Université de Rennes 1

Master1 de Mathématiques "Analyse hilbertienne et applications" Tutoriel problems $\mathrm{n}^{0} 4$

1 Orthogonality

1. Let E be a Hilbert space, F_{1} and F_{2} subspaces of E.
(a) Show that $\left(F_{1}+F_{2}\right)^{\perp}=F_{1}^{\perp} \cap F_{2}^{\perp}$
(b) If moreover F_{1} et F_{2} are closed, show that $\left(F_{1} \cap F_{2}\right)^{\perp}=\overline{F_{1}^{\perp}+F_{2}^{\perp}}$
2. Let $E=\mathscr{M}_{n}(\mathbb{R})$ be the $n \times n$ matrices endowed with the inner product $\langle M, N\rangle=\operatorname{tr}\left({ }^{t} M N\right)$.
(a) Compute the norme of the identity I and the matrix $M=(i+j)_{1 \leq i, j \leq n}$
(b) We denote by $\mathscr{S}_{n}(\mathbb{R})$ the space of symmetric matrices and by $\mathscr{A}_{n}(\mathbb{R})$ des antisymmetric matrices.

Show that $\mathscr{S}_{n}(\mathbb{R})^{\perp}=\mathscr{A}_{n}(\mathbb{R})$ and $E=\mathscr{S}_{n}(\mathbb{R}) \oplus \mathscr{A}_{n}(\mathbb{R})$
(c) Compute inf $\left\{\sum_{1 \leq i, j \leq n}\left(a_{i j}-i-j\right)^{2} \mid\right.$ où $\left.A=\left(a_{i j}\right) \in \mathscr{A}_{n}(\mathbb{R})\right\}$.

2 Dual and adjoint

1) Let H be a Hilbert space.
(a) Let $a \in H \backslash\{0\}$. Show that $\forall u \in H, d\left(u,\{a\}^{\perp}\right)=\frac{|<u, a>|}{\|a\|}$.
(b) Let $f \in H^{\prime} \backslash\{0\}$. Show that $\forall x \in H, d(x, \operatorname{ker} f)=\frac{|f(x)|}{\|f\|}$.
(c) Let F subspace of $L^{2}([0,1])$ defined by
$F=\left\{f \in L^{2}([0,1]), \int_{0}^{1} f(x) d x=0\right\}$. Show that F is a closed subspace of $L^{2}([0,1])$ and compute the distance from $f: x \mapsto e^{x}$ to F.
2) Let H be a Hilbert space, x_{n} and $x \in H$. Show that the following conditions are equivalent:
(a) $x_{n} \rightarrow x$
(b) $x_{n} \rightharpoonup x$ et $\left\|x_{n}\right\| \rightarrow\|x\|$.
(c) $\lim _{n \rightarrow+\infty}\left\langle x_{n}, y\right\rangle=\langle x, y\rangle$ uniformly for all $y \in H$ and $\|y\|=1$.
3) Let $H=L^{2}([0,1])$. For every $f \in H$, we set

$$
T f(x)=\int_{0}^{x} f(t) d t
$$

(a) Show that T is a continuous operator of H.
(b) Compute the adjoint map of T.

3 Isometry, inner product

1) Let H_{1} et H_{2} two Hilbert spaces and $\Phi: H_{1} \rightarrow H_{2}$ a linear application. Show that the following conditions are equivalent:
a) $\|\Phi(u)\|=\|u\|$, pour tout $u \in H_{1}$.
b) $<\Phi(u), \Phi(v)>=<u, v>$ pour tout $u, v \in H_{1}$.

Let Φ a linear isometry. Show that:
i) $\Phi\left(H_{1}\right)$ is a Hilbert space.
ii) If $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ is an orthonormal basis of H_{1} then $\Phi\left(\left(e_{\lambda}\right)_{\lambda \in \Lambda}\right)$ is an orthonormal basis $\Phi\left(H_{1}\right)$.
2) Let E be a \mathbb{C}-vector space endowed with a norm which satisfies: the parallelogram identity: for all $u, v \in E$: $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$. We define $f: E \times E \rightarrow \mathbb{C}$ by $f(u, v)=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|u+i^{k} v\right\|^{2}$. We propose to show that f is an inner product associated to $\|$.$\| (Von Neumann's theorem).$
Show that for $u, v, w \in E$ and $\lambda \in \mathbb{C}$ we have
(a) $f(u, u)=\|u\|^{2}$
(b) $f(u, v)=\overline{f(v, u)}$
(c) $f(u+v, w)=2 f\left(u, \frac{w}{2}\right)+2 f\left(v, \frac{w}{2}\right)$
(d) $f(u, v)=2 f\left(u, \frac{v}{2}\right)$
(e) $f(u+v, w)=f(u, w)+f(v, w)$
(f) $f(\lambda u, v)=\lambda f(u, v)$.
conclude
3) Let $h^{1}(\mathbb{N})=\left\{a \in \ell^{2}(\mathbb{N}), \sum_{n=0}^{\infty} n^{2}\left|a_{n}\right|^{2}<+\infty\right\}$. For any $a=\left(a_{n}\right)$ and $b=\left(b_{n}\right)$ elements of $h^{1}(\mathbb{N})$ we let

$$
<a, b>=\sum_{n=0}^{+\infty}\left(1+n^{2}\right) a_{n} \overline{b_{n}} .
$$

(a) Show that $<., .>$ is an inner product.

Show that $h^{1}(\mathbb{N})$ is a Hilbert space.
(b) Show that $h^{1}(\mathbb{N})$ is dense in $\ell^{2}(\mathbb{N})$.
(c) Show that the closed unit ball in $h^{1}(\mathbb{N})$ is compact in $\ell^{2}(\mathbb{N})$.

4 Legendre's polynomials

On $\mathbb{R}[X]$ we consider the bilinear form: $\langle P, Q\rangle=\int_{-1}^{1} P(t) Q(t) d t$.

1. Check that $\mathbb{R}[X]$ endowed with this bilinear form is an inner space.
2. Is it a Hibert space? if not what is it completion?
3. Applie to $\left(X^{n}\right)_{n \in \mathbb{N}}$ the Gram-Schmidt process, to show that there is a unique orthonormal family $\left(P_{n}\right)_{n \in \mathbb{N}}$ such that P_{n} is a polynomial of degree n and $\left\langle P_{n}, X^{n}\right\rangle>0$.
4. Deduce that $\left(P_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal basis of $L^{2}([-1,1])$.
5. We define Q_{n} by

$$
Q_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Show that Q_{n} is of degree n and has n simple roots in $]-1,1[$.
Show that Q_{n} is orthogonal to any polynomial of degree $<n$ and deduce that $Q_{n}=\lambda_{n} P_{n}$.
Compute $\left\|Q_{n}\right\|^{2}$ and λ_{n}. Detremine $Q_{n}(1)$ and $Q_{n}(-1)$.
6. Compute $\min _{a, b, c \in \mathbb{R}} \int_{-1}^{1}\left|x^{3}-a x^{2}-b x-c\right|^{2} d x$.

5 Polynomials

Let $w(x)=x^{-\ln x}$. We consider the Hilbert space $L_{w}^{2}\left(\left[0,+\infty[)=\left\{f ; f \sqrt{w} \in L^{2}([0,+\infty[)\}\right.\right.\right.$, endowed with the inner product $\langle u, v\rangle=\int_{0}^{+\infty} u(x) \overline{v(x)} x^{-\ln x} d x$.

1. Show that $\mathbb{R}[X] \subset L_{w}^{2}([0,+\infty[)$.
2. Let $f(x)=\sin (2 \pi \ln x)$, show that $f \in L_{w}^{2}([0,+\infty[)$.
3. Let u_{n} the polynomial function $x \mapsto x^{n}$. Show that for all $n \in \mathbb{N},\left\langle u_{n}, f\right\rangle=0$

Deduce that $\mathbb{R}[X]$ is not dense in $L_{w}^{2}([0,+\infty[)$.

