Feuille de TD 5

Exercice I. Problème de Dirichlet inhomogène

1. Dans le carré $\Omega =]0, 1[\times]0, 1[\subset \mathbb{R}^2$, résoudre le problème de Dirichlet

$$\Delta u = 0$$
 dans Ω ; $u(x,y) = x^2 + y^2 \operatorname{sur} \partial \Omega$

en utilisant des séries de Fourier dans la base des fonctions

$$(x,y) \mapsto \sin(m\pi x)\sin(n\pi y), \quad m,n \ge 1.$$

2. Dans $\Omega = B_1(0) \subset \mathbb{R}^2$, on considère le problème de Dirichlet

$$\Delta u = 0$$
 dans Ω ; $u = g \sin \partial \Omega$

On utilise le fait que toute fonction harmonique dans Ω est partie réelle d'une fonction holomorphe qui peut être représentée par une série entière de rayon de convergence 1 dans la variable z=x+iy. On a donc

$$u = \operatorname{Re} \sum_{n=0}^{\infty} a_n z^n = \operatorname{Re} a_0 + \frac{1}{2} \sum_{n \in \mathbb{Z}_n} a_n e^{in\theta} r^{|n|} \quad \text{avec } a_{-n} = \overline{a_n} \ (n \ge 1) \,.$$

Calculer $\|u\|_{L^2(\Omega)}^2$ et $\|\nabla u\|_{L^2(\Omega)}^2$ et comparer avec des normes Sobolev de la fonction 2π -périodique g .

Exercice II. Discontinuité de trace

Soit Ω le carré $]\,0,\,1[\,\times\,]\,0,\,1[\,\subset\,\mathbb{R}^2$. Sur le bord $\partial\Omega$, on considère la fonction discontinue $\,g_0$, définie par

$$g_0(x,0) = 1 \quad (0 \le x \le 1); \qquad g_0(x,y) = 0 \text{ si } y \ne 0.$$

Le but est de montrer qu'il n'existe pas de fonction $u \in H^1(\Omega)$ telle que g_0 soit la trace de u sur le bord de Ω .

1. On considère d'abord une fonction $u \in C^1(\overline{\Omega})$.

En coordonnées polaires (r,θ) , définies par $x=r\cos\theta$, $y=r\sin\theta$, soit ∂_{θ} la dérivée angulaire. Montrer que

$$\partial_{\theta}u = -y\partial_{x}u + x\partial_{y}u$$
, et par conséquent $\int_{\Omega}\left|\frac{\partial_{\theta}u}{r}\right|^{2}dx\,dy \leq |u|_{1}^{2}$.

2. Soit encore $u \in C^1(\overline{\Omega})$ et soit g sa trace sur le bord de Ω . Montrer que

$$g(0,r) - g(r,0) = \int_0^{\pi/2} \partial_\theta u \, d\theta \qquad (0 < r < 1) .$$

En déduire que

$$|g(0,r) - g(r,0)|^2 \le \frac{\pi}{2} \int_0^{\pi/2} |\partial_\theta u|^2 d\theta$$

et finalement

(1)
$$\int_0^1 \frac{|g(0,r) - g(r,0)|^2}{r} \, dr \le \frac{\pi}{2} \, |u|_1^2 \, .$$

- 3. Supposons maintenant que $u\in H^1(\Omega)$ et que u soit approchée par une suite $(u_n)_{n\in\mathbb{N}}$ de fonctions appartenant à $C^1(\overline{\Omega})$ qui convergent vers u dans $H^1(\Omega)$. Les traces g_n de u_n convergent alors vers la trace g de u dans $L^2(\partial\Omega)$. En utilisant le fait que les g_n et u_n satisfont des inégalités correspondant à (1), montrer que l'inégalité (1) est satisfaite aussi pour g et u.
- **<u>4.</u>** Conclure que pour $u \in H^1(\Omega)$, la fonction g_0 ne peut pas être la trace de u sur $\partial\Omega$.