Analyse hilbertienne et applications Tutoriel problems $n^0 2$

1 Sequence spaces

- 1) Let c_{00} be the space of sequences in \mathbb{K} with only a finite number of non-zero terms. Show that c_{00} is dense in $\ell^p(\mathbb{N}, \mathbb{K})$, for $p \in [1, +\infty[$. Deduce that $\ell^p(\mathbb{N}, \mathbb{K})$, pour $p \in [1, +\infty[$ is separable.
- 2) What about ℓ^{∞} , c (the space of convergent sequences) and c_0 (the space of sequences which converge to 0)?

2 Image of a filter

Let X et Y be two topological spaces, $f: X \to Y$ a map and \mathscr{F} a filter on X.

- 1) Show that \mathscr{F} is an ultrafilter if and only if for any subset A of X we have either $A \in \mathscr{F}$ or $X \setminus A \in \mathscr{F}$.
- 2) Show that the direct image by f of an ultrafilter is an ultrafilter i.e. $\{B \subset Y \mid f^{-1}(B) \in \mathscr{F}\}$ is an un ultrafilter.
- 3) Show that if f is continuous and \mathscr{F} converges to x then $f(\mathscr{F})$ converges to f(x).

3 Examples of compact sets

- a) Show that the n-sphere $\mathbb{S}^n = \{(x_0, ..., x_n) \in \mathbb{R}^{n+1}, x_0^2 + ... + x_n^2 = 1\}$ is compacte.
- b) Consider the equivalence relation on \mathbb{S}^n defined by $x \sim y \Leftrightarrow x = y$ or x + y = 0. The quotient space is the *real projective space of dimension* n and denoted by \mathbb{RP}^n . Let p be the canonical projection. Show that

$$\mathscr{O} = \{ V \subset \mathbb{RP}^n, \ p^{-1}(V) \text{ is open in } \mathbb{S}^n \}$$

define a compact topology on \mathbb{RP}^n .

c) Show that $||A||^2 = \text{Tr}(^tAA)$ is a norm on $M_n(\mathbb{R})$; deduce that d(A, B) = ||B - A|| is a distance on $M_n(\mathbb{R})$; and that

$$O_n = \{A \in M_n(\mathbb{R}), \ ^tAA = I\}$$

is compact.

4 Cantor set

We denote by $w_0(x) = \frac{1}{3} \cdot x$ et $w_2(x) = \frac{1}{3} \cdot x + \frac{2}{3}$ the homotheties on \mathbb{R} of ratio $\frac{1}{3}$ and certers 0 et 1 respectively. Let $C_0 = [0, 1]$ and define by induction, for all $n \in \mathbb{N}$, $C_{n+1} = w_0(C_n) \cup w_2(C_n)$. The set $C = \bigcap_{n \ge 0} C_n$ is the (triadic)

Cantor set.

Let $A = \{0, 2\}^{\mathbb{N}}$. An element of A is a sequence $(a_n)_{n \in \mathbb{N}}$, with $a_n = 0$ or $a_n = 2$. Show that

$$\varphi: A \to [0,1]$$
 définit par $\varphi((a_n)) = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$

is a homeomorphism from A into C.

Deduce from this, that C is a compact non countable space.

5 Polynomials spaces

We endowed $\mathbb{R}[X]$ with a norm $\|.\|$.

- 1) Show that $\mathbb{R}_n[X]$ the subspace of polynomials of degree $\leq n$ is a closed set with empty interior.
- 2) Show that $\mathbb{R}[X]$ is not a Banach space.

6 Baire's theorem

- 1. Let $f : \mathbb{R}_+ \to \mathbb{R}$ continuous such that: for all $x \in \mathbb{R}_+$ we have $\lim_{n \to +\infty} f(nx) = 0$. Show that $\lim_{x \to +\infty} f(x) = 0$.
- 2. Let $f: \mathbb{R}_+ \to \mathbb{R}$ continuous and (a_n) a (strictly) increasing sequence of (strictly) positive numbers such that :
 - (a) $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$ et $\lim_{n \to +\infty} a_n = +\infty$
 - (b) pour tout x > 0 on a $\lim_{n \to +\infty} f(a_n x) = 0$.

Show that $\lim_{x \to +\infty} f(x) = 0$.

3. Let $f(x) = \sum_{n \in \mathbb{N}} a_n x^n$ be a real power serie with infinite radius of convergence, such that $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, f^{(n)}(x) = 0$. Show that f is a polynomial.

show that j is a polyholina.

7 Weierstrass's function

1. Let $f : \mathbb{R} \to \mathbb{R}$ be the Weierstrass function defined by : pour tout $x \in \mathbb{Q} - \{0\}$, $f(x) = \frac{1}{q}$, si $x = \frac{p}{q}$ where $p \in \mathbb{Z}$ et $q \in \mathbb{N} - \{0\}$ are mutually primes and, for all $x \in \mathbb{R} - \mathbb{Q}$, f(x) = 0, and f(0) = 0.

Show that f is continuous at x if and only if $x \in \mathbb{R} - \mathbb{Q} \cup \{0\}$.

2. Show that there exist no continuous function on \mathbb{Q} and discontinuous on $\mathbb{R} - \mathbb{Q}$.

8 Separability

Let (X, d) be a compact metric space.

- 1. Show that X is separable.
- 2. Let $Q = \{a_n \mid n \in \mathbb{N}\}$ a countable and dense subset of X.

For all $n \in \mathbb{N}$ we define $f_n : X \to \mathbb{R}$ by $f_n(x) = d(x, a_n)$.

- Show that if $x \neq y$ then there exists n such that $f_n(x) \neq f_n(y)$.
- 3. Show that if F is a countable subset of $C(X, \mathbb{R})$, the subalgebra generated by F is separable.
- 4. Show that $C(X, \mathbb{R})$ is separable.

9 Stone-Weierstrass's theorem

- 1. Let $f \in \mathscr{C}([a,b],\mathbb{R})$ such that $\forall n \in \mathbb{N} \quad \int_a^b f(t)t^n dt = 0$. Show that f vanishes identiqually.
- 2. Show that a non constant element of $\mathscr{C}(\mathbb{R},\mathbb{R})$ that admits a finite limit at $+\infty$ is not a uniform limit of polynomials in $\mathbb{R}[x]$.
- 3. Let E a compact space. Let f_i , i = 1, ..., n be n elements of $\mathscr{C}(E, \mathbb{R})$ which separates points in E. Show that E ist homeomorphic to a subset of \mathbb{R}^n .

10 Arzela-Ascoli's theorem

- Let E, F be normed spaces and (f_n) a sequence of maps from E to F which is equicontinuous at a ∈ E. Show that, if (f_n(a)) converges to b, then (f_n(x_n)) converges to b, where (x_n) is a sequence of E such that lim_{n→∞} x_n = a. Is the sequence of real functions f_n(x) = (1 + x)ⁿ equicontinuous?
- 2. Let (E, d) a metric and \mathcal{H} a family of equicontinuous maps from E to \mathbb{R} . Show that:
 - (a) the set A of $x \in E$ such that $\mathscr{H}(x)$ is a bounded is an open and closed set.
 - (b) let E be compact and connected and $x_0 \in E$ such that $\mathscr{H}(x_0)$ is bounded. Show that \mathscr{H} est relatively compact in $\mathscr{C}(E, \mathbb{R})$.
- 3. Let consider the sequence $f_n(t) = \cos(\sqrt{t + 4(n\pi)^2}), t \in [0, \infty[.$
 - (a) Show that it's equicontinuous and converges pointwise to 0.
 - (b) Is $\{f_n\}_{n\in\mathbb{N}}$ relatively compact in $(\mathscr{C}([0,\infty[),\|.\|_{\infty}))$? What can we conclude from Arzela-Ascoli's theorem?