p. 130, l. 28-29 (precision concerning an example of a nonnegative C^∞ function on \mathbb{R} whose square root is not C^∞, communicated by J-C. Tougeron)

An example of a C^∞ function from \mathbb{R} to \mathbb{R}, which is positive outside 0 and infinitely flat at 0, and whose square root is not C^2 at 0, is given in:

p. 189, l. 18-19

Corollary 8.7.13 cannot be used at this place since it is not yet known that B is noetherian. One can use [264] Chap. 8, Theorem 3, which says that, for every prime ideal p of B, $hB \otimes_B k(p)$ is an integral $k(p)$-algebra whose local rings are separable algebraic extensions of $k(p)$. In particular, if $q \subset q'$ are prime ideals of hB such that $q \cap B = q' \cap B$, then $q = q'$.

p. 191, l. 5-3 from bottom (communicated by A. Tancredi)

The argument for the fact that m_x is finitely generated is incorrect and should be replaced by the following one:

Let n_x be the ideal of $f \in \mathcal{P}(V)$ vanishing at x. We have $n_x \mathcal{N}(M) = m_x$, hence m_x is finitely generated.

p. 203, l. 11

Read “where π is the projection ...” instead of “where Π is the projection ...”
p. 300, l. 15 (statement of Proposition 12.1.3)

Read “Let \(\xi \) be a prealgebraic vector bundle” instead of “Let \(\xi \) be an algebraic vector bundle”.

2