Analyse hilbertienne et applications Tutoriel problems $n^0 1$

1 Sequences

- 1. Show that a sequence of non negative real numbers which does not tend to $+\infty$ admits a convergent subsequence.
- 2. Show that \mathbb{N} is a closed set in \mathbb{R} .
- 3. Show that a Cauchy sequence converges if and only if it admits a convergent subsequence. Deduce that a compact metric space is complete.

4. Show that if a sequence $\left(\frac{p_n}{q_n}\right)_{n\in\mathbb{N}}$ of \mathbb{Q} converges to an irrational $x\in\mathbb{R}\setminus\mathbb{Q}$, then $|p_n|\to+\infty$.

2 Density

Let E be a metric space, $A \subset E$ be an open set and $B \subset E$ any subset.

- (a) Show that $A \cap \overline{B} \subset \overline{A \cap B}$.
- (b) $A \cap B = \emptyset \Rightarrow A \cap \overline{B} = \emptyset$.
- (c) If B is dense in E, then $\overline{A \cap B} = \overline{A}$.
- (d) If A and B are dense in $E, A \cap B$ is dense in E.
- (e) Give an example, A not open, dense whose intersection is not dense.

3 Cardinality

- 1. Let X be a set and F a countable subset of X synch that $X \setminus F$ is infinite. Show that X is in bijection with $X \setminus F$
- 2. Let X and Y be two sets. Show that there is an injection from X in Y, or an injection from Y in X i.e. cardinality of X and Y can be compared. (consider all $Z \in \mathscr{P}(X \times Y)$ whose restrictions projections of X and Y are injective and apply Zorn's lemma.)

4 Somme

Let E be a normed vector space and $A, B \subset E$ we denote by A + B the set $\{x + y \mid x \in A, y \in B\}$.

- 1. We assume A is open; show that A + B is open.
- 2. Assume A closed and B compact. Show A + B is closed.
- 3. Is the result in 2) still hold if we assume only A and B closed?

5 Ultrametric spaces

A metric d on a set E is said to be *ultrametric* if it satisfied $d(x, z) \leq \max(d(x, y), d(y, z))$ for all x, y and z.

- 1. Let (E, d) an ultrametric space, show that:
 - (a) Every triangle is isosceles;
 - (b) Every point inside a ball is its center;
 - (c) Intersecting balls are contained in each other;
 - (d) All balls are both open and closed sets;
 - (e) A sequence (x_n) is a Cauchy sequence if and only if $d(x_n, x_{n+1})$ tend to 0.
- 2. Let X be a set. For $x \ y \in X$, we let $d(x, \ y) = 0$ if x = y and $d(x, \ y) = 1$ if $x \neq y$. Show that d is an ultrametric distance on X.
- 3. *p*-adique distance. Let *p* be a prime. Let consider the *p*-adique valuation $v_p : \mathbb{Q} \to [0, +\infty]$ defined as follows : for $a \in \mathbb{Z}^*$, $v_p(a)$ is the power of *p* occurring in the prime factorization of *a*, then $v_p(a/b) := v_p(a) - v_p(b)$; finally $v(0) := +\infty$. For *x*, $y \in \mathbb{Q}$, we define $d_p(x, y) = p^{-v_p(x-y)}$. Show that d_p is an ultrametric distance on \mathbb{Q} . Compare this distance with the standard distance. Show that any *p*-adique neighborhood of 0 is dense in \mathbb{Q} for the standard distance.

4. Formal series Let $E = \mathbb{K}[[X]]$ be the ring of formal series with coefficients in a field \mathbb{K} (the elements of E are series of type $\sum_{n\geq 0} a_n X^n$ avec $a_0, a_1, \dots \in \mathbb{K}$). We consider the valuation $v : E \to [0, +\infty]$ defined by

$$v(0) := +\infty$$
 and if $S = \sum_{n \ge 0} a_n X^n \neq 0, \ v(S) := \min\{n \in \mathbb{N} | a_n \neq 0\}.$

For S, $T \in E$, we define $d(S, T) = 2^{-v(S-T)}$. Show that d is an ultrametric distance on E.

6 Hyperplanes and linear forms

Let (E, ||.||) be a normed vector space.

- 1. Show that two non-zero linear forms define the same hyperplane if and only if they are proportional.
- 2. Prove that a linear form is continuous if and only if it's kernel is closed.
- 3. Show that E is infinite-dimensional if and only if it has a non-continuous linear form.

Let $L: E \to \mathbb{R}$ be a non-zero linear form and $H := \ker L$ it associated hyperplane.

- 1. Show that E H is dense in E and H is connected.
- 2. Show that if L is continuous then E H has exactly two connected components.
- 3. Now suppose L not continuous (so $dimE = \infty$)
 - (a) Prove that H is dense.
 - (b) Deduce that $\{x \in E | L(x) = 1\}$ is dense.
 - (c) Prove that E H is connected.

7 Norms on function space

Let $E = \mathscr{C}^0([0,1],\mathbb{R})$ endowed with $N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|$.

- 1. Consider $N_p(f) := (\int_0^1 |f(x)|^p dx)^{1/p}$ pour p = 1, 2. Show that N_1, N_2, N_∞ are norms on E and are not equivalents.
- 2. What is the closure (for each norm) of the subspace \mathscr{P} of polynomial functions ?
- 3. Show that $P \in (\mathscr{P}, N_{\infty}) \mapsto P' \in (\mathscr{P}, N_{\infty})$ is not continuous.

8 Dini's theorem

Let X be a compact space and $(f_n)_{n \in \mathbb{N}}$ be a monotone sequence of functions in $C(X, \mathbb{R})$. If $(f_n)_{n \in \mathbb{N}}$ converges pointwise to some $f \in C(X, \mathbb{R})$, then the convergence is uniform, i.e., $||f_n - f||_{\infty} \to 0$.

9 The circle

Let \mathbb{T} be the quotient group of \mathbb{R} by \mathbb{Z} and $p : \mathbb{R} \to \mathbb{T}$ the quotient map. Let $\mathbb{S}^1 = \{z \in \mathbb{C}, |z| = 1\}$ and $j : \mathbb{S}^1 \to \mathbb{C}$ the canonical inclusion.

- a) Show $\mathbb T$ and $\mathbb S^1$ are homeomorphic.
- b) Does the standard distance on \mathbb{R} induce a distance on \mathbb{T} ?
- c) Show that a continuous 2π -periodic function $f : \mathbb{R} \to \mathbb{R}$ induces a continuous $\phi : \mathbb{T} \to \mathbb{R}$.

10 Distance on the sphere

We denote by $\|.\|$ the euclidean norm on \mathbb{R}^3 , and \mathbb{S}^2 the unit sphere. If p and q are points on \mathbb{S}^2 , we let C(p, q) be the set of piecewise C^1 path $\gamma : [0,1] \to \mathbb{S}^2$ such that $\gamma(0) = p$ and $\gamma(0) = q$. Set $L(\gamma) = \int_0^1 \|\gamma'(s)\| ds$ the length of such path, and define $d(p, q) := \inf\{L(\gamma)|\gamma \in C(p, q)\}$. We recall that a great circle of \mathbb{S}^2 is the intersection of \mathbb{S}^2 and a plane which passes through the origine of \mathbb{R}^3 . If p and q two points of \mathbb{S}^2 which are not antipodal, we denote by $\gamma_{p,q}$ the shorter of the two arcs of the great circle between this two points. If p and q are antipodal, we denote by $\gamma_{p,q}$ one of the great circle joining p and q.

- 1. Show that d define a distance on \mathbb{S}^2 equivalent to the distance induced by \mathbb{R}^3 .
- 2. Show that, for any p and q of \mathbb{S}^2 , the distance d(p, q) is equal to the arc length of $\gamma_{p,q}$.