S1BMATHU : ANALYSE MATHÉMATIQUES POUR LA 1ÈRE ANNÉE DE LICENCE DE BIOLOGIE

Resp. K. Bekka

UFR de Mathématiques Université de Rennes 1

6 octobre 2015

Adresse de la page du cours

http://perso.univ-rennes1.fr/karim.bekka/L1-Bio.html

Mes coordonnées : Karim BEKKA

Bureau : n°613 (6eme étage du Bâtiment 22)

email: karim.bekka@ univ-rennes1.fr

Présentation de l'ue

- Le volume horaire de l'UE est de 12 heures de cours (1h30 par semaine sur 8 semaines)
- 12 heures de TD (2h par semaine).
- Les TD débuterons la semaine du 2 novembre

L'évaluation de l'enseignement :

- 1) un contrôle continu (CC) de 45 minutes : aura lieu le vendredi 27 novembre 2015 à 8h30
- 2) un terminal (T) de 2h : aura lieu la semaine du 4 au 8 janvier 2016
- 3) La note finale F est donnée par la formule

$$F = \max\left\{T, \ \frac{T + CC}{2}\right\}$$

Le programme

- Etude de fonctions : Fonctions d'une variable réelle, ensemble de définition, dérivée, sens de variation, limites, asymptotes.
- Calcul d'incertitude
- Primitives : Intégration par parties, changement de variables. Intégrale définie.
- Equations différentielles: Intégration d'équation différentielle linéaire du 1er ordre à coefficients variables, méthode de la variation constante. Equation linéaire du second ordre à coefficients constants.

CHAPITRE 1 : ÉTUDE DE FONCTIONS

- Introduction
- ② GÉNÉRALITÉS
 - Définitions
 - Opérations sur les fonctions
 - Parité, périodicité
- 3 LIMITES
 - Définition
 - Opérations sur les limites
 - Puissances comparées
- DÉRIVÉE; SENS DE VARIATION
 - Sens de variation
- 5 DROITES ASYMPTOTES, BRANCHES PARABOLIQUES
 - Les droites asymptotes
 - Les branches paraboliques
- **6** FONCTIONS USUELLES
 - Logarithme et exponentielle
 - Fonctions trigonométriques

Sommaire 6 octobre 2015

Fonctions et modèles

- Un modèle mathématique est une description mathématique d'un phénomène issu du monde réel, par exemple :
 - la taille d'une population
 - la vitesse d'un objet qui tombe
 - la concentration d'un produit au cours d'une réaction chimique
 - l'espérance de vie d'une personne à sa naissance
- La construction d'un modèle vise à comprendre le phénomène et peut-être à pouvoir faire des prédictions sur le comportement futur.
- Ce modèle repose sur des expérimentations (ou des lois physiques).
- Nous allons considérer des exemples modélisés par des fonctions, le choix de ces fonctions étant justifié au dernier chapitre.

Introduction 6 octobre 2015

NIVEAU MOYEN DU CO₂ DANS L'ATMOSPHÈRE

Le tableau ci-dessous présente le niveau moyen N de dioxyde de carbone dans l'atmosphère pour quelques années t entre 1972 et 1990 à l'observatoire de Mauna Loa, situé sur une île hawaienne du Pacifique.

Introduction 6 octobre 2015

NIVEAU MOYEN DU CO₂ DANS L'ATMOSPHÈRE

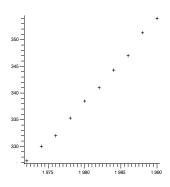
ten	ps 1972	1974	1976	1978	1980	1982	1984	1986	1988	1990
(ann	ées)									
CO	$O_2 = 327,3$	330	332	335,3	338,5	341	344,3	347	351,3	354
(pp	m)									

Par exemple, en 1988, le niveau est de 351,3 ppm. A chaque valeur du temps t correspond une valeur N et on dit que N est une fonction de t.

On reporte les données dans le repère ci-dessous avec en abscisse le temps t en années et en ordonnée le niveau N de CO_2 en parties par millions (ppm).

Introduction 6 octobre 2015

NIVEAU MOYEN DU CO2 DANS L'ATMOSPHÈRE

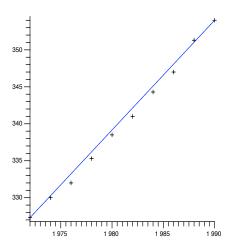


On constate que les points sont presque alignés. La fonction qui modélise le niveau de CO₂ en fonction du temps est linéaire, par exemple $f(t) = \frac{3}{2}t - 2531$ convient bien.

Introduction 6 octobre 2015

NIVEAU MOYEN DU CO₂ DANS L'ATMOSPHÈRE

On vérifie qu'elle correspond bien au modèle, c'est-à-dire aux données numériques du tableau



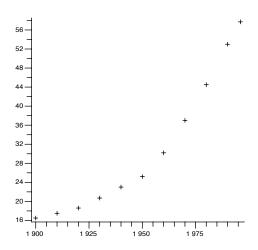
Introduction 6 octobre 2015

La population mondiale P dépend du temps t. Le tableau ci-dessous donne une estimation de cette population mondiale P(t) au temps t, pour quelques années. Par exemple P(1950) = 2520000000. Mais à chaque valeur de la variable t correspond une valeur de P et on dit que P est une fonction de t.

temps	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	1996	2000
(années)												
population	1650	1750	1860	2070	2300	2520	3020	3700	4450	5300	5770	6085
(millions)												

Introduction 6 octobre 2015

On reporte les données dans le repère ci-dessous avec en abscisse le temps en années et en ordonnée la population P en centaines de millions.



Introduction 6 octobre 2015

Pour modéliser ces données, on peut choisir une fonction polynomiale de degré 2 par exemple

$$g_1(t) = \frac{1}{2}t^2 - 1908t + 1822000$$

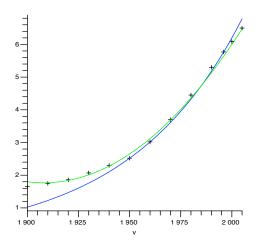
A partir de 1950 (après la guerre de 1945), un modèle exponentiel convient bien mieux

$$g_2(t) = 2520e^{0.018(t-1950)}$$

Nous justifierons ce deuxième modèle par une analyse utilisant la notion d'équation différentielle, à voir au dernier chapitre.

Introduction 6 octobre 2015

Voici les courbes de ces fonctions.



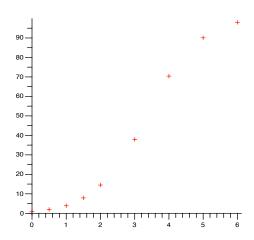
L'évolution d'une population de bactéries dans un milieu de culture a été mesurée expérimentalement :

temps (heures)	0	0,5	1	1,5	2	3	4	5	6
nombre de bactéries (millions)	1	2	4	7,9	14,5	37,9	70,4	90,1	98

Le nombre de bactéries est exprimé en millions d'individus, le temps t est exprimé en heures.

Introduction 6 octobre 2015 17 / 96

On a représenté les points dans un repère orthonormé avec en abscisse le temps en heures et en ordonnée le nombre de bactéries en millions.



Introduction 6 octobre 2015

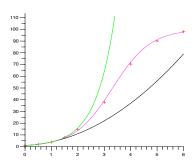
On cherche à modéliser l'évolution des bactéries au moyen d'une fonction de $[0, +\infty[$ dans \mathbb{R} qui à tout t associe la valeur h(t) qui correspond au nombre de bactéries en millions à l'instant t. On propose les 3 fonctions suivantes :

$$h_1(t) = 2t^2 + t + 1$$

$$h_2(t) = e^{\ln(4)t}$$

$$h_3(t) = \frac{100}{1 + 99e^{-\ln(4)t}}$$

Introduction 6 octobre 2015



La fonction h_1 est bien adaptée au tout début de l'expérience, pendant la première heure. La fonction h_2 convient un peu mieux, elle est adaptée pour les deux premières heures de l'expérimentation, c'est la troisième fonction qui modélise le mieux le problème. Pour trouver les fonctions h_2 et h_3 on utilise la notion d'équation différentielle que nous verrons à la dernière partie du cours.

Introduction 6 octobre 2015

PLAN D'ÉTUDE

Le but de cette partie est d'étudier les fonctions comme celles données dans les exemples précédents. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de courbe représentative C_f dans un repère orthonormé. On suivra le plan ci-dessous :

- Domaine de définition, domaine d'étude.
- Parité. Périodicité
- Étude des variations.
 - Domaine de dérivabilité.
 - études des limites aux bornes du domaine d'étude.
 - Sens de variation, tableau de variations.
- Asymptotes.
- Représentation graphique.

Généralités 6 octobre 2015

EXEMPLE D'UNE FONCTION POLYNOMIALE

Considérons la fonction g définie par

$$g(t) = g_1(t) = \frac{1}{2}t^2 - 1908t + 1822000$$

- 1. La fonction g est définie sur \mathbb{R} (fonction polynomiale). On peut éventuellement réduire son domaine de définition.
- 2. La fonction g est dérivable sur \mathbb{R} de dérivée définie par : pour tout t dans \mathbb{R} ,

$$g'(t) = t - 1908$$

Le sens de variation de la fonction g est donné par le signe de sa dérivée : pour tout $t \ge 1908$, $g'(t) \ge 0$ et pour tout $t \le 1908$, $g'(t) \le 0$. La fonction g est donc décroissante sur $]-\infty,1908]$ et croissante sur $[1908,+\infty[$.

Généralités 6 octobre 2015

Limites aux bornes de l'ensemble de définition

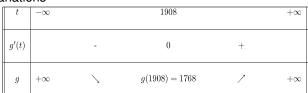
$$g(t) = t^2(\frac{1}{2} - 1908\frac{1}{t} + 1822000\frac{1}{t^2})$$

donc
$$\lim_{t\to -\infty} g(t) = +\infty$$
 et $\lim_{t\to +\infty} g(t) = +\infty$

Généralités 6 octobre 2015

EXEMPLE D'UNE FONCTION POLYNOMIALE

4. Tableau de variations

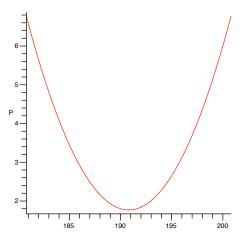


- Courbe représentative de la fonction

Généralités 6 octobre 2015

EXEMPLE D'UNE FONCTION POLYNOMIALE

5. Courbe représentative de la fonction.



On remarque que l'axe x = 1908 est un axe de symétrie.

INTERVALLES

a et b deux réels distincts, a < b.

- 1 Intervalle ouvert :]a, $b[=\{x \in \mathbb{R} | a < x < b\}]$
- ② Intervalle fermé : $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$
- Intervalles semi-ouverts (ou semi-fermés) :

$$[a, b[=\{x \in \mathbb{R} | a \le x < b\}]$$

$$[a, b] = \{x \in \mathbb{R} | a < x \le b\}$$

• Par extension avec $\pm \infty$:

$$[a, +\infty[= \{x \in \mathbb{R} | a \le x\} \text{ ou }]a, +\infty[= \{x \in \mathbb{R} | a < x\}]$$

$$]-\infty$$
, $a] = \{x \in \mathbb{R} | x \le a \}$ ou $]-\infty$, $a[= \{x \in \mathbb{R} | x < a \}$

FONCTION D'UNE VARIABLE RÉELLE

DEFINITION

Une fonction réelle f de la variable réelle est une transformation qui à tout élément x d'une partie D de \mathbb{R} fait correspondre un unique élément de \mathbb{R} .

Notation:

$$f: D \to \mathbb{R}$$

 $x \mapsto f(x)$

D est le domaine de définition de f.

DOMAINE DE DÉFINITION

DEFINITION

Le domaine de définition d'une fonction réelle f de la variable réelle est l'ensemble, noté D_f , fomé des réels x pour lesquels il existe une (unique) image, notée f(x).

EXEMPLE

1) La fonction
$$f(x) = \sqrt{\frac{1}{x+1}}$$
 a pour domaine de définition

$$D_f = \{x \in \mathbb{R} | x + 1 > 0\} =] - 1, +\infty[.$$

2) La fonction $f(x) = \frac{x^4 - x^2 + 4}{x^2 - 4}$ est une fonction rationnelle (quotient de deux polynômes). Elle est définie en tout point de $\mathbb R$ où le dénominateur de f ne s'annule pas. Son domaine de définition

$$D_f=\mathbb{R}-\{-2,+2\}=\big]-\infty,-2\big[\cup\big]-2,2\big[\cup\big]2,+\infty\big[.$$

IMAGE DU DOMAINE DE DÉFINITION

DEFINITION

L'image par f du domaine D_f est l'ensemble, noté $f(D_f)$ ou im(f), fomé des réels y pour lesquels il existe au moins un antécédent

$$f(D_f) = \{y \in \mathbb{R} | \text{ il existe } x \in D_f \text{ et } y = f(x)\}.$$

EXEMPLE

1) Pour
$$f(x) = \sqrt{\frac{1}{x+1}}$$
 on a $D_f = \{x \in \mathbb{R} | x+1 > 0\} =]-1, +\infty[$ et $f(D_f) =]0, +\infty[$.

2) Pour
$$f(x) = x^3 + 2x^2 + 1$$
 on a $D_f = \mathbb{R}$ et

$$f(D_f) = \mathbb{R}.$$

Généralités **Définitions**