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Basic Hypotheses

• Let H be real separable Hilbert space.

• Let W be a one dimensional Wiener process defined on a probability basis
(Ω,F ,P). We denote by Ft for t ≥ 0 its natural filtration completed.

• Let A : D(A) ⊂ H → H be an unbounded operator that generates a C0

semigroup.
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We consider this Lyapunov equation


−dP (t) = (A∗P (t) + P (t)A+ [C∗(t)P (t)C(t) + C∗(t)Q(t) +Q(t)C(t)]) dt

+L(t) dt+Q(t) dW (t), t ∈ [0, T ],

P (T ) = PT
(1)

notice that L ∈ L∞S,P((0, T )×Ω;L(H)) and PT ∈ L∞S (Ω,FT ;L(H)).
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Motivation

• It arise as the dual equation of the second variation in the maximum prin-
ciple for optimal control problems for SPDEs: Tang-Li(LNPAM 1994),
Fuhrman-Hu-Tessitore (CRAS 2012), Lu-Zang (Preprint 2012), Du-Meng
(Preprints 2012)

• First step to solve the Riccati backward stochastic differential equation
(BSRE), G. Tessitore (Sicon 2005)
−dP (t) = (A∗P (t)+P (t)A+ C∗(t)P (t)C(t) + C∗(t)Q(t) +Q(t)C(t)) dt

−(P (t)B(t)B∗(t)P (t)− L(t)) dt+Q(t) dW (t) t ∈ [0, T ]

P (T ) = PT
(2)
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Main difficulty in the infinite dimensional case:

L(H) that is not an Hilbert space.

New questions arise:

1 Is there a meaningful formulation for mild equation?

2 Characterization of Q? P has a natural characterization in terms of a
stochastic quadratic form / value function

3 Once you find such a formulation, is the equation well posed? Which is
the regularity for P and Q?

If the data are more regular, Hilbert Schmidt valued, then the Lyapunov
equation is well posed.

Unfortunately the space Σ2(H), of Hilbert Schmidt operators from H to H,
is far too small to cover significant applications.

IDEA: give meaning to the equation in L(H) working in a bigger Hilbertian
space close enough to it
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Besides previous assumptions we ask

• A to be a self adjoint operator in H and there are a b.o.c {ek : k ≥ 1} in
H and ω > 0, such that

Aek = −λkek, with ω ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . . ,

• that there exists ρ ∈
(

1
4
, 1

2

)
, such that∑

k≥1

λ2ρ
k < +∞.

In particular A is the infinitesimal generator of an analytic semigroup in H.

These assumptions are satisfied if H = L2(0,1) and A = ∆ + Dirichlet b.c.
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Let us define

V := D((−A)ρ) = {x ∈ H :
+∞∑
k=1

λ2ρ
k 〈x, ek〉

2
H < +∞} = H2ρ

0 (0,1)

Clearly:

• ek ∈ V for every k : 1,2, . . .

• V is a separable Hilbert space and
{ek
λρk

: k ≥ 1
}

is a b.o.c. of V .

• the dual space V ∗ is an Hilbert space and
{
ekλ

ρ
k : k ≥ 1

}
is a b.o.c. of

V ∗.

• there is a constant MA > 0 such that |eσA|L(H;V ) ≤
MA

σρ
, |eσA|L(V ∗;H) ≤

MA

σρ

we have following dense inclusions:

V ↪→d H ' H∗ ↪→d V
∗
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Next we introduce the following space of operators

K = L2(V ;H) ∩ L2(H;V ∗)

Given two separable Hilbert spaces G and F , the space of operators L2(G;F )
is the space of linear and bounded operators from G to F such that

∞∑
k=1

|Tgk|2F <∞

where {gk : k ≥ 1} is a complete orthonormal basis of G.

• K is a separable Hilbert space,

• L(H) ⊂ K,

• T ∈ K iff T ∈ L(V ;H) ∩ L(H;V ∗) and
∑∞

k=1 λ
−2ρ
k (|Tek|2H + |T ∗ek|2H) <∞.
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We can then prove the following result

Theorem 1 There exists a unique solution (P,Q) ∈ L2
P,S(Ω, C([0, T ];L(H))×

L2
P(Ω× [0, T ];K)) such that

P (t) = e(T−t)APTe
(T−t)A +

∫ T

t

e(s−t)A(C∗(s)P (s)C(s) + γ(C(s))Q(s))e(s−t)A ds

+

∫ T

t

e(s−t)AL(s)e(s−t)A ds+

∫ T

t

e(s−t)AQ(s)e(s−t)A dBs

where γ(C)G = C∗G+GC for any C ∈ L(H) and G ∈ K.

Moreover (P|[0,T−ε], Q|[0,T−ε]) ∈ L2
P(Ω, C([0, T−ε]; Σ2(H)))×L2

P(Ω×[0, T−ε]; Σ2(H))),
for any ε > 0.

8



Proof (idea)

Main difficulty:

if C ∈ L(H), the operator γ(C)Q := C∗Q + QC, that is bounded in Σ2(H) is
not a bounded operator from K into itself

More precisely ∑
k≥1

λ−2ρ
k |QCek|2H

may not be bounded:

even if ek ∈ V for every k ≥ 1, Cek just belongs to H so that we only have
QCek ∈ V ∗

As a consequence we cannot use the result of Hu-Peng (1991) because we
have an unbounded term in Q
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Solution: We exploit the regularizing property of the semigroup etA.

For Q ∈ K we have∑
k≥1

λ−2ρ
k |e(s−t)A(C∗(s)Q+QC(s))e(s−t)Aek|2H ≤∑

k≥1

λ−2ρ
k e−2λk(s−t)[|e(s−t)AC∗(s)|2L(H)|Qek|

2
H + |e(s−t)A|2L(V ∗;H)|QC(s)ek|2H]

≤ e−2λ1(t−s)M2
A(|C|2L∞(L(H))

∑
k≥1

λ−2ρ
k |Qek|2H + (s− t)−2ρ|Q|2L2(H;V ∗)

∑
k≥1

λ−2ρ
k |C(s)ek|2H)

≤ C ′(MA, λ1, |C|L∞(L(H)), T )(s− t)−2ρ|Q|2K

Fix now Q ∈ L2
P(Ω× [T − δ, T ];K)) and assume there exists a solution (P̂ , Q̂) ∈

L2
P(Ω, C([T − δ, T ];K))× L2

P(Ω× [T − δ, T ];K)) of the mild equation:

P̂ (t) = e(T−t)APTe
(T−t)A +

∫ T

t

e(s−t)A(C∗(s)Q(s) +Q(s)C(s))e(s−t)A ds

+

∫ T

t

e(s−t)AL(s)e(s−t)A ds+

∫ T

t

e(s−t)AQ̂e(s−t)A dW (s)
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First we deduce the following estimate on P :

E sup
t∈[T−δ,T ]

|P̂ (t)|2L(H) ≤ C
[
E|PT |2L(H) + δ1−2ρE

∫ T

T−δ
|Q(s)|2K ds+ δ2|L|2L∞

]
Then we introduce the following dual equation

X(t) :=

∫ t

T−δ
e(s−t)AG(s)e(s−t)AdW (s)

where G(s)ek = λ−2ρ
k Q̂(s)ek, k ≥ 1.

We have

E
∞∑
k=1

λ2ρ
k |X(t)ek|2H ≤ E

∫ t

T−δ

∞∑
k=1

λ−2ρ
k |Q̂(s)ek|2H ds

So by duality, we obtain the following estimate on Q̂:

1

4
E
∫ T

T−δ
|Q̂(s)|2K ds ≤ C

[
E|PT |2L(H) + δ1−2ρE

∫ T

T−δ
|Q(s)|2K ds

]



Scheme of the proof

• Therefore can build a map Γ- using ad hoc approximations- from L2
P(Ω, C([T−

δ, T ];K))× L2
P(Ω× [T − δ, T ];K)) into itself:

Γ(P,Q) := (P̂ , Q̂)

and we prove that there is a δ̄ such that Γ is a contraction.

• Global existence and uniqueness then follows easily.

• Typical parabolic regularity: exploit the regularizing property of the semi-
group t→ etA in H.
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