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Abstract. We prove the existence of infinitely many alternating links in S3 whose complements

are arithmetic.

1. Introduction

Let d be a square-free positive integer and let Od denote the ring of integers of Q(
√
−d). A non-

compact finite volume hyperbolic 3-manifold X is called arithmetic if X and the Bianchi orbifold
Qd = H3/PSL(2, Od) are commensurable, that is to say they share a common finite sheeted cover.
(see [MR, Chapters 8 & 9] for further details). If X = S3 \ L, we call L an arithmetic link.

Since Thurston’s original studies of hyperbolic structures on 3-manifolds [Th], link complements
in S3 have played a prominent role, and indeed arithmetic links were also very much at the heart of
his work. Several arithmetic link complements were constructed in [Th], and, over the years, many
more examples constructed; for a selection see [ALR], [AR], [Ba1], [Ba2], [Ba3], [BGR1], [BGR2],
[Goe], [GH], and [Ha]. Several of these arithmetic links are alternating, and although there are
infinitely many arithmetic links in S3 (for example, those links determining certain cyclic covers of
the complement of the Whitehead link), whether there were infinitely many alternating arithmetic
links remained open.

By relating the spectral geometry of the complement to combinatorics of an alternating diagram,
Lackenby [Lac] showed that there are only finitely many congruence alternating links, and motivated
by this, asks in [Lac], whether there are only finitely many arithmetic alternating links. More
recently, the question as to whether there were infinitely many arithmetic alternating links was asked
of the second author by D. Futer in 2019. The main result of this note resolves these questions by
answering Futer’s question in the positive (and hence Lackenby’s in the negative).

Theorem 1.1. There are infinitely many alternating links in S3 whose complements are arithmetic.

Indeed, we prove something more precise. We will construct two infinite families of alternating
links Lj and Lj whose complements are arithmetic. In more detail, the family of links Lj is built
from (j + 1) concentric circles centered at the origin in the Euclidean plane, with a ”horizontal”
component (which we will denote by K) added intersecting each of the concentric circles in 4 points,
and each intersection point resolved to make the diagram alternating (see Figure 1(a) where L4 is
shown). Thus Lj is an alternating link with j+2 components. The family of links Lj is constructed
in a similar fashion using (j + 1) concentric circles centered at the origin in the Euclidean plane,
with two additional components (which we will denote by K1 and K2) added intersecting each of the
concentric circles in 2 points, and each intersection point resolved to make the diagram alternating
(see Figure 1(b) where L4 is shown). Thus Lj is an alternating link with j + 3 components

Theorem 1.2. Lj and Lj are arithmetic for all j ≥ 1 with S3 \ Lj → Q3 and S3 \ Lj → Q3 both
of degree 60j.
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Figure 1(a)

Figure 1(b)

The arithmetic nature of the link L1 was first explicitly described in [Ha, Example 5], and we
recall this briefly here. As described in [Ha], the complement of L1 can be obtained as the union
of two regular ideal hyperbolic cubes (all of whose dihedral angles are π/3), and as noted in [Ha], a
regular ideal cube can be subdivided into 5 regular ideal hyperbolic simplices, from which Hatcher
deduces that L1 is arithmetic since the fundamental group of its complement arises as a subgroup of
the isometry group of the tessellation of H3 by regular ideal hyperbolic simplices; this is the group
PGL(2, O3). Hence the link L1 is arithmetic. In fact (see the discussion in the proof of Theorem
1.2 given in §2.2), the fundamental group of its complement arises as a subgroup PSL(2, O3). Given
the description of S3 \ L1 as a union of 10 regular ideal tetrahedra, its volume can be computed as
10v0 where v0 is the volume of the regular ideal simplex in H3 (i.e. approximately 10.14941606 . . .).
Since the volume of Q3 is v0/6, S3 \ L1 is a 60-fold cover of Q3. In [Ha, Example 5] Hatcher
constructs a second link complement as the union of two regular ideal hyperbolic cubes, and this is
homeomorphic to S3 \ L1.

The manifolds S3 \ L1 and S3 \ L1 have been reconstructed in other places in the literature.
By volume considerations [AHW], S3 \ L1 (resp. S3 \ L1) can be seen to be homeomorphic to the
complement of the three component link 834 (resp. to the complement of 841). It can be checked
(e.g. using SnapPy [CDGW]) that S3 \ L1 is also homeomorphic to a 5-fold irregular cover of the
complement of the figure-eight knot (namely the so-called Roman link of [HLM]). The complements
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of L1 and L1 were constructed again in [AR, Example 3] as well as being identified as the tetrahedral
census manifolds otet1000006 and otet1000011 of [Tet] (see also [Goe2]).

In a different direction, neither S3 \ L1 or S3 \ L1 contain a closed embedded essential surface
(see [HM] for L1 and [Oe] for L1). By comparison, in §3 we show that both of S3 \ Lj and S3 \ Lj

contain a closed embedded essential surface for all j ≥ 2.

Acknowledgements: We are grateful to Dave Futer for asking the question. We are also very
grateful to Will Worden for drawing the figures.

2. Proof of Theorem 1.2

Our proof will be motivated by that given in [Ha], but we shall certify arithmeticity in a slightly
different way.

2.1. Tessellation by regular ideal cubes. Motivated by the description of S3 \L1 as a union of
two regular ideal cubes, we make the following definition (cf. [Tet]).

Definition 2.1. Let M be a finite volume cusped hyperbolic 3-manifold. We call M cubical if it can
be decomposed into regular ideal hyperbolic cubes.

Let M = H3/Γ be a cubical manifold. On lifting to the universal cover, we obtain a tessellation
T(C) of H3 by regular ideal cubes, C, and so Γ is a subgroup of the group of isometries of T(C),
which we denote Isom(T(C)) (which is a discrete group of isometries of H3). We will denote by
Isom+(T(C)) the subgroup of Isom(T(C)) of index 2 consisting of orientation-preserving isometries.

Lemma 2.2. Isom(T(C)) is an arithmetic subgroup of Isom(H3) commensurable with PSL(2, O3).
Hence any cubical manifold is arithmetic.

A proof of Lemma 2.2 is implicit in [NR], but we include a proof here for completeness. Before
proving Lemma 2.2, we recall some notation. Let Γ0(2) < PSL(2, O3) be the image of the subgroup
of SL(2, O3) given by:

{
(
a b
c d

)
∈ SL(2, O3)| c ≡ 0 mod < 2 >}.

It is easy to check that [PSL(2, O3) : Γ0(2)] = 5, that H3/Γ0(2) has two cusps (corresponding to the
inequivalent parabolic fixed points 0 and ∞) and that the peripheral subgroup of Γ0(2) fixing ∞
coincides with that of PSL(2, O3), namely the image in PSL(2, O3) of the subgroup

<

(
1 1
0 1

)
,

(
1 ω
0 1

)
,

(
ω 0
0 1/ω

)
>, where ω2 + ω + 1 = 0.

Let ι and τ be the elements of PSL(2,C) given by the images of the elements

(
i 0
0 −i

)
and(

0 −1/
√

2√
2 0

)
respectively. Note that ι and τ both have order 2, and they normalize Γ0(2).

Hence the group G =< Γ0(2), ι, τ > is arithmetic containing Γ0(2) as a normal subgroup with
quotient group Z/2Z× Z/2Z.

Proof. To prove Lemma 2.2, it suffices to show that Isom+(T(C)) is commensurable with PSL(2, O3).
To that end, we will show that the orbifolds N1 = H3/Isom+(T(C)) and N2 = H3/G are isometric
and hence Isom+(T(C)) and G are conjugate by Mostow-Prasad Rigidity. Using the remarks prior
to the proof, this proves commensurability.

In the notation established above, since τ(0) = ∞, the orbifold N2 has a single cusp, and since
ι ∈ G, this is a rigid cusp of type (2, 3, 6) (in the notation of [NR]). Moreover, since the volume of
Q3 is v0/6, the computation of indices given above shows that the volume of N2 is 5v0/24.
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Now consider the group Isom+(T(C)). This is generated by the extension to H3 of the orientation-
preserving symmetries of a single cube C of T(C), along with rotations of 2π/6 in the edges of C.
As noted in §1, C can be subdivided in 5 regular ideal tetrahedra, and so the volume of C is 5v0.
From this it now follows that N1 has volume 5v0/24 and a rigid cusp of type (2, 3, 6).

Finally, using Adams [Ad], we deduce that N1 and N2 are isometric, since it is proved there that
there is a unique orientable hyperbolic 3-orbifold of volume 5v0/24 and a single rigid cusp of type
(2, 3, 6). tu

Remark 2.3. Part of the proof in [Ad] of the uniqueness of a hyperbolic 3-orbifold with a single
rigid cusp of type (2, 3, 6) was found to have a gap, but this was corrected in the recent paper [DK].

Remark 2.4. As noted in [NR] the group Isom(T(C)), can be identified with the group generated
by reflections in the faces of the tetrahedron T [4, 2, 2; 6, 2, 3] ⊂ H3 in the notation of [NR].

2.2. The link complements S3 \Lj and S3 \ Lj are cubical. Given Lemma 2.2, we must show
that S3 \ Lj (for j ≥ 1) and S3 \ Lj (for j ≥ 1) are cubical. We will take a slightly different
perspective from Hatcher’s construction of a cubical structure for S3 \ L1 (more in keeping with
[ALR] and [AR]) which we now describe. This is what we generalize for the links Lj (j ≥ 2) and
Lj(j ≥ 2).

Consider an alternating diagram for L1 on some projection plane S2 ⊂ S3. This produces the
4-valent planar graph P1 shown in Figure 2(a). Two-coloring the regions in checkerboard fashion
and labelling these regions as + and − affords a decomposition of S3 into two 3-balls, each of which
is endowed with an abstract polyhedral structure. Denote these polyhedra by Π+ and Π−. These
polyhedra are identical up to reversing all the colors and signs. Each face fi of Π+ is a ni-gon (where
ni = 2 or 4 in this case) with a sign σi ∈ {±}, and the polyhedra Π+ and Π− are identified by sending
fi to the corresponding face of Π− using a rotation of σi2π/ni (with + denoting clockwise). The
resulting complex with vertices deleted is then homeomorphic to S3 \ L1 (see [ALR] for example).

Note that P1 contains 4 bigons, and we can collapse each of these bigons to an edge in each of the
polyhedra Π+ and Π−, and then make the identifications described above. The resulting polyhedra
obtained are cubes (see Figure 2(b)), so that S3 \ L1 is the identification space of two cubes with
vertices deleted.

This combinatorial realization can be done geometrically: namely the identifications described
above can be realized as identifications of the regular ideal cube in H3 with six 2-cells meeting along
an edge (with dihedral angle π/3).

Figure 2(a)
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Figure 2(b)
For the general case of Lj , we refer to Figure 3(a) and 3(b) (which shows the case of L4) and proceed
as follows.

Figure 3(a)

Figure 3(b)
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Performing the construction above on each Lj , results in a 4-valent planar graph Pj (see Figure

3(a)) and polyhedra Πj
+ and Πj

−. As above, the graphs Pj each contains exactly four bigons, and on
collapsing these bigons leads to the polyhedra shown in Figure 3(b). As is visible from the diagram,

each of Πj
+ and Πj

− is a union of j cubes, whose faces are identified as described above. To establish
that for each j ≥ 2 the manifold S3 \Lj is cubical, and therefore arithmetic by Lemma 2.2, we need
to ensure that the combinatorial decomposition described here can be realized geometrically.

Referring to Figure 3(b) we now view the polyhedra Πj
+ and Πj

− as being built from copies of the

regular ideal cube, so that edges of Πj
+ and Πj

− have dihedral angle π/3 or 2π/3, the latter occurring
at edges where two cubes meet; e.g. the edges between those red vertices of Figure 3(b), and then
the edges of all concentric squares except the ”innermost” and ”outermost” ones. From above, the
polyhedra Π+ and Π− are identified by sending fi to the corresponding face of Π− using a rotation
of σiπ/2 (with + denoting clockwise). Using this we see that edges with dihedral angle 2π/3 are
identified via the π/2 rotation to an edge with dihedral angle π/3. Each such edge with dihedral
angle 2π/3 lies in two faces of adjacent cubes and so once the identifications are completed the
angle sum is 2π. Edges of the innermost and outermost squares have dihedral angles π/3. They are
identified via π/2 rotations to edges also with dihedral angles π/3. Six of these edges are identified
to get angle sum 2π. This proves that each S3 \ Lj is cubical, and hence arithmetic.

Moreover, since any arithmetic link complement commensurable with Q3 necessarily covers Q3

(see for example [MR, Theorem 9.2.2] and note that M(2,Q(
√
−3)) has type number one), the final

part of Theorem 1.2 follows since, from above, the volume of S3 \Lj is 10jv0, and the volume of Q3

is v0/6.
The case of Lj is handled in a completely similar manner using polyhedra arising as in Figure 4.

We omit the details. tu

Figure 4

As was pointed out in [Tet] (see Remark 3.7), it is not always the case that a cubical manifold
decomposes into regular ideal tetrahedra. However, this does hold for the manifolds S3 \ Lj and
S3 \ Lj . The important point to note is that insertion of the diagonals on faces to create the five
tetrahedra can be done so consistently (as was implict in [Ha]). In particular, each of S3 \ Lj and
S3\Lj is decomposed into 10j regular ideal tetrahedra, and so using this decomposition and [HaMu],
a corollary of Theorem 1.2 is:

Corollary 2.5. S3 \Lj and S3 \ Lj are manifolds of maximal volume amongst all hyperbolic man-
ifolds admitting a decomposition into 10j tetrahedra.

3. Closed embedded essential surfaces

We first show that for j ≥ 2, S3 \ Lj contains a closed embedded essential surface. Deleting
the component K of Lj results in the j + 1 component unlink. The result now follows from [CL,
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Theorem 4.1] since the SL(2,C) character variety of Fj+1 has dimension 3(j + 1)− 3 = 3j and this
is greater than j + 2 for j ≥ 2.

The case of S3 \ Lj is handled in a similar manner. In this case, deleting the components K1

and K2 from Lj results in the j + 1 component unlink and we now argue as above applying [CL,
Theorem 4.1] on noting that 3(j + 1)− 3 = 3j is greater than j + 3 for j ≥ 2.
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