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Abstract— We study in this paper a class of 3-RPR ma-
nipulators for which the direct kinematic problem (DKP) is
split into a cubic problem followed by a quadratic one. These
manipulators are geometrically characterized by the fact that
the moving triangle is the image of the base triangle by an
indirect isometry. We introduce a specific coordinate system
adapted to this geometric feature and which is also well adapted
to the splitting of the DKP. This allows us to obtain easily precise
descriptions of the singularities and of the the cusp edges.These
latter second order singularities are important for nonsingular
assembly mode changing. We show how to sort assembly modes
and use this sorting for motion planning in the joint space.

I. I NTRODUCTION

Planar parallel manipulators have received a lot of atten-
tion [1], [2], [4]–[19] because of their relative simplicity
with respect to their spatial counterparts. Moreover, studying
the former may help understand the latter. Planar manipu-
lators with three extensible leg rods, referred to as 3-RPR
manipulators, have often been studied. Such manipulators
may have up to six assembly modes (AM) [2] and their
direct kinematics can be written in a polynomial of degree
six [3]. It was first pointed out that to move from one
assembly mode to another, the manipulator should cross
a singularity [2]. However, [4] showed, using numerical
experiments, that this statement is not true in general. More
precisely, this statement is only true under some special
geometric conditions, such as similar base and mobile plat-
forms [5], [6]. Recently, [7] provided a mathematical proof
of the decomposition of the workspace into two aspects
(singularity-free regions) using geometric properties ofthe
singularity surfaces. Since a parallel manipulator becomes
uncontrollable on a singular configuration, the possibility to
change its assembly-mode without encountering a singularity
is interesting as it can enlarge its usable workspace. Knowing
whether a parallel manipulator has this feature is of interest
for both the designer and the end-user. The second-order
singularities, which form cusp points in plane sections of the
joint space, play an important role in non-singular assembly-
mode changing motions. Indeed, encircling a cusp point
makes it possible to execute such motions [5], [9], [12]–
[19] A special class of planar 3-RPR manipulators has
been studied recently [9], [10]. These manipulators have
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the peculiarity that the resolution of the direct kinematics
problem is split into a cubic equation and a quadratic
equation. Their geometry is characterized by the fact that
the platform triangle is congruent to the base triangle via an
indirect isometry of the plane; this is the reason why we call
them “symmetric”.

We propose here a coordinate system for the workspace
which is adapted to this specific class and reflects the
splitting of the direct kinematic problem (section II). We pay
attention to the description of singularities (section III) and
cusps (section IV) using these coordinates. We show how
to sort assembly modes and use this sorting to do motion
planning in the joint space (section V).

II. A LTERNATIVE COORDINATES FOR THE WORKSPACE

The base triangle is denoted byA1A2A3. In the direct
orthonormal frameF with origin A1 and first axis oriented
by

−−−→
A1A2, the coordinates ofA2 are (b, 0) and those ofA3

are(d, h). The platform triangle is denoted byB1B2B3. Due
to the symmetry property, the coordinates ofB2 andB3 in
the direct orthonormal frame with originB1 and first axis
oriented by

−−−→
B1B2 are respectively(b, 0) and (d,−h). The

length of the legAiBi is as usual denoted byρi.
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Fig. 1. A symmetric 3-RPR manipulator.

The platform triangleB1B2B3 is the image of the base
triangleA1A2A3 by a glide reflectionS. We encode this
glide reflectionS by the triple(ψ, r, g) such that the glide
reflection is the orthogonal symmetry with respect to the
line ∆ with equationx cos(ψ) + y sin(ψ)− r = 0 followed

by the translation of vector2g

(

− sin(ψ)
cos(ψ)

)

parallel to the

symmetry axis (the equation of∆ and the coordinates of the
translation vector are given in frameF attached to the base
triangle - see figure 2).

We choose the angleψ in [−π/2, π/2] and make the
identification of(−π/2, r, g) with (π/2,−r,−g).
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Fig. 2. The glide reflection sendingA1A2A3 to B1B2B3.

Usually the workspace is viewed as the space of rigid
motions in the plane and a pose of the manipulator is encoded
by the rigid motionR carrying the half-line[A1A2) to the
half-line [B1B2). The rigid motionR and the glide reflection
S are related in the following way:S is the orthogonal
symmetry with respect to(A1A2) followed byR. If the rigid
motionR is given (as in [9], for instance) by the angle of

rotationϕ and the translation vector

(

x
y

)

, then the relation

between the two systems of coordinates is as follows:

ϕ = 2ψ + π (mod 2π) (1)

x = 2 (r cos(ψ)− g sin(ψ)) (2)

y = 2 (r sin(ψ) + g cos(ψ)) . (3)

It is easy to compute the lengthsρi of the legsAiBi in
terms of(ψ, r, g), sinceBi is the image ofAi by the glide
reflection. The squareρ2

i
is the sum of the square of the

double of the distance ofAi to the axis∆ and the square of
the norm of the translation vector, which is4g2. This gives:

ρ21 = 4
(

r2 + g2
)

, (4)

ρ22 = 4
(

(b cos(ψ) − r)2 + g2
)

, (5)

ρ23 = 4
(

(d cos(ψ) + h sin(ψ)− r)2 + g2
)

. (6)

It will be convenient to introduceδ2 = (ρ22 − ρ21)/4 and
δ3 = (ρ23− ρ21)/4. These quantities depend only onψ andr,
and not ong:

δ2 = −2 b cos (ψ) r + b2 (cos (ψ))
2
, (7)

δ3 = (d cos (ψ)+h sin (ψ))
2
−2r (d cos (ψ)+h sin (ψ))(8)

Eliminating r between these two equations and writing the
equation obtained int = tan(ψ), we get the third degree
equation:

δ2ht
3 +

(

bh2 − bδ3 + δ2d
)

t2+
(

2 bdh− b2h+ δ2h
)

t− bδ3 + δ2d+ bd2 − b2d = 0 . (9)

This equation is essentially the same as the third degree
characteristic polynomial obtained in [10].

We shall use(ρ21, ρ
2
2, ρ

2
3) as coordinates for the actuated

joint space. Of course, this joint space is contained in the
positive orthant(R+)

3.
The direct kinematic problem (DKP) can be solved as

follows:

1) Take a real solution int of equation (9), which deter-
minesψ = arctan(t). Generically there are 3 or 1 real
solutions, depending on the sign of the discriminant of
the equation.

2) Computer from ψ using equation (7), which gives

r =
1

2

(

b cos(ψ) −
δ2

b cos(ψ)

)

. (10)

3) Solve the equation (4) forg. It has two real opposite
solutions whenρ21 > 4r2.

One should take care in the resolution of the DKP of
the caseψ = ±π/2, i.e. t = ∞. This corresponds to the
vanishing of the third degree term in equation (9), which
occurs whenδ2 = 0. In this case one can use equation (8)
to computer, which givesr = (h2 − δ3)/2h for ψ = π/2.

Note that the existence of a solution to the DKP depends

• first, on the existence of a solution(ψ, r) to the system
of equations (7) and (8),

• second, given such a solution(ψ, r), on the existence
of a solutiong to equation (4).

These two conditions of existence will be important for the
discussion of singularities in the next section.

III. S INGULARITIES

The singular surface in the actuated joint space is thus
given as the union of two surfacesS1 andS2, corresponding
respectively to steps 1 and 3 of the resolution of the DKP
described above. The fact that the singular surface splits in
two components has already been observed in [9]. We will
now describe these two surfaces. We will also describe the
critical surfacesΣ1 andΣ2 in the workspace, whose images
by the mapping(ψ, r, g) 7→ (ρ21, ρ

2
2, ρ

2
3) given by equations

(4), (5) and (6) areS1 andS2 respectively.

A. The first singular surface

The surfaceS1 is the intersection of the actuated joint
space (always with coordinates(ρ21, ρ

2
2, ρ

2
3)) with a cylinder

having generatrix parallel to(1, 1, 1) and basis a curveC in
the plane of coordinates(δ2, δ3). An equation forC can be
obtained as the discriminant of equation (9); it is a quartic.
An alternative way to describeC is to compute the jacobian
determinant of the mappingΦ : (ψ, r) 7→ (δ2, δ3) given by
equations (7) and (8). The jacobian curveΓ in the space with
coordinates(ψ, r) is given by

r =
cos(ψ)

h

(

(h2 + bd− d2) cos(ψ) sin(ψ)+
(2d− b)h cos(ψ)2 + (b− d)h

)

. (11)

Observe thatr(ψ + π) = −r(ψ). The critical surfaceΣ1

in the workspace is the set of all(ψ, r, g) such that(ψ, r)
belongs toΓ. The curveC is the image ofΓ by the mapping



Φ, and it can be parameterized by rational functions oft =
tan(ψ) as














δ2 =
b ((2d− b)h t2 + (2d2 − 2bd− 2h2) t+ (b − 2d)h)

(1 + t2)2 h

δ3 =
(h t+ d)2 (h t2 + 2(d− b) t− h)

(1 + t2)2 h
(12)

SoC is indeed a rational quartic. Its singular points are three
real cusps that can be found by looking at the stationary
points of the parameterization. These stationary points cor-
respond to parameterst which are roots of the cubic equation

(b−2d)h t3+3(h2−d2+db) t2+3h(2d−b) t+d2−db−h2 = 0 .
(13)

Since the discriminant108 (d2+h2)2 ((d−b)2+h2)2 of this
cubic equation is strictly positive, there are always threereal
roots and hence three real cusps on the curveC. Actually,
transforming the equation to an equation inψ, one obtains

tan(3ψ) =
d2 − bd− h2

(b− 2d)h
(14)

Note that the curveC has no other singular point than the
three cusps. Indeed, a rational quartic may have only up to
three singular points. The curveC always has the shape of
a deltoid, i.e. a closed curve with three cusps connected by
arcs concave to the exterior.

B. The second singular surface

The second critical surfaceΣ2 in the workspace is simply
given byg = 0; so it is independent of the geometry of the
manipulator (this is already observed in [9]). Its imageS2

in the actuated joint space is parameterized by substituting
g = 0 in equations (4-6). So the surfaceS2 is the image of
the elliptic cylinder

ρ1 = 2 r , (15)

ρ2 = 2 (r − b cos(ψ)) , (16)

ρ3 = 2 (r − d cos(ψ)− h sin(ψ)) (17)

by the mapping(ρ1, ρ2, ρ3) 7→ (ρ21, ρ
2
2, ρ

2
3). The implicit

equation ofS2 can also be obtained by eliminatingt between
equation (9) and the equation

ρ21 =
δ22(1 + t2)

b2
− 2δ2 +

b2

1 + t2
,

where the right hand side is the expression for4r2 derived
from (10). The implicit equation forS2 obtained in this way
is a quartic equation inρ21, ρ

2
2, ρ

2
3, not a very nice one.

C. An example

We consider the manipulator with parametersb = 1, h =
1, d = 0. In this case the curveC in the plane(δ2, δ3) is
a hypocycloid with three cusps (a deltoid) inscribed in the
circle with center(1/4, 1/4) and radius

√

9/8. The three

cusps onC correspond to the values−
5π

12
, −

π

12
,
π
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Fig. 3. The curveC

The critical surfaceΣ2 in the workspace is always given
by g = 0. The critical surfaceΣ1 is parameterized by

(

ψ, − cos(ψ) (−1 − sin(ψ) cos(ψ) + cos(ψ)2), g
)

.

Fig. 4. The critical surfacesΣ1 (in blue) andΣ2 (in red).

Both critical surfaces are represented in figure 4. It may be
interesting to compare this figure with figure 2 in [9], which
represents the same surfaces (with the same color code), but
in a different coordinate system. The choice of coordinates
made here “straightens” the critical surfaces.

The three black lines of figure 4 are the lines of points
which correspond to cusps in the joint space.

We represent now the singular surfacesS1 andS2 in the
joint space (See figures 5 and 6 ). The surfaceS1 is a part
of a cylinder on the hypocycloid and has three half-lines of
cusps. The drawing of the singular surfaces is made using
their parameterizations by(ψ, g) for S1 and by (ψ, r) for
S2.



Fig. 5. S1 (in blue) andS2 (in red) cut atρ2
1
= 1.

Fig. 6. S1 (in blue) andS2 (in red) cut atρ2
1
= 4.

IV. CUSPS

The singular surfaceS1 has three half-lines of cusps, all
parallel to the vector(1, 1, 1). So the cusps are entirely
determined once we know the origins of these three half-
lines. The three possible anglesψ are determined by equation
(14):

ψcusp =
1

3
arctan

(

d2 − bd− h2

(b− 2d)h

)

+ k
π

3
(mod π)

for k = 0, 1, 2. For each of these three values ofψcusp,
the corresponding valuercusp is given by equation (11). The
couple(ψcusp, rcusp) determines the line supporting the half-
line of cusps, and the origin of this half-line corresponds to
g = 0. So we get three values for theρ21 of the origins
of the three half-lines of cusps, which are the three values
for 4r2cusp. These three values forρ21 are the roots of a third
degree polynomial with coefficients depending onb, h, d; the
constant term of this polynomial is

4h2 (−2d+b)2 (d3−2bd2+h2d+b2d−2bh2)2 (−h2+2bd−d2)2 ,

and its discriminant is always nonnegative.

Let 0 ≤ β1 ≤ β2 ≤ β3 be the three bifurcation values of
ρ21 for the number of cusps, i.e. theρ21 of the origins of the
half-lines of cusps. Then the slice atρ21 = c has 0 cusp if
0 ≤ c < β1, 1 if β1 < c < β2, 2 if β2 < c < β3 and 3
if β3 < c. One of the bounded intervals may be empty, if
the constant term of the equation of the third degree inρ21
vanishes (for the first interval) or if its discriminant vanishes
(for the second or third interval). One has to understand that

the number of cusps is the number of cusp points in the slice
of the joint space. Over each of these cusps there are two
triple solutions of the DKP, corresponding to opposite values
of g.

(a)

(b)

Fig. 7. The bifurcation values ofρ2
1

for the number of cusps.

Figure 7a represents the bifurcation values as function of
h and d, with b fixed equal to 1 (green forβ1, yellow for
β2 and red forβ3). Figure 7b shows detail for the first and
second bifurcation values when0 ≤ d ≤ 1.

V. SORTING ASSEMBLY MODES AND MOTION PLANNING

IN THE JOINT SPACE

The essential idea here is the following: when one starts
from a nonsingular solution of the DKP at a point in the



joint space with coordinates(ρ21, ρ
2
2, ρ

2
3) and moves in the

direction of the vector(1, 1, 1), then the solution of the
DKP follows smoothly, without crossing a singularity in
the workspace. Indeed, consider equations (4-6): the motion
ρ2
i
7→ ρ2

i
+ λ2, increasingλ, can be lifted in the workspace

(with coordinates(ψ, r, g)) to a path withψ andr fixed and
g increasing tog2 + λ2/4.

The segment in the joint space can cross the second
singular surfaceS2. This corresponds to the appearance of
two new solutions to the DKP (one in each aspect), with a
different couple(ψ, r). But it never crosses the first singular
surfaceS1 which is a cylinder with generatrix parallel to
(1, 1, 1).

We denoteρ21 + ρ22 + ρ23 by ν. Then (ν, δ2, δ3) form a
system of coordinates for the joint space which is convenient
for our present discussion. Moving in the joint space in the
direction of the vector(1, 1, 1) is increasingν, keepingδ2
andδ3 fixed.
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Fig. 8. The sectionν = 8.

The situation in the sectionν = k stabilizes for sufficiently
large values ofk: the section ofS2 is a big oval surrounding
the section ofS1 which is a deltoid with three cusps (the
curveC, base of the cylinder). Inside this curveC there are,
in each aspect, three continuous solutions of the DKP and
between this curveC and the section ofS2 there is in the
same aspect one continuous solution of the DKP. Label by 0
this solution, and label by1, 2, 3 the three arcs ofC between
the cusps. Then we can label the three solutions inside the
deltoidC by 1, 2, 3 according to the label of the arc of the
deltoid through which they are connected with the solution
0. Figure 8 illustrates the labelling in the same example as
above (the coordinates(δ2, δ3) are used in the sectionν = 8).

In this way we can label every solution of the DKP
contained in one aspect by one of the labels 0,1,2 or 3. In
each aspect, all points in the same label form a connected
region and the boundaries between these regions are the so-
called “characteristic surfaces” obtained by pulling backthe
singular surfaceS1 in the aspect [20]. The characteristic
surfaces in the workspace with coordinates(ψ, r, g) are
cylinders with generatrix parallel to theg-axis and basis the

two curves in the(ψ, r) plane which are given by

r =
h(2 d+ b) cos (ψ) + (h2 + bd− d2) sin (ψ)

4 h

±

√

(h2 + d2) (h2 + d2 + b2 − 2 bd)

4 h

Figure 9 represents a section of the characteristic surfaces
(in green) by a planeg = constant of the workspace. The
blue curve is a section ofΣ1 and separates the aspects. In
each aspect, the characteristic surface delimitates the four
sorts of assembly modes. The label 0 correspond to points
which are mapped outside of the deltoidC in the joint space,
and the labels1, 2, 3 to points which are mapped inside. A
path from 0 to 1 inside an aspect is mapped to a path going
through the arc of the deltoid with label 1, etc..
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Fig. 9. The four sorts of assembly modes in each aspect, in a section g =

constant of the workspace. The green curves are sections of the characteristic
surfaces.

We illustrate how the labelling can be used for motion
planning in the joint space with an example, again for the
manipulator with parametersb = 1, h = 1, d = 0. We choose
a goal position for the manipulator, given byψ = π/4, r =
1.1 andg = 0.4 (Figure 10).

B1

B2

B3

A1 A2

A3

ν ≈ 7.99

δ2 ≈ −1.06

δ3 ≈ −1.06

2g

r = 1.1

g = 0.4

ψ = 45◦

1.12

1.12

2.34

Fig. 10. The goal position.

The goal position corresponds to valuesρ1 ≈ 2.34,
ρ2 = ρ3 ≈ 1.12 andν ≈ 7.99; it is labelled 0 and mapped
outside of the deltoid in the joint space. We explain how
to plan (in the joint space) a path to the goal position



from a position of the manipulator in the same aspect, with
ν ≤ 7.99. The starting position corresponds toρ01, ρ

0
2, ρ

0
3 and

label ℓ ∈ {0, 1, 2, 3}.

• Increase simultaneouslyρ1, ρ2, ρ3 following ρi =
√

(ρ0
i
)2 + t2 until ν =

∑

ρ2
i
= 8

• Keeping ν = 8 constant, move in the plane with
coordinates(δ2, δ3) from

(δ02 = (ρ02)
2 − (ρ01)

2, δ03 = (ρ03)
2 − (ρ01)

2)

to (−1.06,−1.06) following a path inside the red curve
and crossing only arc#ℓ of the deltoid if the label is
ℓ.

Figure 11 shows such a path for labelℓ = 3. (Actually,
it shows only the part of the path in the plane(δ2, δ3) for
ν = 8, since the first segment of the path increasesν without
changingδ2 nor δ3).
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Fig. 11. A path from a starting and a goal position

VI. CONCLUSIONS

The choice of coordinates for the workspace well adapted
to the special class of symmetric manipulators allowed us
to take full advantage of the de-coupling of DKP (into a
cubic and a quadratic equation) in the computations. We
obtained rational parameterizations of the singular surfaces
in the joint space. We obtained also a good description of the
cusp curves on these surfaces, as well as precise information
on the bifurcation of the number of cusps in the slices of the
joint space. Finally, we were able to sort assembly modes in
an aspect and to use this sorting for motion planning in the
joint space.
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