Singular surfaces and cusps in symmetric planar 3-RPR maniplators
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_Abstract—We study in this paper a class of 3-RPR ma- the peculiarity that the resolution of the direct kinemstic
nipulators for which the direct kinematic problem (DKP) is  problem is split into a cubic equation and a quadratic
split into a cubic problem followed by a quadratic one. These  gqyation. Their geometry is characterized by the fact that

manipulators are geometrically characterized by the fact hat the platf tri lei t 1o the b tri le vi
the moving triangle is the image of the base triangle by an e platiorm triangie IS congruent 1o thé base triangle va a

indirect isometry. We introduce a specific coordinate syst indirect isometry of the plane; this is the reason why we call
adapted to this geometric feature and which is also well adapd ~ them “symmetric”.

to the splitting of the DKP. This allows us to obtain easily pecise We propose here a coordinate system for the workspace
descriptions of the singularities and of the the cusp edge$hese which is adapted to this specific class and reflects the

latter second order singularities are important for nonsingular i . . . .
assembly mode changing. We show how to sort assembly modesspllttlng of the direct kinematic problem (section II). Wayp

and use this sorting for motion planning in the joint space. attention to the description of singularities (sectior) Hhd
cusps (section V) using these coordinates. We show how
[. INTRODUCTION to sort assembly modes and use this sorting to do motion

Planar parallel manipulators have received a lot of attef2l@nning in the joint space (section V).
tion [1], [2], [4]-{19] because of their relative simpligit || = A | tERNATIVE COORDINATES FOR THE WORKSPACE
with respect to their spatial counterparts. Moreover, gl . . )
the former may help understand the latter. Planar manipu- 1€ base triangle is denoted by A;4;. In the direct
lators with three extensible leg rods, referred to as 3-RpR{thonormal frame# with origin A; and first axis oriented
manipulators, have often been studied. Such manipulatd?¥ 4142, the coordinates ofl, are (b,0) and those ofds
may have up to six assembly modes (AM) [2] and theigre(d, h). The platform triangle is denpted @3, B2 Bs. DL_Je
direct kinematics can be written in a polynomial of degre&® the symmetry property, the coordinates/®f and B in
six [3]. It was first pointed out that to move from oneth€ direct orthonormal frame with origi; and first axis
assembly mode to another, the manipulator should cro8éented byB; B, are respectivelyb,0) and (d, —h). The
a singularity [2]. However, [4] showed, using numerical€ngth of the legA;B; is as usual denoted by;.
experiments, that this statement is not true in generaleMor
precisely, this statement is only true under some special
geometric conditions, such as similar base and mobile plat-
forms [5], [6]. Recently, [7] provided a mathematical proof
of the decomposition of the workspace into two aspects
(singularity-free regions) using geometric propertiesthod
singularity surfaces. Since a parallel manipulator becme
uncontrollable on a singular configuration, the possibiid
change its assembly-mode without encountering a singylari
is interesting as it can enlarge its usable workspace. Kmgpwi
whether a parallel manipulator has this feature is of irgere
for both the designer and the end-user. The second-order
singularities, which form cusp points in plane sectionshef t Fig. 1. A symmetric 3-RR manipulator.
joint space, play an important role in non-singular assgmbl
mode changing motions. Indeed, encircling a cusp point The platform triangleB; B, B3 is the image of the base
makes it possible to execute such motions [5], [9], [12]4riangle A; A A3 by a glide reflectionS. We encode this
[19] A special class of planar 3-RPR manipulators haglide reflectionS by the triple (¢, r, g) such that the glide
been studied recently [9], [10]. These manipulators haweflection is the orthogonal symmetry with respect to the

line A with equationz cos(v) +y sin(¢)) —r = 0 followed
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Fig. 2. The glide reflection sendind; A2 A3 to B; B2 Bs.

We shall use(p?, p3, p3) as coordinates for the actuated
joint space. Of course, this joint space is contained in the
positive orthantR_, )3.

The direct kinematic problem (DKP) can be solved as
follows:

1) Take a real solution in of equation (9), which deter-
minesy = arctan(t). Generically there are 3 or 1 real
solutions, depending on the sign of the discriminant of
the equation.

2) Computer from ¢ using equation (7), which gives

r= % (b cos(1)) (10)

2
- bcosw)) '
3) Solve the equation (4) faof. It has two real opposite
solutions wherp? > 4r2.
One should take care in the resolution of the DKP of
the casey = +n/2, i.e. t = oco. This corresponds to the

Usually the workspace is viewed as the space of rigidanishing of the third degree term in equation (9), which
motions in the plane and a pose of the manipulator is encodegcurs whens; = 0. In this case one can use equation (8)

by the rigid motionR carrying the half-line[A4; As) to the

half-line [ B, B2). The rigid motionR and the glide reflection
S are related in the following waysS is the orthogonal

symmetry with respect tA; A,) followed by R. If the rigid

motion R is given (as in [9], for instance) by the angle of

rotationyp and the translation vectqr Zj
between the two systems of coordinates is as follows:

¢ = 2¢+7m (mod 27) Q)
z = 2(r cos(y) — g sin(y)) (2)
y = 2(rsin(y) +g cos(v)) . (3)

It is easy to compute the lengths of the legsA;B; in

, then the relation

to computer, which givesr = (h? — d3)/2h for ¢ = /2.
Note that the existence of a solution to the DKP depends
« first, on the existence of a solutidg, ) to the system
of equations (7) and (8),
« second, given such a solutigw, r), on the existence
of a solutiong to equation (4).

These two conditions of existence will be important for the
discussion of singularities in the next section.

IIl. SINGULARITIES

The singular surface in the actuated joint space is thus
given as the union of two surfacés andS,, corresponding
respectively to steps 1 and 3 of the resolution of the DKP

terms of (¢, 7, g), since B; is the image of4; by the glide  gescribed above. The fact that the singular surface splits |
reflection. The squarg? is the sum of the square of the yyo components has already been observed in [9]. We wil
double of the distance of; to the axisA and the square of o\ describe these two surfaces. We will also describe the
the norm of the translation vector, which4g®. This gives: cyitical surfaces2; and>, in the workspace, whose images
by the mappingv,r, g) — (p?, p3, p3) given by equations

o= 4(T2+92) ’ “) (4), (5) and (6) are5; and S, respectively
pi = 4((bcosw) —1)’+¢%) G R ‘
p53 = 4((dcos(y) +hsin(y) —7)* +g¢*) . (6) A. The first singular surface
It will be convenient to introducé, = (p2 — p?)/4 and The surfaceS; is the intersection of the actuated joint

space (always with coordinatés?, p3, p3)) with a cylinder
having generatrix parallel t0l, 1,1) and basis a curvé€' in
the plane of coordinate®-, d3). An equation forC' can be
obtained as the discriminant of equation (9); it is a quartic
An alternative way to describ@ is to compute the jacobian
determinant of the mapping : (¢, ) — (J2,d3) given by
%quations (7) and (8). The jacobian cuivén the space with
coordinateq, r) is given by

) . (12)

_cos(tp) ([ (h* +bd — d*) cos(v) sin(¢)+
82ht* + (bh? — bo3 + bad) %+ =T ( (2d — b) h cos(p) + (b—d) h
2bdh — b*h + 83h) t — b3 + dod + bd* —b*d =0. (9 "

( +2h) 802t 0. © Observe that-(¢) + ) = —r(¢). The critical surfacex;

This equation is essentially the same as the third degreethe workspace is the set of gl r, g) such that(v, r)

characteristic polynomial obtained in [10]. belongs tal". The curveC' is the image of" by the mapping

83 = (p3 — p?)/4. These quantities depend only gnandr,
and not ong:

8y = —2bcos (¢)r + b* (cos (1/1))2 , @)

85 = (dcos (1) +hsin (1))* —2r (d cos () +h sin (1) X8)
Eliminating » between these two equations and writing th

equation obtained it = tan(v), we get the third degree
equation:



®, and it can be parameterized by rational functionsg ef 12 ‘ 93
tan() as )

5. — D(Qd—b)ht> + (2 — 20d — 21*) t + (b — 2d)h)

T (1+t2)2h

5 (ht+d)? (ht*+2(d—b)t—h)

T (1+2)2h

(12)
SoC'is indeed a rational quartic. Its singular points are three
real cusps that can be found by looking at the stationary
points of the parameterization. These stationary points co
respond to parametetsvhich are roots of the cubic equation

(b—2d)h t3+3(h*—d?+db) t*+3h(2d—b) t+d*—db—h* = 0 .
(13)

Since the discriminant08 (d? +h?)? ((d—b)? + h?)? of this Fig. 3. The curveC

cubic equation is strictly positive, there are always thne=sd

roots and hence three real cusps on the cudrveictually,

transforming the equation to an equationinone obtains The critical surface:, in the workspace is always given

P bd 2 by ¢ = 0. The critical surfaceZ; is parameterized by

) = = o h A (4, = cos(9) (=1 = sin(®) cos(®) + cos()?), g) -

Note that the curve’ has no other singular point than the
three cusps. Indeed, a rational quartic may have only up to
three singular points. The cur¢é always has the shape of

a deltoid, i.e. a closed curve with three cusps connected by
arcs concave to the exterior.

B. The second singular surface

The second critical surface, in the workspace is simply
given by g = 0; so it is independent of the geometry of the
manipulator (this is already observed in [9]). Its imafie
in the actuated joint space is parameterized by substtutin
g = 0 in equations (4-6). So the surfa®g is the image of
the elliptic cylinder

p1 = 2r, (15)
p2 = 2(r—>bcos(v)), (16)
ps = 2(r—dcos(yp) — hsin(v)) a7)

by the mapping(p1, p2,p3) — (pi,p3,p3). The implicit
equation ofS, can also be obtained by eliminatingpetween

equation (9) and the equation , o _ _
Fig. 4. The critical surfaceX; (in blue) andXs (in red).

o 03(1+1t%) b? . -
1= 209 + —— Both critical surfaces are represented in figure 4. It may be

2 Y
1+1 interesting to compare this figure with figure 2 in [9], which
where the right hand side is the expression4et derived represents the same surfaces (with the same color code), but
from (10). The implicit equation fo6, obtained in this way in a different coordinate system. The choice of coordinates

p

is a quartic equation ip?, p3, p2, not a very nice one. made here “straightens” the critical surfaces.
The three black lines of figure 4 are the lines of points
C. An example which correspond to cusps in the joint space.

We represent now the singular surfacgsand .S, in the
joint space (See figures 5 and 6 ). The surfagds a part

a hypocycloid with three cusps (a deltoid) inscribed in thé’f a cylinder on the hypocycloid and has three half-lines of

circle with center(1/4,1/4) and radius,/9/8. The three CUSPS. The dra\_/ving of the singular surfaces is made using
(1/4,1/4) 5 /W T their parameterizations b, g) for S; and by (¢, r) for
cusps onC' correspond to the values—,

2 12 1% S

We consider the manipulator with parametgrs 1, h =
1, d = 0. In this case the curvé€' in the plane(dz, d3) is



the number of cusps is the number of cusp points in the slice
of the joint space. Over each of these cusps there are two
triple solutions of the DKP, corresponding to opposite ealu

of g.

Fig. 6. S1 (in blue) andS; (in red) cut atp? = 4.

IV. CuspPs

The singular surfac&; has three half-lines of cusps, all
parallel to the vector(1,1,1). So the cusps are entirely
determined once we know the origins of these three half-
lines. The three possible anglesare determined by equation
(14):

1 d* — bd — h?
wcusp =3
3 b —2d)h

for £ = 0,1,2. For each of these three values ©f,sp,

the corresponding value., is given by equation (11). The
couple(¥eusp, Teusp) determines the line supporting the half-
line of cusps, and the origin of this half-line corresponals t
g = 0. So we get three values for th& of the origins

of the three half-lines of cusps, which are the three values

arctan < > +k g (mod )

for 472 . These three values for are the roots of a third

degree polynomial with coefficients dependingion, d; the

constant term of this polynomial is (b)

4R* (=2d+b)? (d*—2bd*+h>d+b>d—2bh*)* (—h*+2bd—d?)? Fig. 7. The bifurcation values of? for the number of cusps.

and its discriminant is always nonnegative. . , . ,
Figure 7a represents the bifurcation values as function of

Let 0 < 5 < B> < 33 be the three bifurcation values of 1, and d, with b fixed equal to 1 (green fof,, yellow for
p3 for the number of cusps, i.e. thg of the origins of the 3, and red forgs). Figure 7b shows detail for the first and
half-lines of cusps. Then the slice af = ¢ has 0 cusp if second bifurcation values wheén< d < 1.
0<c< fB,lif 1 <e<fBy,2if o <ec< fB3and3
if B, < . One of the bounded intervals may be empty, if V. SORTING ASSEMBLY MODES AND MOTION PLANNING
the constant term of the equation of the third degreg?in INTHEJOINTSEACE
vanishes (for the first interval) or if its discriminant vahes The essential idea here is the following: when one starts
(for the second or third interval). One has to understand th&om a nonsingular solution of the DKP at a point in the



joint space with coordinate&?, p3, p3) and moves in the two curves in thev,r) plane which are given by
direction of the vector(1,1,1), then the solution of the ) o
DKP follows smoothly, without crossing a singularity in . _ h2d +b) cos (¢) + (h* +bd — d°) sin ()

the workspace. Indeed, consider equations (4-6): the motio 4h

p2 — p? + A2, increasing), can be lifted in the workspace n V(h? + d2) (B2 + d? + 1% — 2bd)

(with coordinateg, r, g)) to a path withy) andr fixed and 4h

g increasing tag® + A\ /4. Figure 9 represents a section of the characteristic sigface

The segment in the joint space can cross the secofi@ green) by a plang = constant of the workspace. The
singular surfaceS,. This corresponds to the appearance oflue curve is a section af; and separates the aspects. In
two new solutions to the DKP (One in each aspect), with gach aspect, the characteristic surface delimitates the fo
different couple(y, r). But it never crosses the first singularsorts of assembly modes. The label 0 correspond to points

surfaceS; which is a cylinder with generatrix parallel to Which are mapped outside of the deltdidn the joint space,
(1,1,1). and the labeld, 2, 3 to points which are mapped inside. A

9 9 9 path from 0 to 1 inside an aspect is mapped to a path going
We denotepy + pj + p by v. Then (v,05,03) form a through the arc of the deltoid with label 1, etc..

system of coordinates for the joint space which is convenien
for our present discussion. Moving in the joint space in the r

direction of the vector(1,1,1) is increasingv, keepingd, ¢ 171 )
and 45 fixed. 04
02 -
03 .
1.51 x
-0.2 A 4
1] 0.4 A
0.5 06
0 <
Fig. 9. The four sorts of assembly modes in each aspect, ictsg =
—0.51 constant of the workspace. The green curves are sectiohs oharacteristic
surfaces.
—1] 5,

We illustrate how the labelling can be used for motion
planning in the joint space with an example, again for the
Fig. 8. The section — 8. manipulator with parametets= 1, h = 1, d = 0. We choose
a goal position for the manipulator, given by= /4, r =
1.1 andg = 0.4 (Figure 10).

“1-05 0 05 1 1.5

The situation in the sectiom = k stabilizes for sufficiently
large values of: the section ofS; is a big oval surrounding
the section ofS; which is a deltoid with three cusps (the
curve(C, base of the cylinder). Inside this curgéthere are,
in each aspect, three continuous solutions of the DKP and
between this curv&’ and the section ob, there is in the
same aspect one continuous solution of the DKP. Label by 0
this solution, and label by, 2, 3 the three arcs of’ between
the cusps. Then we can label the three solutions inside the
deltoid C by 1, 2,3 according to the label of the arc of the
deltoid through which they are connected with the solution
0. Figure 8 illustrates the labelling in the same example as
above (the coordinatés,, d3) are used in the sectian= 8).

In this way we can label every solution of the DKP
contained in one aspect by one of the labels 0,1,2 or 3. In
each aspect, all points in the same label form a connected Fig. 10. The goal position.
region and the boundaries between these regions are the so-
called “characteristic surfaces” obtained by pulling bk The goal position corresponds to valups =~ 2.34,
singular surfaceS; in the aspect [20]. The characteristicps = p3 ~ 1.12 andv ~ 7.99; it is labelled 0 and mapped
surfaces in the workspace with coordinatgs,r,g) are outside of the deltoid in the joint space. We explain how
cylinders with generatrix parallel to theaxis and basis the to plan (in the joint space) a path to the goal position



from a position of the manipulator in the same aspect, withs]
v < 7.99. The starting position correspondsgdf, p9, pJ and
label ¢ € {0,1,2,3}.

o Increase simultaneously, p2, ps following p; =

o Keepingv =

V)2 + 2 until v =3 p? =8
coordinateqd2, d3) from

(05 = (p3)? — (p1)% 63 = (p3)* — (p))?)

to (—1.06, —1.06) following a path inside the red curve
and crossing only argtl of the deltoid if the label is

14

Figure 11 shows such a path for label= 3. (Actually,
it shows only the part of the path in the plat®, d5) for
v = &, since the first segment of the path increasesthout
changingd, nor é3).

03

0o
15

“1-05 0 05 1

A path from a starting and a goal position

Fig. 11.

VI. CONCLUSIONS

8 constant, move in the plane with
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The choice of coordinates for the workspace well adaptgél
to the special class of symmetric manipulators allowed us
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