# RÉSUMÉ: RÉSOLUTION EQUATION DIFFÉRENTIELLE LINÉAIRE DU 1 ER ORDRE

$$(E): y' = a(x)y + b(x)$$

solution générale= solution de l'équation homogène + solution particulière

- On cherche d'abord les solutions  $y_h$  de l'équation homogène (sans second membre)  $(E_1)$ : y' = a(x)y
  - Elles sont de la forme  $y_h(x) = Ce^{A(x)}$
  - où  $A(x) = \int e^{a(x)} dx$  et C une costante réelle.
- ② On recherche ensuite les solutions de (E)
  - Pour cela on doit trouver une solution particulière yp
  - la méthode de la variation de la constante, donne :

$$y_p = \left(\int b(x)e^{-A(x)}dx\right)e^{A(x)}$$

- 3 Les solutions de (E): y' = a(x)y + b(x) sont alors :
  - $y = y_h + y_p = \left[ \left( \int b(x) e^{-A(x)} dx + C \right) e^{A(x)} \right]$



Une équation différentielle linéaires d'ordre 2 à coefficients constants est une équation de la forme

(E): 
$$ay''(x) + by'(x) + cy(x) = f(x)$$

où a, b et c sont des coefficients constants (des réels) avec  $a \neq 0$  et f est une fonction

(on ne considérera que des fonctions *f* particulières).



## L'EXEMPLE DU RESSORT

- Considérons le mouvement d'un objet de masse m suspendu au bout d'un ressort vertical.
- D'après la loi de Hooke, le ressort étiré (ou comprimé) de x unités par rapport à sa longueur initiale exerce une force proportionnelle à x :
- la force de rappel égale à -kx, où k est une constante positive (appelée la constante du ressort).
- En faisant abstraction de toute autre force extérieure (telle que la force de résistance due à l'air), on a, conformément à la deuxième loi de Newton (la force est égale à la masse fois l'accélération) :

•

$$mx''(t) = -kx(t)$$

Si de plus, on tient compte du poids, l'équation devient :

$$mx''(t) + kx(t) = mg$$



# L'EXEMPLE DE LA MODÉLISATION D'UNE ARTICULATION

- Une articulation est modélisée par un système comprenant un piston amortisseur (le cartilage...) et un ressort (le muscle).
- L'équation différentielle à laquelle obéit le déplacement x de la masse m soutenue par l'articulation s'écrit :

$$mx'' + fx' + kx = F(t)$$

 où k est la raideur du système tandon-muscle, f un coefficient positif relié à l'amortissement donné par le cartilage et F(t) une force extérieure appliquée à l'articulation.

# ÉQUATIONS LINÉAIRES D'ORDRE 2 À COEFFICIENTS CONSTANTS

Soit l'équation différentielle linéaire à coefficients constants du second ordre

(E): 
$$ay''(x) + by'(x) + cy(x) = f(x)$$

- où *a*, *b* et *c* sont des coefficients constants (des réels) avec *a* non nul et où *f* est une fonction (on ne considérera que des fonctions particulières).
- L'équation homogène associée est

$$(E_1)$$
:  $ay''(x) + by'(x) + cy(x) = 0$ 

### **THÉORÈME**

Toute solution de (E) est la somme de la solution générale  $y_h$  de  $(E_1)$  et d'une solution particulière  $y_p$  de (E) i.e.  $y = y_h + y_p$ 

- •
- Pour résoudre (E) on procède en deux étapes :
  - 1) Résolution de  $(E_1)$ 
    - 2) Trouver une solution particulière de (E)

# RÉSOLUTION DE L'ÉQUATION HOMOGÈNE

• Résolution complète de l'équation homogène associée (E<sub>1</sub>)

$$(E_1)$$
:  $ay''(x) + by'(x) + cy(x) = 0$ 

- Son équation caractérisrique associée est  $ar^2 + br + c = 0$ .
- On commence par calculer son discriminant  $\Delta = b^2 4ac$ ,
- le tableau ci-dessous donne les solutions générales de  $(E_1)$ , suivant le signe de  $\Delta$

# RÉSOLUTION DE L'ÉQUATION HOMOGÈNE

$$(E_1)$$
:  $ay''(x) + by'(x) + cy(x) = 0$ 

| $\Delta = b^2 - 4ac$ | Racines de l'équation caractéristique $ar^2 + br + c = 0$                      | Solution générale de $(E_1)$                           |
|----------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|
| $\Delta = 0$         | une racine réelle double                                                       | $y_h = e^{rx} (Ax + B)$                                |
|                      | $r = \frac{-b}{2a}$                                                            | où A et B sont des réels arbitraires                   |
| Δ > 0                | deux racines réelles distinctent                                               | $y_h = Ae^{r_1 x} + Be^{r_2 x}$                        |
|                      | $r_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b - \sqrt{\Delta}}{2a}$ | où A et B sont des réels arbitraires                   |
| Δ<0                  | deux racines complexes conjuguées                                              | at. (2.)                                               |
|                      | $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$                             | $y_h = e^{\alpha t} (A\cos(\beta x) + B\sin(\beta x))$ |
|                      | avec $\alpha = \frac{-b}{2a}$ et $\beta = \frac{\sqrt{-\Delta}}{2a}$           | où A et B sont des réels arbitraires                   |



### EXEMPLE D'INTÉGRATION PAR PARTIES SUCCESSIVES

- O Soit à calculer y''(x) 4y'(x) + 4y(x) = 0
  - Le discriminant  $\Delta = 16 16 = 0$ ; donc l'équation caractéristique  $r^2 4r + 4 = 0$ , à une racine double, r = 2.
  - D'où la solution générale est  $y_h = e^{2x} (Ax + B)$ , où A et B sont des réels arbitraires
- ② Soit à calculer y''(x) + 3y'(x) + 2y(x) = 0
  - Le discriminant  $\Delta = 9 8 = 1$ ; donc l'équation caractéristique  $r^2 + 3r + 2 = 0$ , à deux racines réelles ,  $r_1 = -2$  et  $r_2 = -1$ .
  - D'où la solution générale est  $y_h = Ae^{-2x} + Be^{-x}$ , où A et B sont des réels arbitraires.
- **3** Soit à calculer y''(x) 2y'(x) + 5y(x) = 0
  - Le discriminant  $\Delta = -16$ ; donc l'équation caractéristique  $r^2 2r + 5 = 0$ , à deux racines complexes conjugées,  $r_1 = 1 + 2i$  et  $r_2 = 1 2i$ .
  - D'où la solution générale est  $y_h = e^x (A\cos(2x) + B\sin(2x))$ , où A et B sont des réels arbitraires.



# RECHERCHE D'UNE SOLUTION PARTICULIÈRE DE (E)

On va maintenant traiter des cas particulier de l'équation avec second membre.

## SECOND MEMBRE POLYNÔME

- Si le second membre f(x) = P(x) où P est un polynôme de degré d.
- On cherche une solution particulière  $y_p$  sous la forme d'une fonction polynomiale Q(x):
  - I) si  $c \neq 0$ : Q(x) polynôme de degré d.
  - II) si c = 0 et  $b \neq 0$ :  $Q(x) = xQ_1(x)$ , avec  $Q_1(x)$  polynôme de degré d.
  - III) si c = b = 0:  $Q(x) = x^2 Q_1(x)$ , avec  $Q_1(x)$  polynôme de degré d.

#### EXEMPLE

Soit à résoudre  $y''(x) - 4y'(x) + 4y(x) = 4x^2 + 2$ .

- On a déjà montrer que la solution générale de l'équation homogène associée y''(x) 4y'(x) + 4y(x) = 0, est de la forme  $y_h = e^{2x}(Ax + B)$ .
- Comme le second membre  $f(x) = 4x^2 + 2$  est un polynôme de degré 2 et que  $c = 4 \neq 0$ , on peut chercher une solution particulière de la forme fonction polynomiale de degré 2,  $y_p = \alpha x^2 + \beta x + \gamma$ .
- On a  $y_p' = 2\alpha x + \beta \rightarrow y_p'' = 2\alpha$  et en substituant dans l'équation on aura
- $(4\alpha)x^2 + (-8\alpha + 4\beta)x + (2\alpha 4\beta + 4\gamma) = 4x^2 + 2$ , ce qui revient à résoudre le système :  $\begin{cases} 4\alpha = 4 \Longrightarrow \alpha = 1 \\ -8\alpha + 4\beta = 0 \Longrightarrow \beta = \frac{8\alpha}{4} = \frac{8}{4} = 2 \\ 2\alpha 4\beta + 4\gamma = 2 \Longrightarrow \gamma = \frac{2-2\alpha+4\beta}{4} = \frac{2-2+8}{4} = 2 \end{cases}$
- D'où  $y_p = x^2 + 2x + 2$ .

Technique de résolution

• Ainsi la solution générale est  $y(x) = e^{2x}(Ax + B) + x^2 + 2x + 2$ , où A et B sont des réels arbitraires.

# SECOND MEMBRE PRODUIT POLYNÔME ET EXPONENTIELLE

- Si le second membre du type  $f(x) = e^{\alpha x} P(x)$  où P est un polynôme de degré d.
- On cherche une solution particulière  $y_p$  sous la forme d'une  $e^{\alpha x}Q(x)$  où Q(x) est un polynôme :
  - A) Q(x) de degré d si  $\alpha$  n'est pas racine de l'équation caractéristique  $ar^2 + br + c = 0$ .
  - B)  $Q(x) = xQ_1(x)$ , avec  $Q_1(x)$  polynôme de degré d, si  $\alpha$  est racine simple de l'équation caractéristique  $ar^2 + br + c = 0$ .
  - C)  $Q(x) = x^2 Q_1(x)$ , avec  $Q_1(x)$  polynôme de degré d, si  $\alpha$  est racine double de l'équation caractéristique  $ar^2 + br + c = 0$ .
- **Remarque**: On pose  $y(x) = e^{\alpha x}u(x)$ , alors l'équation vérifiée par u est du type a'u'' + b'u' + c'u = P(x), on se ramène ainsi au cas précédent i.e à la recherche d'une solution particulière sous forme de polynôme.



#### EXEMPLE

Trouver la solution de  $y'' - 6y' + 9y = e^{3t}$  avec y(0) = 1 et y'(0) = 0.

- L'équation homogène associée est y'' 6y' + 9y = 0, donc l'équation caractéristique est  $r^2 6r + 9 = 0$  de discriminant nul, qui a une racine double r = 3.
- ses solutions sont donc  $y_h(t) = (A + Bt)e^{3t}$ ,  $A, B \in \mathbb{R}$ .
- Comme le second membre  $f(x) = e^{3t}$  et que 3 est racine double de l'équation caractéristique, on cherche alors une solution particulière sous la forme  $y_p(t) = \lambda t^2 e^{3t}$ .
- Ainsi  $y_p'(t) = 3\lambda t^2 e^{3t} + 2\lambda t e^{3t} \rightarrow y_p''(t) = 2\lambda e^{3t} + 12t\lambda e^{3t} + 9\lambda t^2 e^{3t}$  donc  $y_p'' 6y_p' + 9y_p = 2\lambda e^{3t}$ . On veut  $y_p'' 6y_p' + 9y_p = e^{3t}$  donc  $\lambda = \frac{1}{2}$  et une solution particulière est  $y_p(t) = \frac{1}{2}t^2 e^{3t}$ .
- La solution générale est  $y(t) = (A + Bt + \frac{1}{2}t^2)e^{3t}$ , où  $A, B \in \mathbb{R}$ .



#### **CONDITIONS INITIALES**

On cherche à trouver la solution qui vérifie y(0) = 1 et y'(0) = 0.

- On a y(0) = A et on veut y(0) = 1, il faut donc que A = 1.
- On a  $y'(t) = 3(A + Bt + \frac{1}{2}t^2)e^{3t} + (B + t)e^{3t}$  donc y'(0) = 3A + B et on veut y'(0) = 0 donc B = -3A = -3.
- La solution recherchée est ainsi  $y(t) = (1 3t + \frac{1}{2}t^2)e^{3t}$



# ANNEXE: EXPONENTIELLE D'UN NOMBRE COMPLEXE

- O Pour tout nombre réel θ, on note  $e^{i\theta} = \cos \theta + i \sin \theta$ .
- (Formules d'Euler)

$$\begin{cases} \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}. \end{cases}$$

**(Formule de Moivre.)** Pour tout nombre réel  $\theta$  et tout entier n, on a

$$(\cos\theta + i\sin\theta)^n = \left(e^{i\theta}\right)^n = e^{in\theta} = \cos n\theta + i\sin n\theta.$$

**9** Pour tout nombre complexe  $z = \alpha + i\beta$  on a

$$e^{z} = e^{\alpha + i\beta} = e^{\alpha}.e^{i\beta} = e^{\alpha}(\cos(\beta) + i\sin(\beta))$$

