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These notes are an expansion of notes I had written for a pre&post-doc seminar on algebraic stacks,
at the Kungliga Tekniska Högskolan (KTH) of Stockholm.

My original aim was to provide, roughly, the material filling the gap between Hartshorne’s Algebraic
Geometry and texts such as Vistoli’s Appendix or Laumon and Moret-Bailly’s book.

I included the case of descent by faithfully flat universally open morphisms (naturally denoted fpuo).
Quite curiously fpuo descent is usually absent from the classical treatments. Proofs for fpuo descent are
essentially the same as the proofs for fpqc descent, but the situations covered are different.

I assumed knowledge of the notions of flat, smooth, étale morphisms. In particular are recalled without
proof some fundamental properties of flat morphisms, like openness or the preservation of properties of
morphisms.

Apart from that, the proofs are as much as possible self-contained. I tried to make arguments concise
and clear.



Descent theory

Introduction

Let X be a topological space and {Ui}i∈I an open cover. For each i let Ei be a given fibre space
over Ui (of the type you prefer: vector bundle, principal G-bundle, projective bundle, topological covering
space...). Do all the Ei glue to give a fibre space over X ? We know how to handle this problem, because
the definition of the objects involved (bundles) is precisely in terms of the open covers (the topology)
on X. Namely in order to glue we must have isomorphisms

τij : Ei|Uij

∼−→ Ej |Uij
(1)

(with τii = id and τji = τ−1
ij ) such that on triple intersections Uijk we have

τjk ◦ τij = τik (2)

We can avoid indices by setting U ′ = q
i∈I
Ui and view the datum of the Ei as a bundle E′ → U ′ ; then

obviously
U ′′ := U ′ ×X U ′ = q

i,j∈I
Uij

(this includes Uii’s). The two projections to U ′ are given by : for x ∈ Uij , p1(x) = x ∈ Ui and
p2(x) = x ∈ Uj . Then (1) is equivalent to an isomorphism

τ : p∗1E
′ ∼−→ p∗2E

′ (3)

and (2) is equivalent to
π∗23τ ◦ π∗12τ = π∗13τ (4)

on U ′′′ := U ′ ×X U ′ ×X U ′ = q
i,j,k∈I

Uijk.

If we want to formalize these tautologies in the terms of the vocabulary of descent, then we will call
an isomorphism τ satisfying (4) a descent datum for E′ with respect to U ′ → X, and what we said is just
that it is the same thing to have a bundle over X, or a bundle over U ′ together with a descent datum.
Roughly said, the discovery of Grothendieck is that, in Algebraic Geometry, the particular properties of
flat morphisms allow to treat them as ”coverings” (thus replacing the sums of open immersions) and get
formally the same result. In particular the members of these new ”coverings” will no longer be subsets
of X ; the rule will be ”replace intersections by fibre products”.

The vocabulary of descent

Let’s develop a little the formalism of descent. For simplicity we will only speak about categories fibred
over the category of schemes Sch. So let C be a category and p : C → Sch a functor. Any object S ∈ Sch
defines a point category (the only object is S, the only map is idS). The fibre category C(S) = p−1(S) is
the category whose objects are those above S, and whose maps are those above idS .

Definition 1 We say that C is a fibred category over Sch if there are pullback functors f∗ : C(S1) → C(S2)
for any f : S2 → S1, together with isomorphisms cf,g : g∗f∗ ' (fg)∗ whenever the composition fg makes
sense, satisfying the cocycle relation expressing the expected associativity :

(gh)∗f∗
��

h∗g∗f∗

22

,,

(fgh)∗

h∗(fg)∗
GG

We often denote the canonical isomorphisms cf,g by simple equalities.

We could work with a more general definition ; on the contrary we could also state the descent
theorems avoiding completely any general definition. This is the attitude adopted in the appendix of
the book [BFFGK], but I don’t find this very enlightening. The intermediary choice of definition 1 is
well-suited for the purpose of speaking of algebraic stacks later on.



Definition 2 Let α : S′ → S be a morphism of schemes. Put S′′ = S′ ×S S′ and γ = αp1 = αp2.

(i) We say that α is a morphism of descent for C if for all objects ξ, η ∈ C(S) we have that

HomS(ξ, η) // HomS′(α∗ξ, α∗η) // // HomS′′(γ∗ξ, γ∗η)

is an exact diagram.

(ii) Let ξ′ ∈ C(S′). We call glueing datum for ξ′ with respect to α an isomorphism τ : p∗1ξ
′ ' p∗2ξ

′ between
objects on S′′ (p1, p2 are the two projections).

For example, if ξ ∈ C(S) then ξ′ = α∗ξ has a canonical glueing datum given by p∗1α
∗ξ ' (αp1)∗ξ =

(αp2)∗ξ ' p∗2α
∗ξ. There is an obvious notion of morphism between two pairs (ξ′, τ) and (η′, υ) : it is a

morphism ϕ : ξ′ → η′ compatible with τ and υ i.e. such that the following square commutes :

p∗1ξ
′ τ //

p∗1ϕ

��

p∗2ξ
′

p∗2ϕ

��
p∗1η

′ υ // p∗2η
′

Definition 3 We say that a glueing datum for ξ′ with respect to α : S′ → S is effective if ξ′ together
with its glueing datum is isomorphic to some α∗ξ with its canonical glueing datum.

In other words this means that ξ′ ”descends to S” or ”comes from S”. Of course in general there is
no chance that all glueing data should be effective : a necessary condition of effectivity is to satisfy the
cocycle condition on triple overlaps, i.e. on S′′′.

Definition 4 We call descent datum for ξ′ with respect to α : S′ → S a glueing datum τ : p∗1ξ
′ ' p∗2ξ

′

which satisfies π∗23τ ◦ π∗12τ = π∗13τ .

Exercise 5 The case when α has a section (i : S → S′ such that αi = id) is particularly important.
Show that a given object ξ′ can descend to at most one ξ ; that any glueing datum on ξ′ is effective. So
in particular all descent data for ξ′ are effective and isomorphic.

With these definitions, we can give a simple statement of the result we aim at. Given α : S′ → S,
which we may think of as qUi → X, consider, on one hand, the category C(S) of objects over S. On the
other hand we have the category C(S′)desc of objects over S′ together with a descent datum. Then the
”unglueing” functor α∗ : C(S) → C(S′)desc

• is fully faithful if and only if α is a morphism of descent for C,

• is essentially surjective if and only if all descent data for objects on S′ are effective.

If both properties are true we say that α is a morphism of effective descent for C.

Faithfully flat descent

Now we have all in hand to state the theorems. There is a catalogue of results of descent for modules,
schemes, schemes together with a locally free sheaf,... We won’t try to be comprehensive, but rather give
the most significant results and emphasize the ideas, so that reading of all of exposé VIII, [SGA1] should
then become easy.

As a matter of notation, it is standard to denote faithfully flat and quasi-compact morphisms as
fpqc. We will also use the (non-standard) acronym fpuo to denote faithfully flat and universally open
morphisms. We prove basic descent theorems for fpqc and fpuo morphims ; then refinements exist with
more assumptions. Roughly, the working principle of the proofs will be to reduce to a statement in
commutative algebra (where the fp assumption will do the job) the geometric statement on schemes
(thanks to either the qc or the o assumption).

Remark 6 A particular case of fpuo morphism is a sum of open immersions, by which we mean a
morphism α : qSi → S given by choosing an open covering S = ∪i∈ISi. The example of the introduction,
transposed in the category of schemes, is just that sums of open immersions are morphisms of effective
descent for the categories of sheaves, or morphisms,... This is just ordinary Zariski glueing.



For general faithfully flat descent, the first important result concerns descent of modules :

Theorem 7 A morphism α : S′ → S which is either fpqc or fpo is a morphism of effective descent for
the fibred category Qcoh→ Sch of quasi-coherent modules.

Proof : First we reduce the fpo case to fpqc. Indeed if α is open, we can cover S′ by open affines S′i and
S by the open images Si = α(S′i). Denote by αi : S′i → Si the restriction, then we have a diagram

S′i
� � mi //

αi

��

S′

α

��
Si

� � ni // S

Consider the sums of open immersions m = qmi and n = qni. We have α ◦ m = n ◦ (qαi), so
m∗ ◦α∗ ' (qα∗i ) ◦n∗. As m∗ and n∗ are equivalences of categories (remark 6) we are reduced to proving
the theorem for αi. This means we can assume that S′ is affine, and in this case α is quasi-compact.

Second, we reduce to S and S′ both affine. For this we cover S by open affines Si and we put
S′i = α−1Si. Then we have the same diagram as before, so we are reduced to proving the theorem for αi,
i.e. we can assume furthermore that S is affine. By quasi-compactness S′ is covered by a finite number
of open affine schemes. By the same trick again we can replace S′ by the disjoint sum of these affine
schemes, which is itself an affine scheme (this is not true for an infinite sum of affine schemes).

So finally S = Spec(A) and S′ = Spec(A′). We note A′′ = A′ ⊗A A′. To prove full faithfulness, given
A-modules M,N (and M ′ = M ⊗A′, etc), we must show exactness of the following diagram :

HomA(M,N) // HomA′(M ′, N ′) //// HomA′′(M ′′, N ′′)

By property of the tensor product · ⊗A A′, this diagram is none other than HomA(M, ·) of

D : N // N ′ //// N ′′

Note that D can be rewritten as a diagram 0 → N → N ′ → N ′′ so, as HomA(M, ·) is left exact, the result
will follow if we show that D is exact. But D is exact if and only if it is exact after tensor product by a
faithfully flat algebra. If we choose to tensor by A′ then A→ A′ acquires a section (namely A′⊗AA′ → A′,
x1 ⊗ x2 7→ x1x2). Assume we reduced to this case, and note s : A′ → A the section. Then injectivity of
N → N ′ is clear. Now assume that an element of N ′, written n′ =

∑
ni⊗xi, has its images that coincide

in N ′′, meaning
∑
ni ⊗ 1⊗ xi =

∑
ni ⊗ xi ⊗ 1. Then applying the map N ′′ → N ′ which sends n⊗ x⊗ y

to n⊗ s(x)y, we get that
∑
ni ⊗ xi =

∑
ni ⊗ s(xi) =

∑
nis(xi)⊗ 1, as was to be shown.

To prove essential surjectivity, let N ′ be an A′-module together with an isomorphism u : N ′′
1 ' N ′′

2

between the extensions of N ′ via the two maps A′ ⇒ A′′. We must show that (N ′, u) is isomorphic to an
A-module N with its canonical descent datum. Consider the sub-A-module of N ′ of elements x such that
u(x⊗1A′′) = x⊗1A′′ in N ′′. It remains to show that the obvious map N ⊗AA′ → N ′ is an isomorphism,
which can again be checked after · ⊗A A′. But then we identify the problem with a problem of descent
with respect to the morphism Spec(A′ ⊗ A′) → Spec(A′), which is a morphism of effective descent since
it has a section (exercise 5). �

Remark 8 The ”fully faithful” part of the theorem gives in particular, for any fpqc or fpo morphism
α : S′ → S, the exact diagram OS → α∗OS′ ⇒ γ∗OS′′ (straightforward sheafification).

Let’s look at descent of schemes. Here things are slightly different, because as we saw, the working
principle of descent is to reduce to commutative algebra. But, locally on an open affine U = Spec(A)
of S, an OS-module is a module over A, whereas an S-scheme can’t be reduced to an A-algebra.

Of course this reduction can be done for schemes that are affine over S, i.e. X = SpecOS
(A).

Furthermore as tensor product commutes with pullback, the multiplication A ⊗ A → A does descends,
applying theorem 7. So we get :

Theorem 9 Any fpqc or fpo morphism is a morphism of effective descent for the fibred category Aff →
Sch of relatively affine schemes. �



It turns out that in general (i.e. for the whole category Sch), an fpqc or fpuo morphism will at
least be a morphism of descent. This rests on the following useful property of fpqc morphisms (SGA1,
exposé VIII, cor. 4.3), which clearly holds also for fpo morphisms :

Proposition 10 Let α : S′ → S be an fpqc morphism. Then a subset Z ⊂ S is open (resp. closed) if
and only if α−1(Z) is open (resp. closed). In other words α makes S into a topological quotient of S′. �

Theorem 11 Any fpqc or fpuo morphism is a morphism of descent for the fibred category Sch→ Sch of
schemes.

Proof : Let α : S′ → S be an fpqc (resp. fpuo) morphism ; we denote the usual pullbacks with the usual
primes. We have to show that given S-schemes X and Y , we have an exact diagram

HomS(X,Y ) // HomS′(X ′, Y ′) //// HomS′′(X ′′, Y ′′)

First we show that the left-hand map is injective. Let f1, f2 : X → Y be morphisms that coincide after
pullback via α :

X ′
f ′1=f

′
2=f

′
//

v

��

Y ′ //

w

��

S′

α

��
X

f1,f2 // Y // S

Since v is fpqc (resp. fpo) , and the maps f1 and f2 are induced by wf ′ by the property of the topological
quotient X ′ → X (proposition 10), they must agree as topological maps. If the comorphisms cfi : OY →
fi,∗OX also agree we will be done. But as v and w are fpqc (resp. fpo) we have OX ↪→ v∗OX′ and
OY ↪→ w∗OY ′ (use remark 8), so cf1 = cf2 being the restriction of cf ′.

We now consider f ′ : X ′ → Y ′ such that its pullbacks via S′′ → S′ coincide. So wf ′ is constant
on the fibres of v, hence by proposition 10 it descends to a continuous map f : X → Y (by definition
of a topological quotient). There is a map λ : f−1OY → v∗OX′ obtained by adjunction from OY →
w∗OY ′ → w∗f

′
∗OX′ = f∗v∗OX . The assumption that f ′′1 = f ′′2 says that the compositions of λ with the

maps v∗OX ⇒ z∗OX′′ coincide, but by remark 8 again the corresponding exact diagram for v gives a
factorization of λ through OX and we obtain a morphism of ringed spaces, which is what we wanted. �

The conclusion of our discussion is that for the descent of schemes, it is only effectivity of descent data
that may fail. A lot of important criteria of effectivity are given in [SGA1], Exp. VIII, for different types
of maps α : S′ → S with respect to different fibred categories of schemes C → Sch. We will give below an
instance of this. For the moment we must say that the technique of flat descent acquires great strength
from the fact that an important number of properties of objects are equally tested after faithfully flat
base extension. Precisely :

Theorem 12 let f : X → Y be a morphism of S-schemes, let α : S′ → S be an fpqc or fpuo morphism,
and let f ′ be the pullback by α. Let P be a property of morphisms among : injective, surjective, with
finite fibres, bijective, radicial, (universally) open, (universally) closed, (universally) a homeomorphism,
quasi-compact, (quasi-)separated, (locally) of finite type, (locally) of finite presentation, an open, closed
or quasi-compact immersion, proper, an isomorphism, (quasi-)affine, (quasi-)finite, integral, flat, smooth,
unramified, étale. Then f has P if and only if f ′ has P.

Proof : For α fpqc this is EGA IV, 2.6.1, 2.6.2, 2.6.4, 2.7.1, 17.7.3. Now assume that α is fpuo. All
properties are preserved by arbitrary base extension except P = open, closed and being a homeomorphism.
But it is easy to check that these three are preserved by fpuo base extension. So there is only the ”if”
part left to check. Furthermore we can assume that S = Y because Y ′ → Y is still fpuo. Finally all the
properties P are local on the base, i.e. we can assume that Y is affine.

Then choose an open affine cover Y ′ = ∪i∈IY ′i . By the assumption that α is open, the images Yi in Y
form an open cover of Y . By quasi-compactness a finite number Y1, . . . , Yn cover Y . Put Y ′′ = ∪ni=1Y

′
i ,

so we have an open immersion Y ′′ ↪→ Y ′ such that Y ′′ → Y is fpqc. Consider f ′′, the pullback of f by
Y ′′ → Y . If f ′ has P then f ′′ still has P, because all the properties P are preserved by base extension,
except open, closed and being a homeomorphism, but these are at least preserved by restriction to an
open set. Hence we are reduced to the fpqc case. �

We now prove effectivity of fpqc and fpuo morphisms for quasi-affine schemes :



Theorem 13

(i) Any fpqc or fpo morphism is a morphism of effective descent for the fibred category (Qc+Amp) → Sch
of relatively quasi-compact schemes together with an ample sheaf.

(ii) Any fpqc or fpo morphism is a morphism of effective descent for the fibred category Qaff → Sch of
relatively quasi-affine schemes.

Proof : (sketch) Let α : S′ → S be fpqc (resp. fpo) , f ′ : X ′ → S′ be quasi-compact, and L′ an ample
sheaf on X ′. Look at the quasi-coherent sheaf of graded algebras S′ := ⊕f ′∗L′

⊗n. By assumption X ′ is
open in P ′ = Proj(S′). One uses th. 7 to descend L′ and S′ to L and S, then X ′ descends to an open
subscheme of P = Proj(S). Since a scheme is quasi-affine if and only if OX is ample, making L = OX we
get (ii). �

Remark 14 Contrary to fpqc, the notion of fpo morphism is not stable under base change. In view
of the importance of base changes in the theory it would be preferable to work with universally open
morphisms (hence we would look at fpuo). An important subclass of these morphisms is provided my
the morphisms locally of finite presentation (ref). We note fppf for faithfully flat and locally of finite
presentation. Be careful that for certain authors this stands for faithfully flat and of finite presentation,
hence assuming quasi-compactness and quasi-separatedness.

Complements

There is a couple of important remarks to make before we close the topic. Namely we want to evoke
the problems of non-effectivity and a few exotic (though very useful) situations of descent.

(rk1) The first remark is that when we work locally in the Zariski topology, usually we don’t check the
compatibility conditions on open set intersections, but rather content ourselves to claim that ”it is clear
that” they glue or that ”being canonical”, the construction globalizes. When we work locally in different
”topologies” (this concept is introduced later) we often have the same somewhat lazy attitude, that is to
say we often pass over the verification that a glueing datum is a descent datum, and sometimes we don’t
even provide a glueing datum. But one has to be careful in doing so that it needs a little practice and
experience to feel exactly when the glueing will work, and when it won’t.

(rk2) There is in Néron Models [BLR], § 6.1, th. 6, a refinement of theorem 11 that explains why some
schemes may have non-effective descent data. One finds counter-examples to effective descent in [BGFFK]
(App. on descent) and [BLR] (chap. 6).

(rk3) There are a few results of non-flat descent, i.e. where the ”covering map” α is not flat and however
α∗ induces an equivalence of categories. For such examples see Laszlo-Beauville (Un lemme de descente,
C.R.A.S. Paris, Sér. I 320, No.3, 335-340 (1995)) or Grothendieck (Bourbaki seminar, exposé 195, B.
th.2, and exposé 190, A.4.e, and EGA IV3 11.4 to 11.6).

(rk4) Lastly, we mention a situation in [BLR] (§ 6.2, prop. D.4) which can be considered also as non-flat
descent. They study descent for α : Spec(R′) → Spec(R) where R ⊂ R′ is an extension of discrete
valuation rings with same uniformizing element and same residue field (thus this descent of an arithmetic
nature, like in the Galois example below). This includes an étale extension of discrete valuation rings
with trivial residual extension, or R′ = henselization or completion of R. Call K,K ′ the fraction fields.
The scheme S′1 = Spec(R′) alone is a fpqc covering of S = Spec(R), but [BLR] considers together with
it the scheme S′2 = Spec(K) (also flat quasi-compact over S). Their result is that descent holds with a
much lighter descent datum than usual, namely with a glueing datum on the only S′1 ∩ S′2 (and not on
S′′1 , S′′2 as would seem natural).

Examples - counter-examples of flat maps

A sum of affine schemes which is not affine : q∞i=1 Spec(k)

An fpqc map which is not open : Spec(Z)q Spec(Q) → Spec(Z)

An fpo map which is not qc : q∞i=1 Spec(A) → Spec(A) (trivial)

An fp map which is open, quasi-compact, but not universally open : take a field k, let A = k[t](t) be
the local ring of the origin in A1

k. Then the morphism Spec(Â⊗A Â) → Spec(Â) is not open.



An fp map which is not of effective descent for Qcoh : qp Spec(Zp) → Spec(Z). Indeed for this map
we have

S′ ×S S′ = q
p,q

Spec(Zp ⊗Z Zq)



An example of Galois descent

Descent theory is essential to do ”relative” algebraic geometry, which studies objects over a general
base scheme S rather than over an algebraically closed field k. The case of a base which is a non-
algebraically closed field, although simple, can’t usually be treated by classical methods and is a nontrivial
application of descent. Let’s work out an example in full detail.

Let C ′ be the conic in P2
C with equation

x2 + 2ixy + z2 = 0

It is actually defined over Q(i) (let k0 ⊂ k be an extension of fields, we say that a k-scheme X is defined
over k0 if there exists a k0-scheme X0 such that X ' X0 ⊗k0 k). This is descent already but it is trivial.
From now on we see C ′ as a Q(i)-curve.

A little less trivial fact is that actually it is defined over Q : put w = x+ iy and you get the curve C0

with equation
w2 + y2 + z2 = 0

Note that a curve C0 s.t. C ′ ' C0⊗Q Q(i) is not unique. Indeed, if you put u = x+ iy and v = y− iz you
set up an isomorphism between C ′ and the projective line P1

Q(i) which of course is P1
Q ⊗Q Q(i). But you

don’t have C0 ' P1
Q as Q-schemes simply because C0 has no rational point. (remark: the reason why C

”comes from” P1 is that it has genus 0, like all conics !).
Clearly for less trivial examples it would be hard to see whether the curve is defined over a subfield;

also in general there does not exist a minimal subfield.

In terms of descent here is the translation : put S = Spec(Q), S′ = Spec(Q(i)), we have a curve C ′

over S′ and we wonder if it descends to S. We have that S′′ is the spectrum of Q(i)⊗Q(i) ' Q(i)×Q(i)
(an isomorphism is given by x⊗ y 7→ (xy, xy) where the bar is complex conjugation). Simplify notation
to ∗ := Spec(Q(i)), then

S′ = ∗

S′′ = {∗, ∗}

S′′′ = {∗, ∗, ∗, ∗} (careful !)

We can compute all projection maps

p1, p2 : S′′ → S′ π12, π13, π23 : S′′′ → S′′ and π1, π2, π3 : S′′′ → S′

p∗1(a) = (a, a)
p∗2(a) = (a, a)

π∗12(a, b) = (a, b, a, b)
π∗13(a, b) = (a, a, b, b)
π∗23(a, b) = (a, b, b, a)

π∗1(a) = (a, a, a, a)
π∗2(a) = (a, a, a, a)
π∗3(a) = (a, a, a, a)

So p∗1C is two copies of C, p∗2C is a copy of C and a copy of C, and so on. We see (...) that

• a glueing datum for C ′ with respect to S′ → S, that is to say an isomorphism τ : p∗1C ' p∗2C, is
just given by an isomorphism σ : C ' C

• a descent datum (for C ′ with respect to S′ → S) is a glueing datum such that σ ◦ σ = id

(we must check π∗23τ ◦ π∗12τ = π∗13τ , but we have τ = (id, σ) so π∗12τ = (id, σ, id, σ) and so on...) Note
that C has equation x2 − 2ixy + z2 = 0. We can give plenty of glueing data :

• σ(x : y : z) = (−x : y : z)

• σ(x : y : z) = (x : −y : z)

• σ(x : y : z) = (−ix : −iy − x : z)

• σ(x : y : z) = (−ix+ 2y : −x− iy : z)



Exercise: the first three are descent data, the last is not (if I made no mistake). So it is not enough to
give an isomorphism between C and C...

In any case this shows that C ′ indeed descends to S = Spec(Q). The fact that the descended curve
is not unique corresponds to the fact that we can choose different descent data (we can glue on S′′ in
different ways). But if we fix a descent datum then the curve descends uniquely.

Remarks 15

(i) Exercise : show that the elliptic curve with equation y2 + xy = x3 + i does not descend to Q.

(ii) Culture : let k0 ⊂ k be a Galois extension, then for an elliptic curve over k, any glueing datum w.r.t
the morphism Spec(k) → Spec(k0) is effective. It is not so easy to find curves over k with glueing data
that don’t descend to k0, but there are (cf Dèbes & Douai, Algebraic covers: Field of moduli versus field
of definition, Ann. Sc. ENS 1997).

(iii) The general arithmetic descent treated by Weil said that a k-variety descends to k0 if and only if
there exist isomorphisms ϕg : C ' gC for all g ∈ Gal(k/k0) such that for all g, h we have ϕgh = gϕh ◦ϕg.



Inductive limits

Here I give a few definitions and remarks that may be known already from the reader, but are rarely
presented this way. It is also a pretext to introduce groupoids. This paragraph would perhaps better fit
in the place of an appendix, but it is given here for the sake of logical order of reading.

Definitions

Briefly said, three major kinds of inductive limits will be of interest to us : the (amalgamated) sums,
the quotients, and the filtered inductive limits 1.

Let I and C be categories. Any object X ∈ C defines a point category, which is a final object in Cat,
so there is a unique functor cX : I → X → C, covariant in X.

Definition 16 Let I, I ′ and C be categories.

(i) The inductive limit of a functor F : I → C is the functor LF : C → Ens defined by

LF (X) = HomFunct(F, cX)

When it is representable we write lim
−→

F the representing object, well-defined up to unique isomorphism.

(ii) A functor ϕ : I ′ → I is cofinal if the morphism LF → LF◦ϕ is an isomorphism for all F : I → C.

In more down-to-earth terms a functor ψ : F → cX is given by maps Ai → X for all i ∈ I, where
Ai = F (i), with commutativity of Ai → Aj → X whenever i→ j is a morphism in I (warning : different
morphisms from i to j give rise to different morphisms form Ai to Aj).

Remarks 17 (i) As is clear already from the case of arbitrary direct sums (see 18(i) below), in general
when the class of objects of I is not a set the inductive limit of a functor won’t be representable. So in
the sequel we will stick to small categories in the sense that Ob(I) is a set.

(ii) Another assumption can be made harmlessly. If we factor F through I → F (I) → C, it is clear that
I → F (I) is cofinal for F (in an obvious meaning), so we will always assume that I is a subcategory of C

(via F ).

(iii) If an object of I has one and only one morphism from it, then erasing this object together with its
morphism gives a cofinal subcategory of I.

Examples 18 The following examples are essential. The first three describe the I’s with low number of
non-identity maps :

(i) no map : the inductive limit is by definition the direct sum of the objects Ai = F (i), denoted q
i∈I
Ai.

(ii) one map : clearly {2} → {1 → 2} is cofinal, bringing us back to (i).

(iii) two maps : • when I = {1 ⇒ 2}, then F is equally given by a diagram A // // B . The colimit is
by definition the cokernel denoted coker (A //// B ).

• when I = {1 → 2, 1 → 3}, then F is equally given by two morphisms A → B and
A→ C. The colimit is by definition the amalgamated sum denoted B qA C.

• the last cases with two maps are I = {1 → 3, 2 → 3} and I = {1 → 2, 3 → 4}, they
are trivial as they have cofinal subcategories {3} and {2, 4} respectively.

(iv) another highly interesting example is the case of quotients which we will introduce later.

(v) examples of amalgamated sums are amalgams in topology and tensor product of A-algebras.

Case (i) is the ”disconnected” situation ; it turns out that any case of (iii) is enough to encapture the
”connected” situations and give all colimits :

Proposition 19 Consider an inductive limit of a functor F : I → C from a small category. If the
category C has direct sums, and either cokernels or amalgamated sums, then it has all arbitrary small
inductive limits.

1A point of vocabulary : the following terms are used : colimits, inductive limits, (direct, disjoint, amalgamated) sums,
cokernels, quotients. Dually we have limits, projective (or inverse) limits, (direct, fibred) products, fibred products, kernels.



Proof : We just give a sketch of the construction, and work out the recipe on examples rather than im-
merse into the verifications. First, assuming C has direct sums, the existence of cokernels or amalgamated
sums are equivalent because

coker (A //// B ) = B q
AqB

B and Aq
C

B = coker (C // // AqB )

Now let F : I → C be a functor. Consider the coproduct of all domains of maps of F (I), and the
coproduct of all objects of F (I) :

C1 = q
i→j∈Hom(I)

F (i) and C2 = q
i∈I
F (i)

By definition of C1, a map C1 → C2 is given by maps F (i) → C2 for all ϕ : i→ j. Let’s consider the two
particular maps given (1) by the maps F (i) → F (i) and (2) by the maps F (ϕ) : F (i) → F (j). Then we
have lim

−→
F = coker (C1 // // C2 ). �

Limits in Set

We’ll introduce filtered limits after we see them arise naturally in the computation of inductive limits
in the particular case of C = Set. The procedure in the proof of the proposition exhibits an inductive
limit of sets as the quotient of the direct sum q

i∈I
Ai by an equivalence relation. Let ` be the reflexive

symmetric relation defined by ai ` aj iff there exist k, ϕ, ψ as follows

k

i

ϕ CC���
j

ψ\\888

such that ϕ(xi) = ψ(xj). The transitive closure of ` is defined by ai ∼ aj iff there is a finite chain

k0
. . . kn

i

BB���
`1

CC����
^^===

`n

??���
[[7777

j

]];;;

with relations ai ` b1 ` · · · ` bn ` aj . Then the inductive limit is lim
−→

F = q
i∈I
Ai/ ∼ . In the case of a

cokernel A //
ϕ,ψ // B it is easy to see that all amounts to a relation on B defined by b ∼ b′ iff there is a

chain of elements in B and A as below, and coker (A //// B ) = B/∼ .

b b1 . . . bn b′

a0
ϕ

]];;;
ψ

??���
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ϕ
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ψ

<<xxx
an

ϕ
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ψ

??���

The main trouble with this transitive closure process appears with the search for a commutation with
products. Assume given two functors F : I → Set and G : J → Set. Then there is an obvious product
F × G : I × J → Set, but we don’t have in general lim

−→
F × G = lim

−→
F × lim

−→
G for lack of a possibility

to ”refine chains”. Here is a counterexample : look at the two maps R → R given by the identity and
x 7→ x+1. Then coker (R // // R ) = R/Z. But, coker (R× R //// R× R ) = R×(R/Z) because the product
maps are the identity and (x, y) 7→ (x+ 1, y + 1).

Remark 20 If F andG are direct sums then commutation holds : q
i,j∈I×J

Ai×Bj = q
i∈I
Ai× q

j∈J
Bj . Indeed

in this case there are no chains, so nothing needs refinement. This is why I looked for a counterexample
among cokernels.

Filtered limits

The important case of filtered colimits is one where the pre-equivalence relation ` is already an
equivalence relation, and all chains can be refined. In this case commutation with product holds, and
even commutation with any finite limit (i.e. a limit such that the category of indices I is finite i.e. has
finitely many objects and morphisms). We remain very concise here ; a good place where to find these
definitions and results gathered is SGA4, exposé I, § 2.



Definition 21 A small category I is said to be filtered if

(i) for any i, j ∈ I there exists k and maps i→ k, j → k.

(ii) any two maps h→ i, h→ j can be completed into a commutative square thanks to i→ k, j → k.

Examples of filtered colimits are the local ring of a point in a ringed space, the sheafification process,
the algebraic closure or henselization. Note that when I is a preordered set (that is to say there is at
most one map between any two objects), condition (i) alone is the usual definition of filtered preordered
sets, and (ii) is automatic.

Proposition 22 In the categories Set, A-Mod, A-Alg (for a commutative unitary ring A), Mod(X) (for
a topological space X), filtered colimits commute with finite limits. �

To see this, one first shows that we can restrict to commutation of filtered colimits with fibred
products (easy). Let there be given a filtered category I (or a filtered set for simplicity), three inductive
systems (Ai, αij), (Bi, βij), (Ci, γij), and morphisms of inductive systems {ui} : {Ai} → {Ci} and
{vi} : {Bi} → {Ci}. This means that for all j > i we have γijui = ujαij and γijvi = vjβij . Then there
are induced arrows δij : Ai ×Ci

Bi → Aj ×Cj
Bj making the Di = Ai ×Ci

Bi into an inductive system.
Furthermore let A = lim

−→
Ai, etc. Then there are morphisms D → A → C, D → B → C, inducing

D → A×C B, and what is to be checked is that this is an isomorphism. We won’t prove this.

Groupoids in a category

First we introduce quotients that are particular inductive limits. Assume that I has a quasi-terminal
object, meaning an object ∗ ∈ I such that any i ∈ I has at least one map to ∗ (this is not standard
terminology, so use it with precaution). Then we will say that the inductive limit functor LF of a functor
F : I → C is a quotient. If the inductive limit exists, then the map A∗ → lim

−→
F is an epimorphism and

we say it is a quotient of A∗. Here are now examples in Set.

(ex1) The most basic example is the cokernel A //
ϕ,ψ // B . As we said before, its inductive limit is computed

by looking at the equivalence relation associated to the relation ` whose graph is the image of the map
(ϕ,ψ) : A→ B ×B.

(ex2) An equivalence relation R //// X is the particular case of cokernel when, in the notations above,
(ϕ,ψ) is injective and ` is already... an equivalence relation.

(ex3) A group action of G on a set X yields a cokernel G×X //// X where the two maps are the action
and the projection onto X. This is an equivalence relation exactly when the action is free.

(ex4) Let C be a category whose class of objects X0 is a set. Then the class X1 of morphisms is a set
also, and there are maps s, t from X1 to X0 giving the source and target of a morphism. There is also a
map X0 → X1 giving the identity morphism of each object. Finally, we have the set X2 of composable
morphisms which is none other than the fibre product X2 = X1×t,X0,sX1. There are three maps from X2

to X1, namely the two projections and the map giving composition in the category C. As a conclusion,
any small category gives rise to a quotient inductive limit functor X2

// //
//
X1 //// X0 . Conversely it

is clear that this diagram together with some commutative diagrams (expressing associativity of the
composition in C, compatibility with identities) allow to recover the category structure.

(ex5) A (small) groupoid is a (small) category G in which any morphism is invertible. In other words,
in addition to the structure of a small category, there exists a map X1 → X1 giving the inverse of any
morphism. Note that groupoids include equivalence relations as well as group actions. A set X gives rise
to a groupoid without morphisms ; a group G gives rise to a groupoid B0G with one single object whose
automorphism group is G, i.e. as the action of G on a point (necessarily trivial). Most often, as X2 is
determined by the rest of the data, groupoids are simply denoted G = ( X1 // // X0 ).

Now let us indicate the way in which one can extend these concepts (and examples of other algebraic
structures, usually defined on an underlying set, such as the structures of group, module, ...) to any
category other than Set, thanks to the Yoneda embedding. So let C be a category and denote by
C∧ = HomCat(C0, Set) the category of presheaves of sets on C. First of all let us recall the well-known :



Proposition 23 (Yoneda’s lemma)

(i) (weak form) the functor h : C → C∧ which maps X to Hom(·, X) is fully faithful.

(ii) (strong form) for any presheaf F ∈ C∧ and X ∈ C, the map F (X) → Hom(hX , F ) is a bijection. �

The proof is an exercise. Point (i) says that for any X,Y , the map Hom(X,Y ) → Hom(hX , hY ) is
a bijection. As Hom(X,Y ) = hY (X), point (ii) says that (i) extends to presheaves F which are not
necessarily of the form hY .

Now let A be a category of ”algebraic” objects. By this we mean, quite generally, that an object
A ∈ A is given by a structure supported by several sets (finitely many), related by several maps between
them (finitely many), together with several diagrammatic conditions satisfied between these maps. For
an example, a group structure is supported by a set, or more precisely by two sets (since it involves a
unit element) and the multiplication and inverse maps. Other examples are rings, modules, equivalence
relations or small categories (see above). If the structure in A involves only one set, there is a forgetful
map ω : A → Set. If it involves two sets there is a forgetful map ω : A → Set× Set, and so on.

Definition 24 If the structure in A involves only one set, we say that an object X ∈ C is an A-object if
the functor hX : C0 → Set factors through A, i.e. if the sets Hom(X,Y ) are all objects of A functorially
in Y . If the structure in A involves two sets, we say that (X,R) ∈ C × C is an A-object if the functor
hX × hR : C0 × C0 → Set× Set factors through A, and so on.

For example, a topological group is a group object in the category of topological spaces, while a group
scheme is a group object in the category of schemes (observe that according to instances, the emphasis
in the choices of terminology is put once on the group structure, once on the ”variety” structure). Other
well-known examples are Lie groups, ordered fields, G-sets...

By the weak form of Yoneda’s lemma the maps giving the structure in A on the sets Hom(X,Y )
come from maps on X. So, for example, a groupoid in a category C is an object X1 //// X0 such that

X1(S) //// X0(S) is a groupoid in Set, functorially in S ∈ C.



Sheaves and Grothendieck topologies

The second step we are led to consists, quite naturally, in trying to axiomize the definitions and
properties of the more general ”coverings” arising from faithfully flat descent, and try to see if we can
carry on the study of sheaves, cohomology and so on, as it is developped in the framework of topological
spaces (or schemes with the Zariski topology). If we don’t make cohomology we don’t actually need to
go far into the theory.

Basic definitions

First of all, observe that by Yoneda’s lemma 23, any object of C may be seen as a presheaf. When C

is the category of schemes, the maps T → X are called the points of X with values in T . For example the
maps Spec(k) → X are ordinary points (or geometric points), the maps Spec(k[ε]) → X are the tangent
vectors... Yoneda’s lemma says that a scheme is determined by its points.

Remark 25 This raises natural questions : it is clear that a scheme is not determined by its points with
values in a field (the naive points), but is it determined by its points with values in arbitrary artinian
rings (i.e. all infinitesimal neighbourhoods of points) ? or complete local rings (formal neighbourhoods) ?
when is a presheaf X ∈ Sch∧ a scheme ?...

We now address the question of giving a good axiomatic framework in order to pass from presheaves
to sheaves. To this aim, we introduce here the concept of pretopology, which, for stack theory, is enough
and is the one used in practice. (Note that the general concept of topology, with sieves, can’t be avoided
in topos theory, and also that different pretopologies may give the same topology, this has to be kept in
mind). However for simplicity we use the word ”topology” instead of ”pretopology”.

Definition 26 A topology T on a category with fibred products C is given by the data of sets Cov(U),
for each object U ∈ C, whose elements are families {Ui → U} of maps to U called coverings of U , all
assumed to satisfy

(i) any isomorphism U ′ → U is a covering,

(ii) if {Ui → U} is covering and V → U is a map, then {Ui ×U V → V } is covering,

(iii) if {Ui → U} is covering and for each i we are given a covering {Vi,j → Ui}, then {Vi,j → U} is a
covering.

Example 27 On C = Sch we define the fpqc topology (resp. fppf, resp. étale) by choosing as coverings
of a scheme U the families {Ui → U} where the images of the Ui cover U and each Ui → U is flat and
quasi-compact (resp. flat and of finite presentation, or étale).

Definition 28 A category C endowed with a topology is called a site. Let (C,T) be a site, then a sheaf
on C is a presheaf F ∈ C∧ such that for any X ∈ C and any covering {Xi → X}, the following diagram
is exact :

F (X) // ∏
i F (Xi) ////

∏
i,j F (Xi ×X Xj)

The category of sheaves on (C,T) is usually denoted C∼.

Theorem 29 Any scheme is a sheaf in the fpqc topology.

Proof : This is theorem 11. �

In view of the theorem, when C = Sch is endowed with the fpqc, fppf or étale topology, for the
corresponding category of sheaves we have C ⊂ C∼ ⊂ C∧. In general, given a site (C,T), it is not necessarily
the case that C ⊂ C∼ ; actually there is a finest topology such that all representable presheaves are sheaves,
called the canonical topology. Thus, continuing the questions in remark 25, a necessary condition for a
functor to be representable by a scheme is to be a sheaf for the fpqc topology.

In the sequel we will deal with objects such as sheaves, algebraic spaces, and ultimately stacks, that
won’t be schemes any more - schemes will form a faitful subcategory of the previsous categories. Of
course it will be nice, if it happens, to recognize when such an object is a scheme, and in the relative
situation it will be as important to sort out those morphisms ”whose fibres are schemes” :



Definition 30 A map of presheaves u : F → G is said to be representable if for all maps X → G from
a scheme to G, the fibre product F ×G X is representable. For such a map, it makes sense to take a
property of maps of schemes P and to say that, by definition, ”u has P” if and only if F ×G X has P,
for all X → G.

If F is any presheaf, there is a way to sheafify it, using the following construction :

F+(X) := lim
−→

{Xi→X}∈Cov(X)

ker
( ∏

F (Xi) ////
∏
F (Xi ×X Xj)

)
There is a canonical map F → F+. Here are the properties of the + operation (we only give the result,
since the proof is neither appetizing nor really instructive for our needs) :

Theorem 31 Let (C,T) be a site, and denote by C∼ the category of sheaves on this site. Let F be a
presheaf on C, then

(i) the presheaf F+ is separated (i.e. the injectivity part of the exact diagram is verified).

(ii) the presheaf F++ is a sheaf.

(iii) the functor F 7→ F++ is a left adjoint to the inclusion C∼ ⊂ C∧. �

Main examples of topologies

Mention here fpqc-fppf-étale-Zariski. Describe the coverings (comparison lemma ?). Explain why
fpqc causes trouble for sheafification (inverse limits don’t exist). Mention the sequence of sheaves

0 // αp // Ga
x7→xp

// Ga
// 0

that is exact only in the flat topology.

An example : the étale topology

This is an extremely important example because étale morphisms have very special properties, and in
some sense étale localization for schemes plays the role of localization (for the usual complex topology)
for complex varieties. Here are a few important situations.

Example 32 Exact sequences of sheaves. Some usual sequences of abelian sheaves that fail to be exact
in the Zariski topology are exact in the étale topology. The standard examples are

• the Kummer sequence for schemes over Z[1/n] : 0 // µn // Gm
x7→xn

// Gm
// 0

• the Artin-Schreier for schemes over Fp : 0 // Z/pZ // Ga
x7→xp−x// Ga

// 0

In both cases, surjectivity fails in the Zariski topology.

Example 33 Inverse mapping theorem. Here is the algebraic form of the Inverse mapping theorem : any
smooth morphism f : X → S acquires a section after an étale extension S′ → S, see EGA IV, 17.16.3.

Example 34 G-bundles. Let G be a finite group. Let X be a variety on which G acts freely, and let
Y = X/G. Then the morphism π : X → Y has the properties of a G-bundle, in the sense that its
geoemtric fibres are isomorphic to G, and however, locally in the Zariski topology, X is not isomorphic
to G. The most trivial example of this we already saw : let k0 ⊂ k be a Galois extension of group G,
then π : Spec(k) → Spec(k0) is clearly not trivial Zariski-locally on Spec(k0). However, after the étale
extension Spec(k) → Spec(k0), it becomes trivial.

We are led to the definition of a torsor. The phenomenon above being similar for more general groups
we include this here :

Definition 35 Let G → S be a flat, affine group scheme of finite presentation. A G-torsor is an S-
scheme X → S with an action of G such that there exists an étale extension S′ → S such that X ×S S′
is isomorphic to the trivial torsor, that is to say G×S S′ with action by left multiplication.



Example 36 Brauer-Severi schemes. A proper flat S-scheme of finite presentation whose geometric
fibres are isomorphic to some projective space Pr, is not necessarily isomorphic to Pr ×U Zariski-locally.
Such a scheme is called a Brauer-Severi scheme ; Grothendieck showed that they are exactly those
isomorphic to projective S′-space PrS′ after an étale extension. For an example, when we look at families
of hyperelliptic curves (meaning a projective, smooth morphism f : C → S together with an involution
σ : C → C, such that the geometric fibres are hyperelliptic curves Cs with hyperelliptic involution σs), the
quotient D = C/σ naturally arises as a ”curve of genus 0” over S (i.e. it is projective smooth over S, with
fibres of genus 0). However it is not true that D ' P1

S , not even locally on S (a stupid counterexample
is in these notes). This is true only after an étale extension S′ → S. Let’s check this. The tool is to
apply the Inverse mapping theorem to the map D → S. Then the image ∆ ⊂ DS′ of this section is a
(relative) Cartier divisor, it induces an invertible sheaf L = O(∆) with degree 1 on all fibres over S. So
R1f∗L = 0 where f is the structure map to S′. It follows that V = f∗L is locally free and its formation
commutes with base change (EGA III, 7.7 and 7.8 ; better see Mumford’s Geometric Invariant Theory,
0.5). The natural map f∗V → L is surjective as is checked on the fibres. There is an induced morphism
DS′ → P(V ), a little more work shows that this is an isomorphism. Localizing again (but for the Zariski
topology this time) this trivializes. �

Finally let’s give a definition that will be useful later on.

Definition 37 We can extend definition 24 of equivalence relations (ER’s for short) in a category C, to
ER’s in a site (C,T). Namely such an object is by definition an ER in C, denoted R // // U , such that the
two maps R → U are covering maps of T. Exercise : an ER in a site (C,T) gives an ER in the category
of sheaves of sets on C.



Algebraic spaces

Introduction

Let X be a proper connected scheme over a field k. Then by quasi-compactness it can be covered
by a finite number of affine schemes Ui, so their disjoint sum U is affine again. Then X is completely
determined by U and the glueing data i.e. the open subsets Ui ∩ Uj = Ui ×X Uj of X, whose disjoint
union is R = U ×X U , an affine scheme, by the assumption of separation. There is a canonical injection
R→ U × U making R an equivalence relation (of affine schemes) on U . Considering the two projections
R → U , the covering map U → X makes X a quotient in the diagram R // // U // X . The departure
point of geometry is that all kinds of data on X are determined on U modulo glueing data on R.

Let us assume that we start from an equivalence relation R // // U , and we wish to do geometry on
the ”quotient” π : U → X, provided it exists, by working on U . Descent theory tells us that this is
possible, provided π happens to be a covering map for a topology such as fpqc, fppf, or étale. If it is so,
then localizing thanks to π we have

U ×X U //

��

U

π

��
U

π // X

so we see that a crucial property is to have R = U ×X U (we say that the relation is effective) because
then we can relate the properties of the quotient to those of the maps R→ U we started from.

Hence we must be very careful that the quotient depends in general on the category in which it is
considered, and so does effectivity. For instance if X is the proper scheme of the example above, we
saw that X = coker (R //// U ) in the category of schemes, and R = U ×X U . But if we view this as a
relation in the category of affine schemes, of course X can’t be a quotient, and in fact it is easy to see
that the quotient is Spec(k) so that R = U ×k U fails. We could look at the quotient in the category of
locally ringed spaces, but the best-suited is to look at a quotient in a category of sheaves. This has the
advantage of ensuring effectivity of equivalence relations (see below).

Finally a choice has to be made for the topology. An fpqc map allows descent of most objects on U
to X, but is not enough in order to grasp, for instance, the dimension of X or local properties such as
smoothness. Hence we will use the étale topology. Note that as long as we don’t want to do cohomology,
very few of sheaf theory is needed.

Epimorphisms and equivalence relations

Let C be a category.

Definition 38 Let u : T → S be a morphism in C.

(i) We say u is an epimorphism if for all X ∈ C, the map X(S) → X(T ) is injective.

(ii) We say u is a universal epi. if it is an epimorphism after any base change S′ → S.

(iii) We say u is an effective epi. if it is an epi. and the diagram T ×S T //// T // S is a cokernel.

Property (iii) means that ”u is the quotient of the equivalence relation it defines”, i.e. the relation
on T given by equality of the images in S. For example, in the category of sets, epimorphisms are
just surjective maps. They are all effective and universal (in general we will write UEE for ”universal
effective epimorphism”). This is not the case in a general category : the morphism Spec(Q) → Spec(Z)
is an epimorphism in the category of affine schemes, but if p is a prime, then after the base change
Spec(Fp) → Spec(Z) it is no longer an epimorphism (the fibre product is empty), and it is not effective
either because Q ⊗Z Q = Q. Another counter-example is of course the one given in the introduction :
X proper connected over a field k gives rise to an equivalence relation of affine schemes R //// U whose
quotient in the latter category is Spec(k), hence effectivity fails.

Definition 39 Let R //// U be an equivalence relation in C (definition 24). We say that it is (universally)
effective if a quotient X = coker (R // // U ) exists (universally), and if R = U ×X U (universally).



In this case, the quotient map π : U → X is an (universal) effective epimorphism, and conversely any
(universal) effective epi. defines an (universally) effective equivalence relation.

In the category of sets all equivalence relations are universally effective, so this property clearly extends
to presheaves of sets. It is not too hard to see that it remains valid in categories of sheaves because the
”associated sheaf” functor is left exact (see SGA4, Exp. II, 4 or SGA3, Exp. IV, 4.4.3, 4.4.9) :

Proposition 40 Let (C,T) be a site, and denote by C∼ the category of sheaves on this site. Then all
equivalence relations in C∼ are universally effective. �

Quotients of étale ER’s of schemes as étale sheaves

Here we study étale equivalence relations (definition 37), i.e. ER’s R //// U in the category of schemes,
such that both maps R → U are étale. We show that they satisfy two crucial properties (see discussion
in the introduction) which will serve as a definition for algebraic spaces.

First of all let us give some examples of étale equivalence relations.
Basta for the examples. Given an étale ER denoted R //// U , we saw that it gives an ER in the

category of étale sheaves (see def. 37 again). One essential point for the sequel is to understand the
following description of the quotient. Assume that the quotient presheaf U/R fails to be a sheaf, i.e.
given an étale covering Z ′ → Z, some f ′ ∈ U(Z ′)/R(Z ′) with a descent datum on Z ′′, does not descend
to Z. Then we get the quotient sheaf by formally adding all such f ′ :

Lemma 41 Let R //// U be an equivalence relation in the category of étale presheaves C = Sch∧. Let
F = U/R be the quotient presheaf. Then its associated sheaf can be described as follows :

F+(Z) =
{

(Z ′/Z, f ′) with Z ′ → Z an étale covering and f ′ ∈ U(Z ′)
such that (pr∗1 f

′,pr∗2 f
′) ∈ R(Z ′′) ⊂ U(Z ′′)× U(Z ′′)

}
So using Yoneda’s lemma (prop. 23), an element in F+(Z) is a filling into a commutative diagram

Z ′′ ////

(pr∗1 f
′,pr∗2 f

′)

��

Z ′ //

f ′

��

Z

��
R //// U // F // F+

Proof : It is straightforward to define a map F → F+ and check the universal property. �

After the following easy preparatory lemma, we give the announced properties of étale ER’s.

Lemma 42 Let X
f−→ Y

g−→ Z be morphisms of schemes with gf and ∆g both locally of finite type.
Then f is also locally of finite type.

Proof : The two parallelograms of the following diagram are cartesian :

X
(idX ,f) //

f

����
��
��
��
��

GF ED
f ______________

��
X ×Z Y

f×idY

����
��

��
��

��
�

pr1

��6
66

66
66

66
66

pr2 // Y

g

��-
--

--
--

--
-

Y
∆g // Y ×Z Y X

gf // Z �

Proposition 43 Let R // // U be an étale equivalence relation of schemes, with δ : R → U × U quasi-
compact. Let X be the quotient étale sheaf. Then

(AS1) The diagonal X → X ×X is representable and quasi-compact.

(AS2) The map π : U → X is representable, étale and surjective (definition 30).



Proof : First we will show that δ is quasi-affine. Like any monomorphism it is separated and has finite
fibres. Recall that quasi-finite + separated implies quasi-affine (EGA IV 18.12.12) so by the assumption
of quasi-compactness it is enough to show that δ is locally of finite type. For this we may replace the
source of δ by an open affine scheme Spec(A) and the target by a product Spec(B)×U . Then the result
follows from lemma 42 applied to f = δ with g equal to the projection Spec(B)× U → U .

We now show (AS1). Clearly it is equivalent to show that for any schemes Y, Z, any fibre product
Y ×X Z is representable by a scheme. The result will then follow by using the description in lemma 41
to reduce to the case where the maps Y,Z → X factor through U . Indeed let us show that we can
reduce to Z = U . By lemma 41 there exists an étale map Z ′ → Z and an object f ′ ∈ U(Z ′) with
τ = (pr∗1 f

′,pr∗2 f
′) ∈ R(Z ′′). So we have a diagram

Z ′′ // //

τ

��

Z ′

f ′

��

// Z

��
R //// U // X

Clearly if we assume that Y ×X U is representable then Y ×X Z ′ is also, since it is (Y ×X U) ×U Z ′.
Furthermore I claim Y ×X Z ′ → Y ×Z ′ is quasi-affine : to see this use lemma 41 again, that says there is
an étale Y ′/Y mapping to U , so after pulling back by Y ′ → Y the map we are interested in is a pullback
of δ, then conclude with prop. 12. Finally note that τ is a glueing datum on the quasi-affine scheme
Y ×X Z ′ with respect to the covering map Y × Z ′ → Y × Z. So by effective descent (theorem 13(ii)) we
get a quasi-affine Y × Z-scheme which is none other than Y ×X Z, q.e.d. Using this trick once again we
now reduce to Y = U ; and then U ×X U = R by effectivity of ER’s of sheaves, prop. 40. We proved
(AS1).

In particular π : U → X is representable. To show that it is étale and surjective we must prove it is
so for any U ×X Z → Z. For this we reduce to Z = U and then the result is just the assumption that
R→ U is étale (and surjective). We proved (AS2). �

Algebraic spaces

Property (AS2) is crucially nice for the following reason. We know that for a morphism of schemes
U → X, smoothness of X is equivalent to smoothness of U . Similarly, a lot of properties of X are
preserved by taking an étale covering, such as reducedness, normality, having given dimension... So for
any property which is local on the base for the étale topology, it will make sense to define ”X has P” if
and only if U has P.

Hence we showed that quotients of étale ER’s have properties that make them workable for a geometer,
according to our introductory considerations. These two properties give rise to fairly reasonable abstract
objects.

Definition 44 An algebraic space over a scheme S is an étale sheaf X → S such that there exists a
scheme U an a morphism π : U → X with properties (AS1) and (AS2) above. We call the map π an
atlas or a presentation of X.

Quite obviously, an algebraic space X is the quotient of the equivalence relation U ×X U //// U for
any chosen atlas U . So we didn’t add a new concept.

There are strong results that indicate that we introduced a good, non-trivial notion. First, the quotient
of an étale equivalence relation of algebraic spaces is again an algebraic space. This is ”not too hard”.
But there is a much deeper result which was proved by Artin thanks to his algebraization theorems,
namely that even the quotient of an fppf equivalence relation of algebraic spaces is an algebraic space
(see Laumon & Moret-Bailly, cor. 10.4) :

Proposition 45 Let R // // U be an fppf equivalence relation of schemes, with δ : R → U × U quasi-
compact. Then the quotient fppf sheaf is an algebraic space. �



Algebraic stacks

¿From now on, fibred categories (as in the chapter on descent) are denoted by M instead of C (this is
psychological).

Definition 46 Let M be a fibred category over the category Sch/S, as above. We say that M is fibred
in groupoids if the fibres M(T ) are groupoids. We say that M is a stack over S if

(i) for any x, y ∈ C(T ) the functors T ′ 7→ HomT ′(xT ′ , yT ′) are sheaves.
(ii) for any x ∈ C(T ) and any covering T ′ → T , every descent datum on x with respect to T ′ → T is
effective.

Categories fibred in groupoids are sometimes abbreviated CFG ’s, or simply groupoids over S. (Note
that we could also call a CFG a presheaf of groupoids on Sch, as described after definition 24, i.e. it is a
groupoid object in the category Sch∧.) The structure that gathers them all is slightly more sophisticated
than a simple category : it is called a 2-category. Briefly and imprecisely, this is, by definition, a structure
given by a class of objects (which we may see as 0-morphisms), for each pair of objects, a category of
1-morphisms, whose morphisms are called 2-morphisms, and functors of ”composition” between the
categories of 1-morphisms.

The reason for this is that some functors between groupoids, which we would like to be isomorphisms,
may only be equivalences. In other words there may well be F : M → N and G : N → M with F ◦G and
G ◦ F not equal to the identities, but only up to a 2-isomorphism. In conclusion, categories, groupoids,
or stacks, are the objects (or 0-morphisms) of

Examples 47 (i) Let X be an S-scheme. Then Sch/X is a groupoid over S, which we still write X by
abuse of notation. Furthermore it is a stack.
(ii) Let G be a group scheme over S. Then the category whose fibre over T is the groupoid B0(G(T )) is
a groupoid over S, which we still denote B0G.

Recall: a groupoid is a category where all morphisms are isomorphisms. Examples: any set X gives
rise to a groupoid where objects are elements of X and morphisms are identities. Any group G gives rise
to a groupoid where there is only one object and the elements of G are viewed as automorphisms of this
object. in some sense these are the two extreme examples of groupoids.

Why ask only groupoids ? It’s because the destiny of the morphisms in the CFG’s we have in mind is to
become isomorphisms between objects of a moduli problem ; in particular this will include automorphisms
of objects.

Lemma 48 Let M be a groupoid over S, then there exists an associated stack. �

Example 49 Let G be a group scheme over S. Then B0G is not a stack in general. However, if G→ S
is flat, affine and of finite presentation then the groupoid of G-torsors (see definition 35), denoted BG, is
a stack. We can identify B̃0G with BG, in the following way. We define a functor

B0G→ BG

by mapping the point ∗ ∈ (B0G)(T ) to the trivial G-torsor, and mapping an element g ∈ G(T ) (as a
morphism ∗ → ∗) to multiplication by g (as a map of torsors). This functor is fully faithful, and it is
”locally essentially surjective” by definition of a torsor.

Now the definition of the notion of algebraicity for a stack mimicks that of algebraicity for a sheaf
(giving rise to the notion of algebraic space) :

Definition 50 Let M be a stack over S. We say it is algebraic if

(i) the diagonal M → M×M is representable, separated and quasi-compact.
(ii) there is an algebraic space U and a morphism U → M, called a presentation or an atlas, that is
smooth and surjective.

An algebraic stack is a Deligne-Mumford stack if the atlas can be chosen étale. �

Example 51 The stack of stable curves of genus g is a Deligne-Mumford stack.
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