Analyse hilbertienne et applications
 Tutoriel problems $\mathbf{n}^{0} 2$

1 Sequence spaces

1) Let c_{00} be the space of sequences in \mathbb{K} with only a finite number of non-zero terms. Show that c_{00} is dense in $\ell^{p}(\mathbb{N}, \mathbb{K})$, for $p \in\left[1,+\infty\left[\right.\right.$. Deduce that $\ell^{p}(\mathbb{N}, \mathbb{K})$, pour $p \in[1,+\infty[$ is separable.
2) What about ℓ^{∞}, c (the space of convergent sequences) and c_{0} (the space of sequences which converge to 0)?

2 Image of a filter

Let X et Y be two topological spaces, $f: X \rightarrow Y$ a map and \mathscr{F} a filter on X.

1) Show that \mathscr{F} is an ultrafilter if and only if for any subset A of X we have either $A \in \mathscr{F}$ or $X \backslash A \in \mathscr{F}$.
2) Show that the direct image by f of an ultrafilter is an ultrafilter i.e. $\left\{B \subset Y \mid f^{-1}(B) \in \mathscr{F}\right\}$ is an un ultrafilter.
3) Show that if f is continuous and \mathscr{F} converges to x then $f(\mathscr{F})$ converges to $f(x)$.

3 Examples of compact sets

a) Show that the n-sphere $\mathbb{S}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}, x_{0}^{2}+\ldots+x_{n}^{2}=1\right\}$ is compacte.
b) Consider the equivalence relation on \mathbb{S}^{n} defined by $x \sim y \Leftrightarrow x=y$ or $x+y=0$. The quotient space is the real projective space of dimension n and denoted by $\mathbb{R P}^{n}$. Let p be the canonical projection. Show that

$$
\mathscr{O}=\left\{V \subset \mathbb{R P}^{n}, p^{-1}(V) \text { is open in } \mathbb{S}^{n}\right\}
$$

define a compact topology on $\mathbb{R} \mathbb{P}^{n}$.
c) Show that $\|A\|^{2}=\operatorname{Tr}\left({ }^{t} A A\right)$ is a norm on $M_{n}(\mathbb{R})$; deduce that $d(A, B)=\|B-A\|$ is a distance on $M_{n}(\mathbb{R})$; and that

$$
O_{n}=\left\{A \in M_{n}(\mathbb{R}),{ }^{t} A A=I\right\}
$$

is compact.

4 Cantor set

We denote by $w_{0}(x)=\frac{1}{3} \cdot x$ et $w_{2}(x)=\frac{1}{3} \cdot x+\frac{2}{3}$ the homotheties on \mathbb{R} of ratio $\frac{1}{3}$ and certers 0 et 1 respectively. Let $C_{0}=[0,1]$ and define by induction, for all $n \in \mathbb{N}, C_{n+1}=w_{0}\left(C_{n}\right) \cup w_{2}\left(C_{n}\right)$. The set $C=\bigcap_{n \geq 0} C_{n}$ is the (triadic) Cantor set.
Let $A=\{0,2\}^{\mathbb{N}}$. An element of A is a sequence $\left(a_{n}\right)_{n \in \mathrm{~N}}$, with $a_{n}=0$ or $a_{n}=2$.
Show that

$$
\varphi: A \rightarrow[0,1] \text { définit par } \varphi\left(\left(a_{n}\right)\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}
$$

is a homeomorphism from A into C.
Deduce from this, that C is a compact non countable space.

5 Polynomials spaces

We endowed $\mathbb{R}[X]$ with a norm $\|$.$\| .$

1) Show that $\mathbb{R}_{n}[X]$ the subspace of polynomials of degree $\leq n$ is a closed set with empty interior.
2) Show that $\mathbb{R}[X]$ is not a Banach space.

6 Baire's theorem

1. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous such that: for all $x \in \mathbb{R}_{+}$we have $\lim _{n \rightarrow+\infty} f(n x)=0$.

Show that $\lim _{x \rightarrow+\infty} f(x)=0$.
2. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous and $\left(a_{n}\right)$ a (strictly) increasing sequence of (strictly) positive numbers such that :
(a) $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=1$ et $\lim _{n \rightarrow+\infty} a_{n}=+\infty$
(b) pour tout $x>0$ on a $\lim _{n \rightarrow+\infty} f\left(a_{n} x\right)=0$.

Show that $\lim _{x \rightarrow+\infty} f(x)=0$.
3. Let $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ be a real power serie with infinite radius of convergence, such that $\forall x \in \mathbb{R}, \exists n \in$ $\mathbb{N}, f^{(n)}(x)=0$.
Show that f is a polynomial.

7 Weierstrass's function

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the Weierstrass function defined by :
pour tout $x \in \mathbb{Q}-\{0\}, f(x)=\frac{1}{q}$, si $x=\frac{p}{q}$ wherep $\in \mathbb{Z}$ et $q \in \mathbb{N}-\{0\}$ are mutually primes and, for all $x \in \mathbb{R}-\mathbb{Q}, f(x)=0$, and $f(0)=0$.
Show that f is continuous at x if and only if $x \in \mathbb{R}-\mathbb{Q} \cup\{0\}$.
2. Show that there exist no continuous function on \mathbb{Q} and discontinuous on $\mathbb{R}-\mathbb{Q}$.

8 Separability

Let (X, d) be a compact metric space.

1. Show that X is separable.
2. Let $Q=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ a countable and dense subset of X.

For all $n \in \mathbb{N}$ we define $f_{n}: X \rightarrow \mathbb{R}$ by $f_{n}(x)=d\left(x, a_{n}\right)$.
Show that if $x \neq y$ then there exists n such that $f_{n}(x) \neq f_{n}(y)$.
3. Show that if F is a countable subset of $C(X, \mathbb{R})$, the subalgebra generated by F is separable.
4. Show that $C(X, \mathbb{R})$ is separable.

9 Stone-Weierstrass's theorem

1. Let $f \in \mathscr{C}([a, b], \mathbb{R})$ such that $\forall n \in \mathbb{N} \quad \int_{a}^{b} f(t) t^{n} d t=0$. Show that f vanishes identiqually .
2. Show that a non constant element of $\mathscr{C}(\mathbb{R}, \mathbb{R})$ that admits a finite limit at $+\infty$ is not a uniform limit of polynomials in $\mathbb{R}[x]$.
3. Let E a compact space. Let $f_{i}, i=1, \ldots, n$ be n elements of $\mathscr{C}(E, \mathbb{R})$ which separates points in E. Show that E ist homeomorphic to a subset of \mathbb{R}^{n}.

10 Arzela-Ascoli's theorem

1. Let E, F be normed spaces and $\left(f_{n}\right)$ a sequence of maps from E to F which is equicontinuous at $a \in E$. Show that, if $\left(f_{n}(a)\right)$ converges to b, then $\left(f_{n}\left(x_{n}\right)\right)$ converges to b, where $\left(x_{n}\right)$ is a sequence of E such that $\lim _{n \rightarrow \infty} x_{n}=a$.
Is the sequence of real functions $f_{n}(x)=(1+x)^{n}$ equicontinuous?
2. Let (E, d) a metric and \mathscr{H} a family of equicontinuous maps from E to \mathbb{R}. Show that:
(a) the set A of $x \in E$ such that $\mathscr{H}(x)$ is a bounded is an open and closed set.
(b) let E be compact and connected and $x_{0} \in E$ such that $\mathscr{H}\left(x_{0}\right)$ is bounded. Show that \mathscr{H} est relatively compact in $\mathscr{C}(E, \mathbb{R})$.
3. Let consider the sequence $f_{n}(t)=\cos \left(\sqrt{t+4(n \pi)^{2}}\right), t \in[0, \infty[$.
(a) Show that it's equicontinuous and converges pointwise to 0 .
(b) Is $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ relatively compact in $\left(\mathscr{C}\left(\left[0, \infty[),\|\cdot\|_{\infty}\right)\right.\right.$? What can we conclude from Arzela-Ascoli's theorem?
