Année 2014-2015

Master1 de Mathématiques "Analyse hilbertienne et applications" Tutoriel problems nº4

1 Orthogonality

1. Let E be a Hilbert space, F_1 and F_2 subspaces of E.

- (a) Show that $(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp}$
- (b) If moreover F_1 et F_2 are closed, show that $(F_1 \cap F_2)^{\perp} = \overline{F_1^{\perp} + F_2^{\perp}}$
- 2. Let $E = \mathscr{M}_n(\mathbb{R})$ be the $n \times n$ matrices endowed with the inner product $\langle M, N \rangle = \operatorname{tr}({}^tMN)$.
 - (a) Compute the norme of the identity I and the matrix $M = (i+j)_{1 \le i,j \le n}$
 - (b) We denote by $\mathscr{S}_n(\mathbb{R})$ the space of symmetric matrices and by $\mathscr{A}_n(\mathbb{R})$ des antisymmetric matrices. Show that $\mathscr{S}_n(\mathbb{R})^{\perp} = \mathscr{A}_n(\mathbb{R})$ and $E = \mathscr{S}_n(\mathbb{R}) \oplus \mathscr{A}_n(\mathbb{R})$

(c) Compute
$$\inf \left\{ \sum_{1 \le i, j \le n} (a_{ij} - i - j)^2 | \operatorname{où} A = (a_{ij}) \in \mathscr{A}_n(\mathbb{R}) \right\}.$$

2 Dual and adjoint

1) Let H be a Hilbert space.

- (a) Let $a \in H \setminus \{0\}$. Show that $\forall u \in H$, $d(u, \{a\}^{\perp}) = \frac{|\langle u, a \rangle|}{\|a\|}$.
- (b) Let $f \in H' \setminus \{0\}$. Show that $\forall x \in H$, $d(x, \ker f) = \frac{|f(x)|}{\|f\|}$.
- (c) Let F subspace of $L^2([0,1])$ defined by $F = \{f \in L^2([0,1]), \int_0^1 f(x) \, dx = 0\}$. Show that F is a closed subspace of $L^2([0,1])$ and compute the distance from $f: x \mapsto e^x$ to F.
- 2) Let H be a Hilbert space, x_n and $x \in H$. Show that the following conditions are equivalent:
 - (a) $x_n \to x$
 - (b) $x_n \rightharpoonup x$ et $||x_n|| \rightarrow ||x||$.
 - (c) $\lim_{n \to +\infty} \langle x_n, y \rangle = \langle x, y \rangle$ uniformly for all $y \in H$ and ||y|| = 1.
- 3) Let $H = L^2([0,1])$. For every $f \in H$, we set

$$Tf(x) = \int_0^x f(t)dt.$$

- (a) Show that T is a continuous operator of H.
- (b) Compute the adjoint map of T.

3 Isometry, inner product

- 1) Let H_1 et H_2 two Hilbert spaces and $\Phi: H_1 \to H_2$ a linear application. Show that the following conditions are equivalent:
 - a) $\|\Phi(u)\| = \|u\|$, pour tout $u \in H_1$.
 - b) $\langle \Phi(u), \Phi(v) \rangle = \langle u, v \rangle$ pour tout $u, v \in H_1$.

Let Φ a linear isometry. Show that:

- i) $\Phi(H_1)$ is a Hilbert space.
- ii) If $(e_{\lambda})_{\lambda \in \Lambda}$ is an orthonormal basis of H_1 then $\Phi((e_{\lambda})_{\lambda \in \Lambda})$ is an orthonormal basis $\Phi(H_1)$.

- 2) Let *E* be a \mathbb{C} -vector space endowed with a norm which satisfies: the parallelogram identity: for all $u, v \in E$: $\|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2)$. We define $f: E \times E \to \mathbb{C}$ by $f(u,v) = \frac{1}{4} \sum_{k=0}^{3} i^k \|u+i^kv\|^2$. We propose to show that *f* is an inner product associated to $\|.\|$ (Von Neumann's theorem). Show that for $u, v, w \in E$ and $\lambda \in \mathbb{C}$ we have
 - (a) $f(u, u) = ||u||^2$ (b) $f(u, v) = \overline{f(v, u)}$ (c) $f(u + v, w) = 2f(u, \frac{w}{2}) + 2f(v, \frac{w}{2})$ (d) $f(u, v) = 2f(u, \frac{v}{2})$ (e) f(u + v, w) = f(u, w) + f(v, w)(f) $f(\lambda u, v) = \lambda f(u, v).$

 $\operatorname{conclude}$

3) Let $h^1(\mathbb{N}) = \{a \in \ell^2(\mathbb{N}), \sum_{n=0}^{\infty} n^2 |a_n|^2 < +\infty\}$. For any $a = (a_n)$ and $b = (b_n)$ elements of $h^1(\mathbb{N})$ we let

$$\langle a,b \rangle = \sum_{n=0}^{+\infty} (1+n^2)a_n\overline{b_n}$$

- (a) Show that < ., . > is an inner product. Show that $h^1(\mathbb{N})$ is a Hilbert space.
- (b) Show that $h^1(\mathbb{N})$ is dense in $\ell^2(\mathbb{N})$.
- (c) Show that the closed unit ball in $h^1(\mathbb{N})$ is compact in $\ell^2(\mathbb{N})$.

4 Legendre's polynomials

On $\mathbb{R}[X]$ we consider the bilinear form: $\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$.

- 1. Check that $\mathbb{R}[X]$ endowed with this bilinear form is an inner space.
- 2. Is it a Hibert space? if not what is it completion?
- 3. Applie to $(X^n)_{n \in \mathbb{N}}$ the Gram-Schmidt process, to show that there is a unique orthonormal family $(P_n)_{n \in \mathbb{N}}$ such that P_n is a polynomial of degree n and $\langle P_n, X^n \rangle > 0$.
- 4. Deduce that $(P_n)_{n \in \mathbb{N}}$ is an orthonormal basis of $L^2([-1,1])$.
- 5. We define Q_n by

$$Q_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Show that Q_n is of degree n and has n simple roots in]-1,1[. Show that Q_n is orthogonal to any polynomial of degree < n and deduce that $Q_n = \lambda_n P_n$. Compute $||Q_n||^2$ and λ_n . Detremine $Q_n(1)$ and $Q_n(-1)$.

6. Compute
$$\min_{a,b,c \in \mathbb{R}} \int_{-1}^{1} |x^3 - ax^2 - bx - c|^2 dx$$

5 Polynomials

Let $w(x) = x^{-\ln x}$. We consider the Hilbert space $L^2_w([0, +\infty[) = \{f; f\sqrt{w} \in L^2([0, +\infty[))\}, endowed with the inner product <math>\langle u, v \rangle = \int_0^{+\infty} u(x)\overline{v(x)}x^{-\ln x}dx$.

- 1. Show that $\mathbb{R}[X] \subset L^2_w([0, +\infty[))$.
- 2. Let $f(x) = \sin(2\pi \ln x)$, show that $f \in L^2_w([0, +\infty[).$
- 3. Let u_n the polynomial function $x \mapsto x^n$. Show that for all $n \in \mathbb{N}$, $\langle u_n, f \rangle = 0$ Deduce that $\mathbb{R}[X]$ is not dense in $L^2_w([0, +\infty[).$