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Abstract. We prove the existence of infinitely many alternating links in S3 whose complements
are commensurable with the Bianchi orbifold H3/PSL(2, O15).

1. Introduction

Alternating links and their complements in S3 have long held a fascination for knot theorists and
low-dimensional topologists. Following Thurston’s seminal work, an attractive theme emerged: to
relate the geometry and topology of the complement of an alternating link in S3 to combinatorics
of an alternating diagram. For example, in [24] if L is a non-split prime alternating link which is
not a torus link, then S3 \L has a complete hyperbolic structure of finite volume. Moreover, in [23],
Menasco describes a method whereby the hyperbolic structure is built explicitly from a polyhedral
decomposition of the complement using the combinatorics of an alternating diagram. Menasco’s
work shows many alternating links have hyperbolic complements, and in this paper we continue our
investigation into how common it is for alternating links in S3 to have arithmetic complements, the
definition of which we now briefly recall.

Let d be a square-free positive integer and let Od denote the ring of integers of Q(
√
−d). A non-

compact finite volume hyperbolic 3-manifold X is called arithmetic if X and the Bianchi orbifold
Qd = H3/PSL(2, Od) are commensurable, that is to say they share a common finite sheeted cover
(see [22, Chapters 8 and 9] for further details). If X = S3 \ L, we call L an arithmetic link.

Going back to Thurston’s Notes [31], many arithmetic link complements have been constructed;
for a selection see [1], [3], [4], [5], [6], [7], [8], [14], [17], and [18]. Of most relevance to the focus
of this note is [18], where examples of alternating link complements covering Qd were constructed
in the cases d ∈ {1, 2, 3, 7, 11} (building on the ideas in [31]). More recently, in [9] we constructed
two infinite families of alternating links whose complements are non-homeomorphic and cover Q3

(thereby answering a question of Lackenby [21] and independently Futer).
Now it is known by [6] that for every d arising in the solution of the Cuspidal Cohomology

Problem (see [32]); i.e. for those d in:

C = {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71},

link complements covering Qd exist (see [8] for many explicit diagrams). However, as far as the
authors are aware, no example of an arithmetic alternating link complement covering Qd is known
outside of d ∈ {1, 2, 3, 7, 11}. We do note that the 6-circle alternating chain link C6 was proven
to have complement admitting a complete hyperbolic structure of finite volume by Thurston [31,
Chapter 6.33-6.37], and arithmeticity of C6 was established in [25] where it was shown that S3 \C6

is commensurable with Q15, but it was not checked whether S3 \ C6 covered Q15. We address this
point in Remark 3.5, and also for the links constructed in this paper (see §2.2, and in particular
Remarks 3.5 and 3.6).
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In the context of the previous paragraph, the key additional complexity in determining whether
a link complement covers Q15 or not is that Q(

√
−15) has class number 2. In the case where the

class number hd of Q(
√
−d) is even, the structure of maximal orders of M(2,Q(

√
−d)) yields other

possible groups of units of maximal orders whose images in PSL(2,C) are commensurable with (but
not conjugate to) PSL(2, Od) and for which link groups can arise as subgroups of finite index. As
well as the list of d ∈ C with hd even, the cases of d ∈ C ′ = {10, 14, 35, 55, 95, 119} are also possible
[10], and it is known that for some of these other unit groups, link groups arise as subgroups of
finite index; see for example [7], [28] and [29].

The main result of this note is the following. We refer to §2 for the definition of the group Γ1
O.

Theorem 1.1. There are two infinite families of arithmetic alternating links in S3 whose comple-
ments cover the orbifold H3/Γ1

O which is commensurable with Q15.

The two families of links will be denoted by Dj and Dj (j ≥ 1) respectively. The link Dj consists
of (j + 1) concentric circles centered at the origin in the Euclidean plane, with three additional
circles linking them (D2 is shown in Figure 1(a)). The link Dj also consists of (j + 1) concentric
circles centered at the origin in the Euclidean plane, but in this case, with only one additional circle
added (D2 is shown in Figure 1(b)).

Figure 1(a)

Figure 1(b)



INFINITELY MANY ARITHMETIC ALTERNATING LINKS: CLASS NUMBER GREATER THAN ONE 3

The method of proof follows the ideas of [9] where two infinite families of alternating links were
proved to be arithmetic by decomposing their complements into regular ideal hyperbolic cubes, and
observing that manifolds admitting such a decomposition (i.e. cubical manifolds) are arithmetic.
To prove Theorem 1.1, the basic building block used is a certain ideal hyperbolic hexagonal prism
(that we describe in §3.1): this was first used by Thurston [31] in his proof that S3 \ C6 admits
a complete hyperbolic structure of finite volume. However, things are more complicated than the
cubical case, since there also exist non-arithmetic alternating link complements built from the ideal
hyperbolic hexagonal prism described in §3.1 (see §4.1).

Acknowledgements: Both authors thank the Max-Planck-Institut für Mathematik, Bonn, for its
hospitality during the preparation of this work. We are also very grateful to Tam Cheetham-West
for his help in drawing some of the figures, and to the referee for helpful comments and in particular
pointing out the arithmetic alternating link discussed in §4.3.

2. The commensurability class of Q15

In the proof of Theorem 1.1 we will need information about certain groups and orbifolds in the
commensurability class of PSL(2, O15) and Q15.

2.1. Arithmetic link complements commensurable with Q15. Recall that Q(
√
−15) has class

number 2, and a representative of the non-trivial ideal class is given by an ideal of norm 2, namely

I =< 2, 1 + (1+
√
−15)
2 >. It is known (see [22, Chapter 2.2 and Examples 6.7.9]) that every maximal

order in M(2,Q(
√
−15)) is GL(2,Q(

√
−15))-conjugate to either M(2, O15) or the order

O = {
(
a b
c d

)
∈M(2,Q(

√
−15)) : a, d ∈ O15, c ∈ I, b ∈ I−1}.

Let Γ1
O denote the image in PSL(2,C) of the elements of determinant one in O. Using this descrip-

tion, and the fact that any link group is generated by meridians of the link (and hence parabolic
elements if the link complement is hyperbolic) we deduce the following corollary from [22, Theorem
9.2.2].

Corollary 2.1. Let L ⊂ S3 be a link so that S3 \ L = H3/Γ is commensurable with Q15. Then Γ
is conjugate into PSL(2, O15) or Γ1

O (or possibly both).

2.2. Minimal orbifolds. As discussed in [22, Chapter 11.1.3], the orbifolds Q15 and H3/Γ1
O have

the same volume (approximately 3.1386138944646 . . .), and the maximal Kleinian groups in the
commensurability class of PSL(2, O15) in PSL(2,C) that contain PSL(2, O15) (resp. Γ1

O) contain
PSL(2, O15) (resp. Γ1

O) as normal subgroups of index 4, both with Z/2Z×Z/2Z quotients (see [22,
Chapter 11.5.1]). Let ΓO denote the maximal Kleinian group in PSL(2,C) containing Γ1

O. Hence
the volume of the minimal orientable orbifold QO = H3/ΓO is approximately 0.7846534736 . . .. We
now give a description of the orbifold QO.

Lemma 2.2. The orbifold QO has underlying space the 3-ball with singular locus as shown in Figure
2(a).

Proof. Throughout the proof, an integer n associated to an arc or circle of the singular locus indicates
a cone angle of 2π/n at that arc or circle. For the proof we will denote the orbifold shown in Figure
2(a) by B.
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Figure 2(a)
Note that the singular set in Figure 2(a) can be isotoped to that shown in Figure 2(b).

Figure 2(b)
Take the 2-fold cover B′ → B branched over the circle of cone angle π indicated by ← in Figure
2(b). This produces the orbifold shown in Figure 3.

Figure 3

A further 2-fold cover B′′ → B′ branched over the circle of cone angle π indicated by → in Figure
3, produces the orbifold shown in Figure 4.

Figure 4
This orbifold, denoted by Y = H3/Γ6, is that obtained by (6, 0) Dehn filling on one component of
the Whitehead link, which was proved to be arithmetic in [25] and commensurable with Q15. Thus
B is (hyperbolic and) arithmetic, commensurable with Q15.



INFINITELY MANY ARITHMETIC ALTERNATING LINKS: CLASS NUMBER GREATER THAN ONE 5

To complete the proof, we must show that the orbifold B is isometric to QO. To that end, we first
observe that our calculations above show that Vol(B) = Vol(Y )/4. Using SnapPy [12], the volume of
Y is approximately 3.1386138944646 . . . (i.e. the volume of Q15), and so Vol(B) = 0.7846534736 . . ..
Using the possibilities for volumes of minimal orbifolds (see [22, Chapter 11]), the only possibilities
for B are QO or H3/G15 where G15 is the maximal Kleinian group containing PSL(2, O15). We
claim that the latter is not possible. To see this, we use [19] and argue as follows.

From [19] we obtain a description of the orbifold H3/PGL(2, O15), and as Hatcher notes in [19],
because 15 is divisible by two primes, there is a π-rotation that is visible in the diagram in [19].
Taking the quotient of H3/PGL(2, O15) by this rotation does not create 6-torsion; i.e. B 6= H3/G15

as required. tu

3. The hexgonal prism and arithmeticity of the links Dj and Dj

3.1. The hexagonal prism. Let P denote the convex ideal hyperbolic hexagonal prism of [31,

Chapter 6] shown in Figure 5(a) with dihedral angles α = arccos(
√
3

2
√
2
) at “horizontal” edges and

β = π − 2α at “vertical” edges. Note that P is the unique such hyperbolic polyhedron with the
dihedral angles as stated (see [20] and [27]). In addition, let Pn denote the ideal polyhedron obtained
by “stacking” n copies of P as shown in Figure 5(b) (which shows P2).

Figure 5(a)

Figure 5(b)

Note that the dihedral angle at edges which arise from stacking copies of P is 2α. The following is
easy to deduce from Rivin’s characterization of convex ideal hyperbolic polyhedra [27].

Lemma 3.1. Each Pn is a convex ideal polyhedron.

3.2. Arithmeticity of the links Dj and Dj. As a first step towards proving Theorem 1.1, we
establish that the complements of the links Dj and Dj are hyperbolic, admitting decompositions
into copies of P.
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Theorem 3.2. For j ≥ 1 the link complements S3 \ Dj and S3 \ Dj admit decompositions into
copies of P with face pairings given by isometries of H3.

Proof. We discuss the case of Dj , and show that S3 \Dj can be decomposed into two copies of the
polyhedron Pj (j ≥ 1). The links Dj can be handled in an analogous manner.

To begin we will follow the discussion of [9, Section 2.2], and consider an alternating diagram
for Dj on some projection plane S2 ⊂ S3. This produces the 4-valent planar graph Pj (Figure 6(a)
shows P2). Two-coloring the regions in checkerboard fashion and labelling these regions as + and
− determines a decomposition of S3 into two 3-balls, each of which is endowed with an abstract
polyhedral structure. Denote these polyhedra by Πj

+ and Πj
−.

so •

• •

ao ao

•
•

•
• •

go
•

• •
•

•
•

Figure 6(a)

These polyhedra are identical up to reversing all the colors and signs. Each face fi of Πj
+ is a

ni-gon (where ni = 2, 4 or 6) with a sign σi ∈ {±}, and the polyhedra Πj
+ and Πj

− are identified by

sending fi to the corresponding face of Πj
− using a rotation of σi2π/ni (with + denoting clockwise).

The resulting complex with vertices deleted is then homeomorphic to S3 \Dj (see [2, Theorem 2.1]
for example).

Note that Pj contains 6 bigons, and we can collapse each of these bigons to an edge in each of the

polyhedra Πj
+ and Πj

−, and then make the identifications described above (see [2, Lemma 2.1] for
example). We also note that these polyhedra now have vertices of degree three or four, but remain
2-colorable in the sense that any vertex of degree three does not have all incident faces having the
same symbol + or − (see Figure 6(b)).
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Figure 6(b)

The key point is that this combinatorial realization can be done geometrically: namely the iden-
tifications described above on Πj

± can be realized as isometric identifications of two copies of Pj

(which, we recall, are built from j copies of P). This can be done directly as we did in [9]; however,
it can also be deduced from [2, Corollary 7.4] (stated below) as we now discuss.

Proposition 3.3. Let P be a convex ideal hyperbolic polyhedron built up from simple polyhedra.
Suppose that P only has vertices of degree three or four, and that P is 2-colorable. Then for any
2-coloring of P , the induced hyperbolic structure on the corresponding link complement is complete.

We will not define the term simple polyhedron here and refer the reader to [2]. We simply remark
that P is simple, and moreover, in our case, each polyhedron Pj is convex (by Lemma 3.1), built
from j copies of P, with all vertices having degree three or four, and is 2-colorable. Applying
Proposition 3.3 we obtain a complete hyperbolic structure on each of the link complements S3 \Dj

(j ≥ 1). tu

The proof of Theorem 1.1 will be completed (i.e. the link complements are arithmetic and cover
the orbifold H3/Γ1

O) by the following lemma.

Lemma 3.4. The link complements S3 \Dj and S3 \ Dj are finite sheeted covers of H3/Γ1
O.

Proof. From Theorem 3.2, we may conclude that the link complements S3 \Dj and S3 \ Dj can be
decomposed into copies of P). It remains to show that their fundamental groups are subgroups of
Γ1
O (up to conjugacy). We do this as follows.

The group of orientation-preserving isometries of P is a dihedral group of order 12 and we can
use this group action to subdivide P into 12 copies of the polyhedron X shown in Figure 7. Note
that an integer n decorating an edge indicates an angle of 2π/n at that edge, and α and β are as in
§3.1.
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Figure 7

Furthermore, we fold the top and bottom faces of X along diagonals; fold the two front vertical
faces along diagonals (to the cusp) and identify the two back vertical faces to each other by the
order 6 rotation. Performing these identifications one can check that the resultant quotient orbifold
is QO (as shown in Figure 2(a)). In particualr, we can conclude that these isometries generate ΓO.

Next, we describe how to realize S3 \Dj and S3 \Dj by identifying two copies of Pj as described
in the first part of Theorem 3.2 using isometries contained in ΓO. This will establish that S3 \Dj

and S3 \ Dj are arithmetic.
First identify P+

j to P−j along a pair of hexagonal faces to obtain a stack of 2j copies of P. Now

the remaining face identifications are made by products of elements of ΓO; i.e. rotations by 2nπ/6;
translations along the central axis of the stack; rotations by π about diagonals in the faces of copies
of P.

To finish the proof we now show that S3 \Dj and S3 \Dj are all finite sheeted covers of H3/Γ1
O.

To do this we will need to recall some terminology from [25].
Following [25], given an arithmetic Kleinian group Λ commensurable with PSL(2, O15) we set

ΛQ(
√
−15) = {γ ∈ Λ : tr(γ) ∈ Q(

√
−15)}.

From [25, Theorem 2.2(3)] ΛQ(
√
−15) is a finite index normal subgroup of Λ of index 2a for some

non-negative integer a. Consider the group (ΓO)Q(
√
−15): this clearly contains the group Γ1

O, and we

claim that (ΓO)Q(
√
−15) = Γ1

O. To see this, since (ΓO)Q(
√
−15) is arithmetic, in fact, tr(γ) ∈ O15 for

all γ ∈ (ΓO)Q(
√
−15). From [22, Exercise 3.2(1)] we can form the order O(ΓO)Q(

√
−15) which must

contain O since Γ1
O ⊂ (ΓO)Q(

√
−15). However, O is a maximal order and so O(ΓO)Q(

√
−15) = O.

Hence (ΓO)Q(
√
−15) = Γ1

O as claimed.

We showed above that each of the link groups π1(S3 \Dj) and π1(S3 \ Dj) are subgroups of ΓO,
and by [25, Corollary 2.3], π1(S3 \Dj) and π1(S3 \ Dj) are actually subgroups of ΓO,Q(

√
−15), and

hence subgroups of Γ1
O by the previous paragraph. tu

Remark 3.5. The same argument used to prove Lemma 3.4 also shows that S3 \ C6 is a finite
sheeted cover of H3/Γ1

O.

Remark 3.6. We have not checked whether any of the link complements S3 \Dj, S3 \Dj or S3 \C6

also cover Q15, however, we suspect that this is not the case.
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4. Final remarks

4.1. Non-arithmetic alternating link complements built from P. In [9] we constructed two
infinite families of alternating link complements commensurable with Q3, these were all cubical, in
that they were built from regular ideal cubes. Indeed as proved in [9, Lemma 2.2], any cubical
hyperbolic 3-manifold is arithmetic. One of the complications here is that a manifold built from
copies of P need not be arithmetic. Consider the alternating link shown in Figure 8.

Figure 8

The complement of this link was built by arranging for the “upper” and “lower” polyhedra (which
we denoted Π+ and Π− previously) to consist of two copies of P stacked so that each hexagonal face
shares an edge. To the extent of rigor that Snap [11] permits, this manifold has trace-field Q(

√
−15)

but is not arithmetic since there is an element whose trace is not an algebraic integer.

4.2. Closed embedded essential surfaces. As in [9], most of the link complements S3 \Dj and
S3 \Dj can be shown to contain closed embedded essential surfaces. In particular, the argument of
[9, Section 4] proves.

Theorem 4.1. For each j > 2 (resp. j > 1) the link complement S3 \Dj (resp. S3 \ Dj) contain
a closed embedded essential surface.

4.3. Describing all arithmetic alternating link complements. We finish by raising the chal-
lenge problem of describing all arithmetic alternating link complements. The results of [9] and
this note exhibit several infinite families of arithmetic alternating links: namely Lj , Lj (from [9]
for which the link complements cover Q3), Dj and Dj for j ≥ 1 (for which the link complements
are commensurable with Q15. Given Hatcher’s examples in [18] when d = 1, 2, 3, 7, 11, a natural
question is therefore:

Question 1: For d = 1, 2, 7, 11, are there any infinite families of arithmetic alternating links?

If Question 1 has a negative answer, what are the remaining finitely many arithmetic alternating
links? Using a variation of the techniques in [18] (and those here), we have produced other examples
of arithmetic alternating links when d = 7, 11, and these are shown in Figure 10(a) and 10(b) respec-
tively. Note that, using SnapPy [12], the complement of the link in Figure 10(a) can be seen to be
isometric to the complement of the non-alternating link in [17] with fundamental group Γ−7(12, 17)
(in the notation of [17]).
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Figure 10(a)

Figure 10(b)

Question 2: Are there any more?

In the case when d = 1, the referee pointed out that, in addition to the Whitehead link and the
Borromean rings, the 10 crossing two component alternating link L10a119 of the Thistlethwaite
Link Table [30] has a complement that decomposes into three right angled octahedra, and so covers
Q1 (of covering degree 36). On the other hand, we checked that the decomposition of this link
complement obtained à la Menasco [23] (i.e. by the procedure described in §3.2) does not give a
decomposition into octahedra; the polyhedra in question have 2 hexagonal faces and 4 quadrilateral
faces (this phenomena was pointed out in [2]).

Moreover, any link complement covering Q1 admits a decomposition as a union of right angled
octahedra, and we note that if the polyhedra produced by the method described in §3.1 were known
to be completely realizable by ideal hyperbolic right angled polyhedra (in the sense of [13]), then by
[13] this would identify the link as the Borromean rings.
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In connection with this, the referee also pointed out that the OctahedralOrientableCuspedCensus
of SnapPy [12] which consists of the census of manifolds in SnapPy that are made up of 7 or fewer
regular ideal octahedra, contains 11272 manifolds but has not been properly searched to identify
link complements, alternating or otherwise. Such a search now seems possible.

Additionally, we recently noticed that in the tables of [16] the manifold m203 of the SnapPy
census [12] was identified as arithmetic, covering Q3 (of covering degree 24). This manifold is
homeomorphic to the complement in S3 of the link 622 of Rolfsen’s tables [26].

Finally, for the sets C and C ′ as defined in §1, are there other values of d ∈ C ∪ C ′, for which
there exist an arithmetic alternating link?
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