

1 Orthogonalité

- 1. Soit E un espace de Hilbert et F_1 et F_2 deux sous-espace de E.
 - (a) Montrer que $(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp}$
 - (b) Si de plus F_1 et F_2 sont fermés, montrer que $(F_1 \cap F_2)^{\perp} = \overline{F_1^{\perp} + F_2^{\perp}}$
- 2. Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace des matrices carrées d'ordre n, muni du produit scalaire $\langle M, N \rangle = \operatorname{tr}({}^t M N)$.
 - (a) Déterminer la norme de la matrice identité et de la matrice $M = (i+j)_{1 \le i,j \le n}$
 - (b) On note par $\mathscr{S}_n(\mathbb{R})$ l'espace des matrices symétriques et $\mathscr{A}_n(\mathbb{R})$ celui des matrices antisymétriques. Montrer $\mathscr{S}_n(\mathbb{R})^{\perp} = \mathscr{A}_n(\mathbb{R})$ et que $E = \mathscr{S}_n(\mathbb{R}) \oplus \mathscr{A}_n(\mathbb{R})$

(c) Déterminer inf
$$\left\{ \sum_{1 \leq i,j \leq n} (a_{ij} - i - j)^2 | \text{ où } A = (a_{ij}) \in \mathscr{A}_n(\mathbb{R}) \right\}.$$

2 Dual et adjoint

- 1) Soit H un espace de Hilbert.
 - (a) Soit $a \in H \setminus \{0\}$. Montrer que $\forall u \in H$, $d(u, \{a\}^{\perp}) = \frac{|\langle u, a \rangle|}{\|a\|}$.
 - (b) Soit $f \in H^* \setminus \{0\}$. Montrer que $\forall x \in H, d(x, \ker f) = \frac{|f(x)|}{\|f\|}$.
 - (c) Soit F le sous-espace de $L^2([0,1])$ défini par $F = \{f \in L^2([0,1]), \int_0^1 f(x) dx = 0\}$. Montrer que F est un sev fermé de $L^2([0,1])$ et calculer la distance de la fonction $f: x \mapsto e^x$ à F.
- 2) Soit H un espace de Hilbert, x_n et $x \in H$. Montrer que les conditions suivantes sont équivalentes:
 - (a) $x_n \to x$
 - (b) $x_n \rightharpoonup x$ et $||x_n|| \rightarrow ||x||$.
 - (c) $\lim_{n\to+\infty}\langle x_n,y\rangle=\langle x,y\rangle$ uniformément pour tout $y\in H$ avec ||y||=1.
- 3) Soit $H = L^2([0,1])$. Pour $f \in H$, on pose

$$Tf(x) = \int_0^x f(t)dt.$$

- (a) Montrer que T est un opérateur continu sur H.
- (b) Calculer l'adjoint de T.

3 Isométrie, produit scalaire

- 1) Soient H_1 et H_2 deux espaces de Hilbert et $\Phi: H_1 \to H_2$ une application linéaire. Montrer que les conditions suivantes sont équivalentes:
 - a) $\|\Phi(u)\| = \|u\|$, pour tout $u \in H_1$.
 - b) $\langle \Phi(u), \Phi(v) \rangle = \langle u, v \rangle$ pour tout $u, v \in H_1$.

Soit Φ une isométrie linéaire. Montrer que:

- i) $\Phi(H_1)$ est un espace de Hilbert.
- ii) Si $(e_{\lambda})_{\lambda \in \Lambda}$ est une base hilbertienne de H_1 alors $\Phi((e_{\lambda})_{\lambda \in \Lambda})$ est une base hilbertienne de $\Phi(H_1)$.

- 2) Soit E un \mathbb{C} -espace vectoriel muni d'une norme qui vérifie l'identité du parallélogramme: pour tout $u,v\in E$: $\|u+v\|^2 + \|u-v\|^2 = 2\left(\|u\|^2 + \|v\|^2\right)$. On définit l'application $f: E\times E \to \mathbb{C}$ par $f(u,v) = \frac{1}{4}\sum_{k=0}^3 i^k \|u+i^kv\|^2$ On se propose d'établir que f est un produit scalaire de norme associée $\|.\|$ (théorème de Von Neumann). Montrer que pour tout $u,v,w\in E$ et $\lambda\in\mathbb{C}$ on a
 - (a) $f(u, u) = ||u||^2$
 - (b) $f(u,v) = \overline{f(v,u)}$
 - (c) $f(u+v,w) = 2f(u,\frac{w}{2}) + 2f(v,\frac{w}{2})$
 - (d) $f(u, v) = 2f(u, \frac{v}{2})$
 - (e) f(u+v,w) = f(u,w) + f(v,w)
 - (f) $f(\lambda u, v) = \lambda f(u, v)$.

Conclure

3) Soit $h^1(\mathbb{N})=\{a\in\ell^2(\mathbb{N}), \sum_{n=0}^\infty n^2|a_n|^2<+\infty\}$. On pose pour tout $a=(a_n)$ et $b=(b_n)$ éléments de $h^1(\mathbb{N})$

$$< a, b > = \sum_{n=0}^{+\infty} (1 + n^2) a_n \overline{b_n}.$$

- (a) Montrer que l'application $\langle .,. \rangle$ est un produit scalaire. Montrer $h^1(\mathbb{N})$ muni de ce produit scalaire est un espace de Hilbert.
- (b) Montrer que $h^1(\mathbb{N})$ est dense dans $\ell^2(\mathbb{N})$.
- (c) Montrer que la boule unité fermée de $h^1(\mathbb{N})$ est compacte dans $\ell^2(\mathbb{N})$.

4 Polynômes de Legendre

Sur $\mathbb{R}[X]$ on considère la forme bilinéaire: $\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$.

- 1. Vérifier que $\mathbb{R}[X]$ muni de cette forme bilinéaire est un espace préhilbertien.
- 2. Est-ce un espace de Hilbert? sinon quel est son complété?
- 3. En appliquant à la base $(X^n)_{n\in\mathbb{N}}$ le procédé d'orthonormalisation de Gram-Schmidt, montrer qu'il existe une unique famille orthonormée $(P_n)_{n\in\mathbb{N}}$ dans laquelle P_n est un polynôme de degrés n et $\langle P_n, X^n \rangle > 0$.
- 4. En déduire que $(P_n)_{n\in\mathbb{N}}$ est une base hilbertienne de $L^2([-1,1])$.
- 5. On définit le polynôme Q_n par

$$Q_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

Montrer que Q_n est de degré n et a n racines simples dans]-1,1[.

Montrer que Q_n est orthogonal à tout polynôme de degré strictement inférieur à n et en déduire que $Q_n = \lambda_n P_n$. Déterminer la valeur de $||Q_n||^2$ puis celle de λ_n . Enfin calculer $Q_n(1)$ et $Q_n(-1)$.

6. Calculer $\min_{a,b,c\in\mathbb{R}} \int_{-1}^{1} |x^3 - ax^2 - bx - c|^2 dx$.

5 Polynômes

Soit $w(x)=x^{-\ln x}$. On considère l'espace de Hilbert $L^2_w([0,+\infty[)=\{f;f\sqrt{w}\in L^2([0,+\infty[)\}, \text{ muni du produit scalaire }\langle u,v\rangle=\int_0^{+\infty}u(x)\overline{v(x)}x^{-\ln x}dx$.

- 1. Montrer que $\mathbb{R}[X] \subset L^2_w([0,+\infty[)]$.
- 2. Soit $f(x) = \sin(2\pi \ln x)$, Vérifier que $f \in L^2_w([0, +\infty[)$.
- 3. On note u_n la fonction polynomiale $x \mapsto x^n$. Montrer que pour tout $n \in \mathbb{N}$, $\langle u_n, f \rangle = 0$ En déduire que $\mathbb{R}[X]$ n'est pas dense dans $L^2_w([0, +\infty[)$.