Analyse hilbertienne et applications
 Tutoriel problems $\mathbf{n}^{0} 1$

1 Sequences

1. Show that a sequence of non negative real numbers which does not tend to $+\infty$ admits a convergent subsequence.
2. Show that \mathbb{N} is a closed set in \mathbb{R}.
3. Show that a Cauchy sequence converges if and only if it admits a convergent subsequence. Deduce that a compact metric space is complete.
4. Show that if a sequence $\left(\frac{p_{n}}{q_{n}}\right)_{n \in \mathbb{N}}$ of \mathbb{Q} converges to an irrational $x \in \mathbb{R} \backslash \mathbb{Q}$, then $\left|p_{n}\right| \rightarrow+\infty$.

2 Density

Let E be a metric space, $A \subset E$ be an open set and $B \subset E$ any subset.
(a) Show that $A \cap \bar{B} \subset \overline{A \cap B}$.
(b) $A \cap B=\emptyset \Rightarrow A \cap \bar{B}=\emptyset$.
(c) If B is dense in E, then $\overline{A \cap B}=\bar{A}$.
(d) If A and B are dense in $E, A \cap B$ is dense in E.
(e) Give an example, A not open, dense whose intersection is not dense.

3 Cardinality

1. Let X be a set and F a countable subset of X synch that $X \backslash F$ is infinite. Show that X is in bijection with $X \backslash F$
2. Let X and Y be two sets. Show that there is an injection from X in Y, or an injection from Y in X i.e. cardinality of X and Y can be compared. (consider all $Z \in \mathscr{P}(X \times Y)$ whose restrictions projections of X and Y are injective and apply Zorn's lemma.)

4 Somme

Let E be a normed vector space and $A, B \subset E$ we denote by $A+B$ the set $\{x+y \mid x \in A, y \in B\}$.

1. We assume A is open; show that $A+B$ is open.
2. Assume A closed and B compact. Show $A+B$ is closed.
3. Is the result in 2) still hold if we assume only A and B closed?

5 Ultrametric spaces

A metric d on a set E is said to be ultrametric if it satisfied $d(x, z) \leq \max (d(x, y), d(y, z))$ forall x, y and z.

1. Let (E, d) an ultrametric space, show that:
(a) Every triangle is isosceles;
(b) Every point inside a ball is its center;
(c) Intersecting balls are contained in each other;
(d) All balls are both open and closed sets;
(e) A sequence $\left(x_{n}\right)$ is a Cauchy sequence if and only if $d\left(x_{n}, x_{n+1}\right)$ tend to 0 .
2. Let X be a set. For $x y \in X$, we let $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ if $x \neq y$. Show that d is an ultrametric distance on X.
3. p-adique distance. Let p be a prime. Let consider the p-adique valuation $v_{p}: \mathbb{Q} \rightarrow[0,+\infty]$ defined as follows : for $a \in \mathbb{Z}^{*}, v_{p}(a)$ is the power of p occurring in the prime factorization of a, then $v_{p}(a / b):=v_{p}(a)-v_{p}(b)$; finally $v(0):=+\infty$. For $x, y \in \mathbb{Q}$, we define $d_{p}(x, y)=p^{-v_{p}(x-y)}$.
Show that d_{p} is an ultrametric distance on \mathbb{Q}. Compare this distance with the standard distance. Show that any p-adique neighborhood of 0 is dense in \mathbb{Q} for the standard distance.
4. Formal series Let $E=\mathbb{K}[[X]]$ be the ring of formal series with coefficients in a field \mathbb{K} (the elements of E are series of type $\sum_{n \geq 0} a_{n} X^{n}$ avec $\left.a_{0}, a_{1}, \cdots \in \mathbb{K}\right)$. We consider the valuation $v: E \rightarrow[0,+\infty]$ defined by

$$
v(0):=+\infty \text { and if } S=\sum_{n \geq 0} a_{n} X^{n} \neq 0, v(S):=\min \left\{n \in \mathbb{N} / a_{n} \neq 0\right\}
$$

For $S, T \in E$, we define $d(S, T)=2^{-v(S-T)}$. Show that d is an ultrametric distance on E.

6 Hyperplanes and linear forms

Let $(E,\|\|$.$) be a normed vector space.$

1. Show that two non-zero linear forms define the same hyperplane if and only if they are proportional.
2. Prove that a linear form is continuous if and only if it's kernel is closed.
3. Show that E is infinite-dimensional if and only if it has a non-continuous linear form.

Let $L: E \rightarrow \mathbb{R}$ be a non-zero linear form and $H:=\operatorname{ker} L$ it associated hyperplane.

1. Show that $E-H$ is dense in E and H is connected.
2. Show that if L is continuous then $E-H$ has exactly two connected components.
3. Now suppose L not continuous (so $\operatorname{dim} E=\infty$)
(a) Prove that H is dense.
(b) Deduce that $\{x \in E \mid L(x)=1\}$ is dense.
(c) Prove that $E-H$ is connected.

7 Norms on function space

Let $E=\mathscr{C}^{0}([0,1], \mathbb{R})$ endowed with $N_{\infty}(f)=\sup _{x \in[0,1]}|f(x)|$.

1. Consider $N_{p}(f):=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}$ pour $p=1,2$. Show that N_{1}, N_{2}, N_{∞} are norms on E and are not equivalents.
2. What is the closure (for each norm) of the subspace \mathscr{P} of polynomial functions ?
3. Show that $P \in\left(\mathscr{P}, N_{\infty}\right) \mapsto P^{\prime} \in\left(\mathscr{P}, N_{\infty}\right)$ is not continuous.

8 Dini's theorem

Let X be a compact space and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a monotone sequence of functions in $C(X, \mathbb{R})$. If $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to some $f \in C(X, \mathbb{R})$., then the convergence is uniform, i.e., $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$.

9 The circle

Let \mathbb{T} be the quotient group of \mathbb{R} by \mathbb{Z} and $p: \mathbb{R} \rightarrow \mathbb{T}$ the quotient map. Let $\mathbb{S}^{1}=\{z \in \mathbb{C},|z|=1\}$ and $j: \mathbb{S}^{1} \rightarrow \mathbb{C}$ the canonical inclusion.
a) Show \mathbb{T} and \mathbb{S}^{1} are homeomorphic.
b) Does the standard distance on \mathbb{R} induce a distance on \mathbb{T} ?
c) Show that a continuous 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ induces a continuous $\phi: \mathbb{T} \rightarrow \mathbb{R}$.

10 Distance on the sphere

We denote by $\|$.$\| the euclidean norm on \mathbb{R}^{3}$, and \mathbb{S}^{2} the unit sphere. If p and q are points on \mathbb{S}^{2}, we let $C(p, q)$ be the set of piecewise C^{1} path $\gamma:[0,1] \rightarrow \mathbb{S}^{2}$ such that $\gamma(0)=p$ and $\gamma(0)=q$. Set $L(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(s)\right\| d s$ the length of such path, and define $d(p, q):=\inf \{L(\gamma) \mid \gamma \in C(p, q)\}$. We recall that a great circle of \mathbb{S}^{2} is the intersection of \mathbb{S}^{2} and a plane which passes through the origine of \mathbb{R}^{3}. If p and q two points of \mathbb{S}^{2} which are not antipodal, we denote by $\gamma_{p, q}$ the shorter of the two arcs of the great circle between this two points. If p and q are antipodal, we denote by $\gamma_{p, q}$ one of the great circle joining p and q.

1. Show that d define a distance on \mathbb{S}^{2} equivalent to the distance induced by \mathbb{R}^{3}.
2. Show that, for any p and q of \mathbb{S}^{2}, the distance $d(p, q)$ is equal to the arc length of $\gamma_{p, q}$.
