(op,) < 5t Z |an|R7" < 5 T 2(1-ao) Z R 1

-1’
n>1 n>1
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consequently, since < ag < 1, we havel| f1[| = (sp,) < max(3,>,>; zzo—)- Then,

using the maximum principle, we obtain
1 2
| f2llps = | follL@Ds) = |1 f = fillL=(op,) < 1+maX(§7 Z W)-

n>1
The same estimate fdlf1|| p, may be proved in a similar way; this infers the inequality
(a).
b) Forz = R~'e’¥ € 0D,, we have

1O =g [ s (- Yo = [T pinen (B

= 2mi c—z 20 a7 Jo Rei® — R-1letr

It then follows that

1 T R2+ei0
~ < — —— 1 db;
ilimiona < 5= | | ] @
thus
1 T R2+ei0
Ifallos = 1= Fillomioms) < 1+ 5= [ | T .

which shows the estimate (b).

¢) We now consider the functioh= f; + f., defined by
1 z/[R—1+¢ B
fl(z)_§+ma 0<e<l,  faz) = fi(1/2).

The image ofD; by f1, as well as the image d, by fs, is the disk of radiug centered
in 1/2. This infers

min (max{|[fi = ¢[p., [lf2 + ¢lp.}) = 11l = 1.5,
and thenl.5 < C(R) || f|| a,- Using the symmetry(z) = f(1/z), we note that
1fllag = max |f(Re™)| < [|f1 = 3lp, + max|f2(Re”) + 4]

e(1+ R %)
<1 ‘ .
= L hmax T (1—e)R2e~
e(l4+ R™?)
<l+—"—.
= 1—-(1—¢)R2
We obtain the inequality.5 < C'(R) by lettinge tend to zero in the estimate
e(l4+ R7?)
1.5 < 14— ).
5< CR)(1+ 1= §l —E)R—z)

d) Up to now, we have considered rational functighdut the results may be easily
extended to bounded holomorphic functions in the annulasel#e consider the function
f = fi+ fa2, defined by

fi(z) =log(R(1+¢) —2), fa(z) = —fi(z7") = —log(R(1 +¢) —271),

with € > 0. The logarithmic functions are chosen in such a way thatuhetfonsf; and
f2 be continuous irD, and D, respectively, and thah (1) = — f2(1) € R. We note that,
for all complex numbers, it holds|| fi —¢| p, = || f2-+¢| p,; thus

inf || fo+¢lp, = inf [ fi—clp, > 3(1(R)=fi(=R)) = 5 log 2=,
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This yields
C(R) > m log 2t=.
From the maximum principle and the symmetrjgs) = —f(z71), f(2) = m we have
| fllar = max \f (Re™)| = max |10g ((9))|’

0<6<
with g1(0) =14 — €, 92(9):1+5—R 2et,

From one hand, fob < 6§ < m, we have the estimates§ < argg;(f) < 0 and0 <

arg go(—0) < thus] Im (log 91(9) \ < w. From the other hand, the quantity
g1(0) ‘27 (1+€) +1—2(14¢)cosd
g2(=0)1  (1+e)2+ R4 —2R"2(1+¢)cosf

is an increasing function @f on [0, 7]; this yields

|Re(log )|<max(1oglR M log 2*'5,2) log =€ e

HetR

\ <log2;thus||f|la, < V72 +log? 2

Choosing: = 1-R~2, we obtain Re (log
< 3.5, and finally

C(R) > 1 log 3=

1 1

Remark 2.2. The rational functiong considered in this lemma take their value€inBut
the estimates would be exactly the same for functions wilihhesin M/;(C), independently
of the value ofd. Therefore the bounds f@r'(R) given in this lemma are still valid for
Cep(R). ltis clear thalC'(R) < Cep(R), but we do not know whethe? (R) = C.,(R) for
all R > 1.

Remark 2.3. In our choice, the functiong; and f, play symmetric roles with respect to
the change of variables— 1/z. This is not the case for the decomposition considered by
Shields P], which is slightly different. Translated in our contexis lestimates would be

R2+1
Rz -1
The estimate (a) is essentially a variant of one obtaineddoysieén and Singts[ Theorem

4.2], it improves Shields’ estimate R > 2.2227.... The estimate (b) improves Shields’
estimate for all values aR.

Cep(R) <1+13

Remark 2.4. Choosing the best established estimate in each case, wie,obith ¢ ~
2.753107°

C(R) =C.(R) = 1.5, if R > 2.3919,

1.5 < C(R) < Cu(R <1+nz>:132 oo if 2.3634 < R < 23919,
R2—|—619 .
1.5 < C(R) < Co(R )<1+— df, if1+e<R<23634,
R2 0 )
;1gR—g0(R)gccb(R)g1+2—/ ;dee, if1<R<1+e.
T 0 —
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Remark 2.5. It is easily verified that

R2+619 2
- R>1,0<0< )
SUP{} et 2(3—1)—1'9" >1,0 <6 <m} < o0
Therefore, in a neighborhood &f = 1,
1 U R2+ei9 1 T
Voo [t 0= o [ |l 0+ 0 = £ vog ks + 0
+27T 0 — et 27T/0 2(R—1)—16 +0(1) = 3 log 7 +0(1)

This shows that the estimates (b) and (d) provide a goodamfithe behaviour of’.;,(R)
in this neighborhood .

3. Numerical annulus. In this section, we consider an operatbwhich satisfies the as-
sumptionsw(A4) < R, w(A~') < R, andmax(||A], |A~Y) < 72, with1 < 7 < R. We
will show the estimate

IF (A < (4+

_ 1
with v = ——

R-R T M

\/1_—) H.f”.AR?
for all bounded rational functionsin the annulusdg.

Proof of (1). It suffices to do it under the hypotheseéA) < R andw(A~!) < R. Then
we can write (using the appropriate orientationgéf, and ofdD3)

. 1
f(A) = omi /3131 flo)(o—A) " do + 271 o, F(o)(o—A) ‘o = Fy + Fy + Fy,
with
1
7 0 o, f(o)((e—A)~ do — (6— A7)~ do)
1
Bo=gm |, /O le=A) o = (747" do)
g f(0)(a— A" do + —— flo)(e—A")"ds.
27 Jop, 27 Jop,

Settinge = Re*, we note that
1
2711

The assumptiom(A4) < Rimplies(R—e?®A)~ + (R—e~ " A*)~1 > 0. Therefore (see
[2, Lemma 2.1])

180 < 5 | (0= o = @=47)7"a0) |11l = 21F

((0—=A)"'do — (6-A7)"do) = %((R—e“’fl)‘l +(R—eA%)7") do.

Similarly, fromw(A~1) < R, we get|| Fa|| < 2| f]|4x-

It remains to show thatFs|| < (1—~2)~'/2. For this, we note that = R?/o ondD;,
while 7 = R=2/o ondD. Thus
1 d 1 d
By=-— | [oORR-0A)"Z 4 — [ fo)R R —0A")
2mi Jap, o 27 Jap,
The integrands being holomorphic with respecistan the annulus4g, we can move
the integration path8 D, anddD- into the unit circle. Taking into account the different
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orientations of the paths, this gives

1 d

Fy=—— f(o)(R*(R? =0 A*) = R2(R2—gA*) )2
211 lo|=1 g
R2—R2 [T

= [ R0, 47 do,

with M (0, A*) := R2+ R 2—e? A" — (¢"A*)~L

—T

We now writeA* = UG, with a unitary operatol/ and a positive self-adjoint operator.
The assumptionsiax (|| A|, [[A7) < 7 readr—! < G < 7. Settingp = 3(7+77!), we
have

IG+G™ "~ (p+ DI|| <max{|z+a —p—1|;7 ' <z <7} =p—1.
This yields, for the self-adjoint part dff (6, A*),
ReM(0,A*) = R* + R™2 — (p+1) Re(e”U) + Re(U(G+G 1 p—1))
>R*4+ R 2~ (p+1)Re(e®U)—p+1>R*+ R 2 —-2p > 0.
We then have the estimate (séellemma 2.2])

RQ_R72
1Bl < ||
s

/0 i (R2+ B2 = (p+1) Re(cU) — p + 1)*1d9H = |R(U)],

where we have introduced the holomorphic function

h(z)_RQ_RQ/Qﬁ _ L —
27 o R2+R2—p+1—(p+1)(e?2+e-2-1)/2
Note that
27 o R2+R2—p+1—(p+1)cos(f+¢)
_ R? - R? 27 1 h(1).

21 (R+R)JRPtR? 25 112
This shows thab(U) = k(1) and gives the estimate

1
1750 < () = ——s. .

Now, we only assume(A) < R andw(A~!) < R. Inthe caseR > 2, the inequality
max(||A|, [|[A~Y|) < 72 is automatically satisfied with = /2R, since| A|| < 2w(A)
and||A7!|| < 2w(A~1). The inequality {) provides the existence of the best constant
K (R) such that

. R? -1
[F (A < K(R)[[fllag, with K(R) <4+ ,

(R—2)(R5 - 3)

for all bounded rational functiong in the annulus4y and for all operators! satisfying
w(A) < Randw(A™1) < R.
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Remark 3.1. We also have the estimaté(R) < 4 C'(R), sinceD; and D are 2-spectral
sets forA. Choosing the best known estimate in each case, we obtain

R?-1 i
K(R) <4+ Tt if R > 2.43618,
K(R) <6, if 2.3019 < R < 2.43618,
8 .
R) <4+ Z T if 2.3634 < R < 2.3919,
n>1
R2 0 )
K(R) <412 L lgp, i 1< R < 23634,
T 0 — €

Remark 3.2. These estimates blows up &s— 1, but we do not know whether the best
constanti'(R) is bounded a®t — 1.

Remark 3.3. In this section, we only have considered scalar functiousalbthe estimates
are still valid, with the same constants, in completely mdhform.

4. Norm of operators and numerical radius. From the classical inequalities(A) <
|A] < 2w(A) andw(A) w(A~1) > 1, it follows that there exists a minimal functign
such that the inequality

IAIl < w(A) o(Vw(A)w(A-1)) )

holds for all bounded operatorson a Hilbert spacéf with bounded inverses, and for all
Hilbert spacedi. The functiony is defined on the interval, +o0c) with values in[1, 2]
and satisfiesp(1) = 1. In this section, we will show thap is an increasing function that
satisfies the following estimates

@) >14+1—272, Ve>1, 3)
p(r) >2—2"", Vo>1, (4)
o(xr) <2—cox™?, Vax>1, withaconstanty, 0 < cy < 1, (5)
¢(x) < 1+c(z—1)Y* Va >1, witha constant; > 0. (6)

Proof thaty is increasing.Let A € B(H) be an invertible operator. We sBt= A @ «,
with o = (fPw(A™1))~" ¢ > 1. Then, we hav® < o < o=y < w(4) < [|A];
therefore| B|| = || A]|, w(B) = w(A) andw(B~') = t>w(A~!). Replacing4 by B in
inequality @), we obtain

IA]| < w(A) p(ty/wAw(A1)), Vt>1,YAand A~ € B(H).

From the minimality ofp, we deduces(t\/w(A)w(A=1)) > p(y/w(A)w(A~1)) for all

t > 1. This shows thap is increasing. O

Proof of the lower boun3). We use
A= ((1) 3y1> with y = v/22-1, z > 1.

Then, we havev(4) = w(A~!) = x and||A]| = y + /1+y2 = z + V22— 1. We obtain
(3) by using the matrix4 in (2). O
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Proof of the lower boun@4). We will show a more precise inequality
4ot — 2% +1 — /(4a? — 22 +1)2 — 1621

p(x) >2-y, withy =

4z4
The lower bound4) then follows by noticing that < y < z—*. To this end, we take
0o 0 W
A= 2—-y 0 0
0 vy 0
Using the formulae
0 0 b 0 a O a+\/m
wla 0 0)=w({0 0 b)=—,
0 b O b 0 0
it is easy to verify that|A|| = 2—y, w(4) = 1, andw(A~!) = 22. The inequality
() > 2—y then follows by putting the matrid in (2). O

Proof of the upper boun¢b). It suffices to show that if the operatet satisfies||A| =
(2—e)w(A) with 0 < € < 1, then it holds
1
6v/5e
For this, we can assume thatA) = 1. Then, there exists a unit normed vectpsuch that
| Aei|| > 2v/T—¢. Replacingd by ¢ A if needed, we can assume that= (Ae;,e;) > 0.
This allows to writede; = aey + Bes, Aes = veq + deg + ues, with 8 > 0, u > 0, and
e1, e, e3 being three orthonormal vectors Hi. We note that
= 2l A B 2 2 2"
[Aeall 2 /W2 + 18] +u
Thus, it suffices to show thay|? + |§|? + u? < 45¢. Let us now consider the orthogonal
projectorP from H onto the subspace spannedhye, andes, and let us setl’ = P AP*.

Clearly2—¢ > ||A'|| > ||Ae1]] = Va2 + 52 > 2¢/1—candw(4’) < w(Ad) = 1. We
identify A’ with its corresponding matrix in the badis;, e2, e3},

w(A)w(A™) >

w(A™) = 5 [|A”

a v o
A=[8 6 w|=B+C, with BzRe(A'):%(A'—i—A/*), Cz%(A'—A'*).
0 uw =z

The conditiomw(A’) < 1 also reads, for al € R, | Re(e?® A’)|| < 1, and, in particular,
induceg|B|| < 1and||C|| < 1. It follows that

3 3¢ + 3¢ = |(Re(e A" ey, ex)| < 1,
and then3 + || < 2, by a judicious choice of. We use
4 Re(Bey, Cey) = 2||A'er|)® — 2||Bey||* — 2||Ceq||* > 8(1—¢) —2 — 2,

that reads

B2 =P = o > 4 - 8e.
We also have

B2+ 0] + w]? = [|Ae2|* < (2—-2)%
together with the previous inequality, this gives
|61 + Jwl® + [y* + [v]* < de + 2.
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In particular, this showsw| < v4e +e2? < (24¢)4/e. Taking now the vectors} =
(1,1,t) andz3 = (1, —1,t), t € R, in the inequality
Re (3(A'w1,21) — 5(A'w2,22)) < 5([lo]* + [lwal*) = 2+ 17,
we get
B+Rey+tlu+Rew)| <2+t VteR;
thus, choosing = 1 (u+Rew) and using the inequalitie$+|y| < 2 ands? —||? > 4—8¢,
R 2 2 |12
wg_ﬁ_fmg_&
This yieldsu < |w| + 44/, and we finally obtain
7 41017 4 u® <16 + [wl* + P+ ol +u® = Jwf® < de+e® +u® — Jwf?
<de+e?+8lwle+16e <4e+e>+16e+8:2 +16¢
<36e+9e <4be. 0

Proof of the upper boun(b). The work of Stampfli L] has been an inspiration for this
proof. We have to show that there exists a constastich that

o(1+4e) <1+ cpet/4, Ve > 0.

We shall obtain a constant > 4. Sincep(1+¢) < 2, the inequality will automatically be

satisfied for > ﬁ Thus, we only have to consider, from now on, the dases < %

Then, there exists an integer> 35 such that

1
— <1l4e<

s
COS P COSs n

We sett = tan Z, and note that = v/2¢ + O(e3/2) andt < ;. In order to prove®), it
suffices to show that

¢o(14¢€) <1+¢Vt+O0(t)  inaneighborhood of = 0.

To this end, we consider an operatbsatisfyinguw(A) = w(A~!) < 1+ ¢, and write it as
A = BU, with B self-adjoint positive and/ unitary. We introduce a partition of the unit
circle inn arcs

Cv={e?;0c}, I=[2k—1)71/n,(2k+1)7/n), k=1,...,n.
We consider the spectral decompositionlofand the orthogonal projectdr, onto the
invariant subspace corresponding to the@gc

27
U :/ edE(t), Py = E(I}).
0

We admit, for the time being, the following result

Lemma 4.1. Letx € P, H be a unit element in the invariant subspace corresponding to
Cy. Letus writeBx = Az + Stw, with ||z|| = |Jw| = 1, (z,w) = 0andS > 0. Then,
the following estimates hold

mﬁx\ﬁl—i—&z, 0<p<T.
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For an arbitrary unit elementc H, ||z|| = 1, we write

r= Y Gax with a € P, ol = 1, ¥, &[> = 1.
0<k<n

It follows from the lemma thaBzy, = Az + Bit wk, With ||wi|| = 1,0 < A\, < 14842
and0 < 8, < 7. Thus,

Bx =3, &edpwp + 1), EpBrws.
Using the orthonormality of the elemerts; } and the Cauchy-Schwarz inequality, we get
[Ball < (Cp ARIERIP) Y2+t (2, 16 P) 2 (0, [8*)/? < 1488 + Tt/
This shows thaf A|| = ||B|| < 1 + 7/7 vt + O(t), consequently
o(1+e) < 14+ 7VTVE+ O(t),
which infers the inequalityq). O

Proof of Lemmat.1 Starting fromx € P H, a unit elementin the subspace corresponding
to C},, we can write

Uz =e™ cosf (z +tanfy), with |z|| = ||yl =1, (z,y) =0.% € R, § € [0,7/2].
As noticed by Donoghue], the complex number

cosf eV = (Uz,x) :/ et d||E(t)x||?
Iy

belongs to the convex hull @fy. This infers thatos 7 < cosf < 1,i.e.,0 < 6 < /n;
thus|tan | < ¢. Recall thatBx = Az + t S w, with ||w| = 1, (x,w) = 0andg > 0.
Thus\ = (Bz,z) € R". Using

(Az,z) = (Uz, Bx) = cos 0 ™ (z+tan Oy, \z+t fw)
=cosfe™ (A + Bt tanf(y, w))
together with the inequality(A) < 14¢ < 1/cos I, we obtain

1
A+ Bt tan 6(y, w)| < C:;;; thus A < 14+t% + B2 |(y, w)).
In particular, there holds
A <14 (14+6)t2 (7)

Starting now from the relatioh B~z = = — t 3 B~'w, we have
MA Yz, x) = (AB™ e, Ux) = cos@ e (x—tBB ™ w, x+tan Oy)
=cosfe (1 + @(B_lw,u» —tBtan (B w,y)).
We now use the assumptiom (A=) < A(1+¢), to get
1+e

1+ @(Bilw,uﬁ —tBtan (B w,y)| < A — < M1 +t2).
We also have
1 1 128
B! > 1/||Bll = 1/||A|| > > > 22
(B7w,w) 2 1/IBI = 1IAI 2 5o 2 5775 2 57

257t
<

[tan6 (B w, )| < tan Z[BH| = t[[A7} < 2w(Ah) <
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this yields

128 32¢2
14+ 12800 _ 3287 < \(1+12),

or equivalently

2 _

A) <0, witha= 2. 8)

B —a?hr—a (X + 257

The set of(\, 8) satisfying @) is the union of two convex parts delimited by a hyperbola
‘H, while the inequality ) is corresponding to a half-plane. Recall that the inedjeali
A > 0andg > 0 also hold.

A
B
Bo
e L1,
/ N

The hyperbold{ is tangent to the axi§\ = 0} at the origin, and admits another vertical
tangent at the point

( 4 2a2 )

4(1+ t2) + a3t2’ 4(1 +12) + a3t2/

This yields the estimata > 4(1“2)“%2 > 1+3t2
line A =1+ (1 + B)t? through the points

The hyperbol&{ crosses the straight

(1+t2(1+1), 31) and (1+t3(1432), B2), with 3, > 0 andf, < 0 being the roots of
L+a+48° +at® 4268 (1+3)(2+17)

E :: 2 _ = 0_

W(B) =57 —ap 1— at? — a?t2 — at* 1— at? — a?t? — at?

Recall thatt < -, and thenEy(7) > Ej,11(7) > 1.6308 > 0. This shows the inequality
0 < 7 and completes the proof of the lemma. O

Remark 4.2. The estimates4) and €) give the fork
2zt < plx) <2-— cox ™

this gives a good control on the behaviourofor largexz, while the estimates3j and )
give a fork

1+ (-2 <o) <1+ e (z—1)Y4,
which gives a control in a neighborhood of= 1. We think that the exponent/4 in
this estimate effectively corresponds to the behaviap &br « close to 1. This intuition
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is confirmed by numerical tests, that we have realized wighféimily of n x n matrices,
A = BD, defined by, withh = 4(2k + 1),

eij=11if 3k +2<|i—j| <5k+3,
e;; = 0 otherwise,

D = diag(e%f/”, o ,ezmw/n’ o 62117271'/77,).

B=1I+537E, with

The points, with coordinategog (% —1),log (y/w(A)w(A~1))), computed fork =
1,2,...,12, are close to a straight line with a slop&2506.

Remark 4.3. We think that the functiorp is continuous, but have not succeeded to prove
it.
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