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The aim is to study the time discretization of the (decoupled)
forward backward system

t t
X — x+/ b(s, Xs)ds+/ (s, Xs)dWs, 0<t<T,
0 0
T T
Yt - g(XT) +/ f(s,)(s7 Ys,Zs)dr —/ Zs(st7 0 g t§ T,
t t

when f has a quadratic growth with respect to z.
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@ Simplification (for this talk) :
t t
Xy = x+/ b(s,Xs)ds+/ o(s, Xs)dWs, 0 < t<1N)
0 0

T T
Y, = g(XT)—i—/ f(Zs)dr—/ ZsdWs, 0<t< T1.2)
t t

@ Standard assumption : f is assumed to be locally Lipschitz

f(z) - ()| < K|z=Z| (1 +|z|+|Z]) .
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See [R. 2011], [E. Gobet - P. Turkedjiev Preprint]
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Good speed of convergence for the truncated BSDE. See [R.
2012]. Stays true for super-quadratic BSDEs.



Introduction

Some well-known results about quadratic BSDEs

Time discretization for quadratic BSDEs ~ Numerical example

o bounded o unboun-
ded
o(t) | o(t,x) o(t, x)
2 Lipschitz Z|<C
§ gp o Aim of the
3 talk
o | g not Lip- 1Zi] < 755
schitz
3 Lipschitz
2 z/<c Z|<C
S [glocally Lip-
é schitz 1Z] < C(1+1X:")
o, | g not locally
Lipschitz




Introduction

Some well-known results about quadratic BSDEs

Time discretization for quadratic BSDEs

o bounded o unboun-
ded
o(t) | o(t,x) o(t, x)
2 Lipschitz Z|<C
§ gHP o Aim of the
3 talk
o | g not Lip- Zi] < 7%= ,
schitz !
3 Lipschitz
g9 z1<c zi<c |2
2 | g locally Lip-
é schitz 1Zi| < C+X") | ? ?
o g not locally | ) ]
Lipschitz ’ ! !

Numerical example




Introduction  Some well-known results about quadratic BSDEs  Time discretization for quadratic BSDEs ~ Numerical example

Existence and uniqueness

Thanks to [Kobylanski 2000] we have :

@ Since g is bounded there exists a solution (Y, Z) such that
Y is bounded.

@ Since f is locally Lipschitz we have a uniqueness result
among bounded solutions.

t - - )
° <f0 ZSdWS> o is a BMO martingale :

.
/ 1 Zs|? ds

1Z  Wigmo = sup E,

0<7<T stopping time

< +00.
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The linearization trick

Let us consider two solutions (Y, Z"), (Y?, Z?) for two terminal
conditions g1, g» and two generators f, .. We denote

oY =Y'-Y2 sz2:=2"'-272 69g:=gi—Q, Of:=f—h.
We have

T T
5Y; = 5g(Xr) + / 5H(Z1)ds — / 575 (dWs — ~sds) |
t t

with
h(Zd) — (Z8)

1027

Vs = 0Zs
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Why BMO martingales are nice ?

Let us denote £(v) the Doléans-Dade exponential associated
to the martingale ( [; vsdWs):. Since |ys| < C(1 + | 22| + |Z2)),
we have

Iy Wilgwo < C(1 + 2"+ WH WH ) < +oo.

BMO ‘ ‘ BMO

@ &(v) is a martingale, we are allowed to apply Girsanov
theorem.

@ £(v) € LP with p > 1 that depends only on ||y « W/||gyo-
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Comparison and stability

@ Comparison :

.
3Yy =E? |6g9(X7) + / 5f(Z1)ds| .
t

@ Stability :

16Y;|7 < CEy¢ [169(XT)|7 +

|

)
/ 57(Z0)ds
t
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Time discretization scheme

Letusconsideragrid0 =16 <t < ... < t, = T with
hi = ti 4 — tiand h = max; h;. (X"); discrete approximation of X
with “good” convergence properties. (Y, Z); solution of the

scheme
{ Vi =9(X7)

VP = Eq[YL, + hH(ZD)

Z" = By[ Y74 H]
with (H;); such that
@ H;is F;,, measurable, independant with 7,
e E4[H] =0,
@ 0 < A< hE[H;’] <A

Woi = Wo _ aw;
h; - h -

Example : H; =
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Linearization of time discretization schemes
Let us consider two discretized solutions (Y, Z"), (Y2, Z?) for
two terminal conditions g1, g» and two generators f;, f.
Y =Y'—Y2 z2.=2'-22 b6g:=gi—Go, Of :=Ff—b.
We have
8Yi = E4[6Yipt + hi(A(Z') — (Z) + hi(B(Z)) — B(Z7))]
= Ey[6Yisr + hiof(Z') + hpidZ),
with 1 )
h(Z') — h(ZF)
= 02 =
Vi i ‘5Zi|2
Since, 0Z; = Et[H;dY+1], we have
§Y; = Ei[(1 + hyiH)(0Yier + hiof(Z'))]

n—1 n—1
H(1 + hiyiH )<6g (XM +th6f zk)>

j=i k=i

= E
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New assumptions for comparison and stability

® Et =I,</(1+ hyyH)) is the Doléans-Dade exponential of
the martingale M; := Zt,-gt hiviH;.

@ To have E; > 0, we need to have (~;); and (H;); bounded.

@ We take H; = M with R well chosen.

i

@ For ~; we need to truncate f.
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Truncation of the initial BSDE

Let us denote (YN, ZN) the solution of the BSDE

T T
V=g + [ fon(Zds - [ ZNaw,
t t
and (YN, ZN:1) the solution of the scheme

YN — g(X)
YN = B[V + hif(on(Z7)))

ZM" = B[V HI
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Error due to the truncation

[P. Imkeller - G. dos Reis 2010], [A. R. 2012]

For all g > 0, there exists Cq > 0 such that

r

2

ds Cq

<7

E NG

sup |Y;— YN

0<t<T

Zs—ZN

2
‘+IE
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Application of the comparison result

By taking R and N such that

Ec=]](1+hyH) >0

<t

we obtain a comparison theorem.

| YN:1| < C with C that does not depend on n, N, R.

Numerical example
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Stability

We will study the error between (YN, ZV) and (Y7, ZN-7) by
using our stability result on schemes. We need to write the
initial BSDE as a perturbed time discretization scheme.

Yz’,y = g(XT)

YU = B[V 4 [ f(on(ZL))ds)
= By}, + b (flon(Z)) +G)]
Ztﬁv = Et,[ t+1H]

with
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Stability

If we apply the linearization trick to (YN, ZV) and (YN:", ZN:m)
we obtain

n—1 n-1
YNy = E, {HU + hiviH) (g(Xr)g(XrS’HthCk)] '

j=i k=i

Proposition

>_t<t hiviH; is a BMO martingale. Moreover, ||M|| gy is
bounded by a constant that does not depend n, N and R.
Finally, there exists g > 1 independent of N, nand R such that

thCk ] :

=
li
i

q
Y = Y < By | lg(Xr) — g7 +
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An explicit speed of convergence

(Theorem |

o hi=T/n=h,
o H; = 22&W) with R = \/2hlog n,
o N= n‘/“.

Then, for all » > 0 we have

Y, — Y e

]

i=0

Zs o Z/_N,n

2
[sup ds] < C,h' "
0<i<n
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Example

@ X is a geometric Brownian motion without drift (dimension
1),

@ g(x) = sin?(x),

@ f(z) = az? witha=5o0ra=6,

@ nfrom 10 to 50,

@ conditional expectation approximated by tree method or
quantification method.

We know the real solution.
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e=optimal trunc
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R=0.2
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—R=2

——Linear (optimal trunc)




Convergence analysis

=Y0- no truncation
== YO0 - optimum truncation
==Y0 - wrong truncation
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