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The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity:

If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality. Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .



The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity: If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality. Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .



The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity: If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality.

Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .



The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity: If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality. Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .



The curvature dimension inequality on Riemannian manifolds

In Riemannian geometry the Ricci tensor plays a fundamental role.
Its connection with the Laplace-Beltrami operator is given by the
celebrated Bochner’s identity: If M is a Riemannian manifold with
Laplacian ∆, then for every smooth f :

∆(‖∇f ‖2) = 2‖∇2f ‖2 + 2〈∇f ,∇∆f 〉+ 2Ric(∇f ,∇f ).

Thanks to this equality, a Ricci lower bound translates into the
so-called curvature dimension inequality. Indeed, consider the
bilinear differential forms

Γ(f , g) =
1
2

(∆(fg)− f ∆g − g∆f ) = 〈∇f ,∇g〉

and
Γ2(f , g) =

1
2

(∆Γ(f , g)− Γ(f ,∆g)− Γ(∆f , g)) .



The curvature dimension inequality on Riemannian manifolds

The Bochner’s identity then simply writes

Γ2(f ) = ‖∇2f ‖2 + Ric(∇f ,∇f ),

and it is easy to see that:

Theorem
We have Ric ≥ ρ and dimM ≤ n if and only if for every smooth f ,

Γ2(f ) ≥ 1
n

(∆f )2 + ρΓ(f ).

This leads to the notion of intrinsic curvature-dimension bounds for
diffusion operators. To be satisfied, the curvature-dimension
inequality requires some form of ellipticity.
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The motivation: Contact structures

Contact structures are of fundamental importance in geometry.

I They provide the correct framework to write the laws of
classical mechanics (V. Arnold)

I They play a major in several complex variables analysis: CR
manifolds are contact manifolds (E. Levi)

A basic question is:

Are there curvature dimension bounds
for such structures ?
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Let (M, θ) be a contact manifold:

M is a 2n + 1 dimensional
smooth manifold endowed with a one-form θ such that θ ∧ (dθ)n is
a volume form.

Let us chose a Riemannian metric g which is adapted to the
contact structure. This choice is in general given by the geometry :
Webster-Tanaka metric, Tanno metric.

The triple (M, θ, g) is called a Riemannian contact manifold. The
Riemannian geometry of (M, θ, g) is confined to the background.
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The motivation: Contact structures

On (M, θ, g), there is a canonical diffusion operator.

The
sub-Laplacian of (M, θ, g) is the generator of the symmetric
Dirichlet form: ∫

M
‖∇Hf ‖2 θ ∧ (dθ)n.

This operator is not elliptic but locally subelliptic of order 1/2.
There is one missing direction.
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Model spaces in K-contact geometry

I The Hopf fibration

S1 → S2n+1 → CPn

gives the positively curved model space.

In radial coordinates,
the sub-Laplacian writes

∂2

∂r2 + ((2n − 1) cot r − tan r)
∂

∂r
+ tan2 r

∂2

∂θ2

The heat kernel is computed explicitly in (B., J. Wang 2012).
I The Heisenberg group H2n+1 gives the flat model space. In

radial coordinates, the sub-Laplacian writes

∂2

∂r2 +
2n − 1

r
∂

∂r
+ r2 ∂

2

∂θ2

The heat kernel is computed explicitly in (Gaveau 1976).
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I The line bundle
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gives the negatively curved model space.

In radial
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∂
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These are the model spaces of the K -contact geometry. A contact
triple (M, θ, g) is K-contact if the Reeb vector field acts by
isometry on the horizontal bundle. These geometries are the
simplest contact geometries.
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Sub-Riemannian geometry

The geometry associated associated with subelliptic diffusion
operators is the sub-Riemannian geometry.

Geometric classical
tools are limited there due to a number of fundamental differences
with the Riemannian geometries.

I The exponential map is not a local diffeomorphism,
I The Hausdorff dimension is greater than the topological

dimension.
I The study of Jacobi fields (second variation of geodesics) is

incredibly difficult.
Can we throw away the geometry and only work with intrinsic
curvatures of Dirichlet forms (Bakry-Ledoux approach to
Riemannian geometry) ?
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The curvature-dimension inequality of a K-contact manifold

The first step is to work out a Bochner’s type inequality in that
framework (B. Garofalo, 2011).

Elementary considerations show that there is no hope for the
classical Bochner’s inequality to hold: Main issue, Γ2 involves a
second derivative term with differentiation in the vertical direction.

The main idea is to introduce the vertical intrinsic curvature of the
Dirichlet form:

2ΓT
2 (f ) = L(Tf )2 − 2TfTLf

where T is the Reeb vector field. We stress that the direction T is
canonical and given by the geometry.
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The curvature-dimension inequality of a K-contact manifold

There is a canonical connection on contact manifolds: The Tanno
connection.

It satisfies in particular ∇g = 0 and ∇T = 0 but it is
not torsion free. For K contact manifolds T(X ,Y ) is vertical when
X and Y are horizontal.

Theorem (B. , Garofalo 2011)

Let M be a 2n + 1 dimensional K-contact manifold. We have
Ric∇ ≥ ρ1 if and only if for every ν > 0,

Γ2(f ) + νΓT
2 (f ) ≥ 1

2n
(Lf )2 +

(
ρ1 −

1
ν

)
Γ(f ) +

n
2

(Tf )2.
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The curvature-dimension inequality of a K-contact manifold

It was conjectured by geometers (Barletta, Dragomir) that the
global analysis of K-contact manifolds with Tanno-Ricci lower
bounds should parallel the global analysis of Riemannian manifolds
with lower Ricci bounds.

However, under such assumption the only
global results were a Lichnerowicz type estimate and a
corresponding Obata’s theorem.

The previous theorem opens the door to the use of the powerful
heat kernel methods.
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Generalized curvature dimension inequality

Let L be a diffusion operator defined on a manifold M.

We assume
that L is symmetric with respect to a smooth measure µ. Assume,
additionally, that M is endowed with a first-order differential
bilinear form ΓZ (f , g) that satisfies

Γ(f , ΓZ (f )) = ΓZ (f , Γ(f )).

In the context of contact manifolds, the commutation is equivalent
to the fact that the manifold is K-contact (B., J. Wang 2013).
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Generalized curvature dimension inequality

Definition (B., Garofalo 2009)

We say that L satisfies the generalized-curvature inequality
CD(ρ1, ρ2, κ, d) if for every ν > 0,

Γ2(f ) + νΓZ
2 (f ) ≥ 1

d
(Lf )2 +
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ρ1 −

κ
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)
Γ(f ) + ρ2ΓZ (f ).

ρ1 is the curvature parameter

CD(ρ1, ρ2, κ, d) is the linearization of

Γ2(f ) + 2
√
κΓ(f )ΓZ

2 (f ) ≥ 1
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Examples

We have the following general class of examples:
I Let M be a n-dimensional complete Riemannian manifold

wiose Ricci curvature is bounded from below by ρ. The
Laplacian of M satisfies the curvature dimension inequality
CD(ρ, 0, 0, d) with ΓZ = 0.

I K-contact manifolds with lower bounds on the Tanno-Ricci
tensor.

I Two-step nilpotent Lie groups.
I Bundles over Riemannian manifolds.
I Riemannian submersions
I Infinite dimensional examples (B.-Gordina-Melcher, 2012)
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Generalized curvature dimension inequality

What is it good for ?

I Li-Yau type estimates for the heat kernel (B., Garofalo 2009);
I Bonnet-Myers type theorem (B., Garofalo 2009);
I Volume comparison estimates: global doubling properties (B.,

Bonnefont, Garofalo 2010 and B., Bonnefont, Garofalo Munive
2012);

I Log-Sobolev and transport inequalities (B., Bonnefont 2011);
I Boundedness of Riesz transforms (B., Garofalo 2011);
I Improved Sobolev inequalities and isoperimetric estimates (B.,

Kim 2012)
I Quasi-invariance results in infinite dimension (B., Gordina,

Melcher 2012).
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Subelliptic Myers theorem

If the parameter ρ1 is positive, then it is possible to prove sharp
Gaussian upper bounds for the heat kernel that lead to (almost)
sharp Sobolev-type inequalities.

By a general approach due to D.
Bakry, these entropy energy inequalities imply

Theorem (B.,Garofalo, 2011)

If the inequality CD(ρ1, ρ2, κ, d) holds for some constants
ρ1 > 0, ρ2 > 0, κ > 0, then the metric space (M, d) is compact in
the metric topology and we have

diam M ≤ 2
√
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Measure contraction property

The measure contraction property is a way to study Ricci lower
bounds in the context of metric measure spaces.

It has been
studied in a sub-Riemannian framework by Juillet (Heisenberg group
2008), Agrachev-Lee (3 dimensional K-contact manifolds, 2011).

Conjecture: If L satisfies the generalized-curvature inequality
CD(ρ1, ρ2, κ, d), with ρ1 ≥ 0, then (M, d) satisfies
MCP

(
0, d

(
1 + 3κ

4ρ2

))
.

The conjecture is true if L is the sub-Laplacian on a 3 -dimensional
K-contact manifold (Agrachev-Lee 2011)
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The general contact curvature dimension condition

On a general contact Riemannian manifold the intertwining

Γ(f , ΓZ (f )) = ΓZ (f , Γ(f ))

is no more satisfied and the natural curvature dimension inequality
takes a different form.

Theorem (B., J. Wang, 2013)

Under suitable geometric conditions,

Γ2(f ) + νΓZ
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The general contact curvature dimension condition

Expectedly, this curvature dimension condition is much more
difficult to handle.

With J. Wang, we proved
I The stochastic completeness of the heat semigroup associated

to the contact sub-Laplacian;
I Geometric conditions ensuring the compactness of the

underlying manifold (weak Bonnet-Myers type results);
I Regularization bounds for the heat semigroup;
I Spectral gap estimates for the sub-Laplacian.
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