0.1 Extrema liés

Exercice 12

Soit $\mathcal E$ l'ellipse dans $\mathbb R^2$ définie par l'équation $\frac{x^2}{3} + y^2 = 1$.

- 1. Déterminer les points critiques de $g(x,y) = \frac{x^2}{3} + y^2$ situés sur \mathcal{E} .
- 2. On considère les fonctions

$$f_1(x,y) = y$$

 $f_2(x,y) = x + y$
 $f_3(x,y) = x^2 + y^2$.

Déterminer (et dessiner) les extrema locaux des fontions f_j restreintes à \mathcal{E} .

Exercice 13

La température sur la sphère $x^2 + y^2 + z^2 = 4$ est donnée par $T(x, y, z) = 2 + xz + y^2$. Trouver les points les plus chauds et ceux les plus froids.

Exercice 14

Cet exercice a pour but de démontrer l'inégalité arithmético-géométrique :
$$\sqrt[n]{a_1 \cdots a_n} \leqslant \frac{a_1 + \cdots + a_n}{n}$$
 pour des nombres $a_i \geqslant 0$.

Utiliser la méthode de Lagrange pour trouver la valeur maximale de $f(x_1, \ldots, x_n) = x_1^2 \cdots x_n^2$ sur la sphère de rayon r > 0 : $x_1^2 + \cdots + x_n^2 = r^2$. Pourquoi f admet-elle une valeur maximale?

Déduire de la question précédente que
$$x_1^2 \cdots x_n^2 \leqslant (\frac{x_1^2 + \cdots + x_n^2}{n})^n$$

En déduire l'inégalité arithmético-géométrique.

Exercice 15

Trouver la valeur maximale de f(x, y, z) = x + z sur la sphère $x^2 + y^2 + z^2 = 1$ (par la méthode de Lagrange).

Exercice 16

Trouver le minimum de la fonction
$$\sum_{i=1}^d x_i$$
 pour $x \in \mathbb{R}_+^d$ avec $\prod_{i=1}^d x_i = 1$.

Exercice 17

Déterminer le maximum du produit des distances d'un point M d'un triangle ABC aux trois côtés du triangle.

Exercice 18

Déterminer les extrema de la fonction f définie par f(x, y, z) = xy + yz + zx, sachant que x + y + z = 1.

Exercice 19

Soit g(x,y,z)=xyz-32, $\mathcal{S}=\{(x,y,z)\in\mathbb{R}^3:g(x,y,z)=0\}$ et f(x,y,z)=xy+2yz+2xz. Déterminer $\min\{f(x,y,z) ; (x,y,z) \in \mathcal{S}\}.$

Exercice 20

Déterminer le point p du plan $\Sigma = \{(x, y, x + y) : x, y \in \mathbb{R}\}$ qui réalise la distance dist $(\Sigma, (1, 0, 0))$.

Exercice 21

- 1. Déterminer les extrema de la fonction f(x,y)=xy sur le cercle unité $S=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$.
- 2. Même question pour la fonction $f(x,y) = xy^2$.

Exercice 22

Déterminer le minimum et le maximum de la fonction f(x, y, z) = 5x + y - 3z sur l'intersection du plan $\Sigma = \{x + y + z = 0\}$ avec la sphère unité de \mathbb{R}^3 .