Backward Stochastic Lyapunov Equation:
 Mild formulation by Domains of Fractional Powers

Giuseppina Guatteri
Politecnico di Milano
joint with
Gianmario Tessitore
Università di Milano-Bicocca

- Let H be real separable Hilbert space.
- Let W be a one dimensional Wiener process defined on a probability basis $(\Omega, \mathcal{F}, \mathbb{P})$. We denote by \mathcal{F}_{t} for $t \geq 0$ its natural filtration completed.
- Let $A: D(A) \subset H \rightarrow H$ be an unbounded operator that generates a C_{0} semigroup.

We consider this Lyapunov equation

$$
\left\{\begin{align*}
&-d P(t)=\left(A^{*} P(t)+P(t) A+\left[C^{*}(t) P(t) C(t)+C^{*}(t) Q(t)+Q(t) C(t)\right]\right) d t \\
& \quad+L(t) d t+Q(t) d W(t), \quad t \in[0, T] \tag{1}\\
& P(T)=P_{T}
\end{align*}\right.
$$

notice that $L \in L_{\mathcal{S}, \mathcal{P}}^{\infty}((0, T) \times \Omega ; L(H))$ and $P_{T} \in L_{\mathcal{S}}^{\infty}\left(\Omega, \mathcal{F}_{T} ; L(H)\right)$.

- It arise as the dual equation of the second variation in the maximum principle for optimal control problems for SPDEs: Tang-Li(LNPAM 1994), Fuhrman-Hu-Tessitore (CRAS 2012), Lu-Zang (Preprint 2012), Du-Meng (Preprints 2012)
- First step to solve the Riccati backward stochastic differential equation (BSRE), G. Tessitore (Sicon 2005)

$$
\left\{\begin{array}{l}
-d P(t)=\left(A^{*} P(t)+P(t) A+C^{*}(t) P(t) C(t)+C^{*}(t) Q(t)+Q(t) C(t)\right) d t \tag{2}\\
\\
\quad-\left(P(t) B(t) B^{*}(t) P(t)-L(t)\right) d t+Q(t) d W(t) \quad t \in[0, T] \\
P(T)=P_{T}
\end{array}\right.
$$

Main difficulty in the infinite dimensional case:
$L(H)$ that is not an Hilbert space.
New questions arise:
1 Is there a meaningful formulation for mild equation?
2 Characterization of Q ? P has a natural characterization in terms of a stochastic quadratic form / value function

3 Once you find such a formulation, is the equation well posed? Which is the regularity for P and Q ?

If the data are more regular, Hilbert Schmidt valued, then the Lyapunov equation is well posed.

Unfortunately the space $\Sigma_{2}(H)$, of Hilbert Schmidt operators from H to H, is far too small to cover significant applications.

IDEA: give meaning to the equation in $L(H)$ working in a bigger Hilbertian space close enough to it

Besides previous assumptions we ask

- A to be a self adjoint operator in H and there are a b.o.c $\left\{e_{k}: k \geq 1\right\}$ in H and $\omega>0$, such that

$$
A e_{k}=-\lambda_{k} e_{k}, \quad \text { with } \quad \omega \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \ldots,
$$

- that there exists $\rho \in\left(\frac{1}{4}, \frac{1}{2}\right)$, such that

$$
\sum_{k \geq 1} \lambda_{k}^{2 \rho}<+\infty
$$

In particular A is the infinitesimal generator of an analytic semigroup in H.
These assumptions are satisfied if $H=L^{2}(0,1)$ and $A=\Delta+$ Dirichlet b.c.

Let us define

$$
V:=D\left((-A)^{\rho}\right)=\left\{x \in H: \sum_{k=1}^{+\infty} \lambda_{k}^{2 \rho}\left\langle x, e_{k}\right\rangle_{H}^{2}<+\infty\right\}=H_{0}^{2 \rho}(0,1)
$$

Clearly:

- $e_{k} \in V$ for every $k: 1,2, \ldots$
- V is a separable Hilbert space and $\left\{\frac{e_{k}}{\lambda_{k}^{\rho}}: k \geq 1\right\}$ is a b.o.c. of V.
- the dual space V^{*} is an Hilbert space and $\left\{e_{k} \lambda_{k}^{\rho}: k \geq 1\right\}$ is a b.o.c. of V^{*}.
- there is a constant $M_{A}>0$ such that $\left|e^{\sigma A}\right|_{L(H ; V)} \leq \frac{M_{A}}{\sigma^{\rho}},\left|e^{\sigma A}\right|_{L\left(V^{*} ; H\right)} \leq \frac{M_{A}}{\sigma^{\rho}}$ we have following dense inclusions:

$$
V \hookrightarrow_{d} H \simeq H^{*} \hookrightarrow_{d} V^{*}
$$

Next we introduce the following space of operators

$$
\mathcal{K}=L_{2}(V ; H) \cap L_{2}\left(H ; V^{*}\right)
$$

Given two separable Hilbert spaces G and F, the space of operators $L_{2}(G ; F)$ is the space of linear and bounded operators from G to F such that

$$
\sum_{k=1}^{\infty}\left|T g_{k}\right|_{F}^{2}<\infty
$$

where $\left\{g_{k}: k \geq 1\right\}$ is a complete orthonormal basis of G.

- \mathcal{K} is a separable Hilbert space,
- $L(H) \subset \mathcal{K}$,
- $T \in \mathcal{K}$ iff $T \in L(V ; H) \cap L\left(H ; V^{*}\right)$ and $\sum_{k=1}^{\infty} \lambda_{k}^{-2 \rho}\left(\left|T e_{k}\right|_{H}^{2}+\left|T^{*} e_{k}\right|_{H}^{2}\right)<\infty$.

We can then prove the following result
Theorem 1 There exists a unique solution $(P, Q) \in L_{\mathcal{P}, \mathcal{S}}^{2}(\Omega, C([0, T] ; L(H)) \times$ $\left.L_{\mathcal{P}}^{2}(\Omega \times[0, T] ; \mathcal{K})\right)$ such that

$$
\begin{aligned}
P(t) & =e^{(T-t) A} P_{T} e^{(T-t) A}+\int_{t}^{T} e^{(s-t) A}\left(C^{*}(s) P(s) C(s)+\gamma(C(s)) Q(s)\right) e^{(s-t) A} d s \\
& +\int_{t}^{T} e^{(s-t) A} L(s) e^{(s-t) A} d s+\int_{t}^{T} e^{(s-t) A} Q(s) e^{(s-t) A} d B_{s}
\end{aligned}
$$

where $\gamma(C) G=C^{*} G+G C$ for any $C \in L(H)$ and $G \in \mathcal{K}$.
$\left.\operatorname{Moreover}\left(P_{\mid 0, T-\mathrm{s})}, Q_{\mid 0, T-\mathrm{s})}\right) \in L_{\mathcal{P}}^{2}\left(\Omega, C\left([0, T-\varepsilon] ; \Sigma_{2}(H)\right)\right) \times L_{\mathcal{P}}^{2}\left(\Omega \times[0, T-\varepsilon] ; \Sigma_{2}(H)\right)\right)$, for any $\varepsilon>0$.

Proof (idea)

Main difficulty:
if $C \in L(H)$, the operator $\gamma(C) Q:=C^{*} Q+Q C$, that is bounded in $\Sigma_{2}(H)$ is not a bounded operator from \mathcal{K} into itself

More precisely

$$
\sum_{k \geq 1} \lambda_{k}^{-2 \rho}\left|Q C e_{k}\right|_{H}^{2}
$$

may not be bounded:
even if $e_{k} \in V$ for every $k \geq 1, C e_{k}$ just belongs to H so that we only have $Q C e_{k} \in V^{*}$

As a consequence we cannot use the result of Hu-Peng (1991) because we have an unbounded term in Q

Solution: We exploit the regularizing property of the semigroup $e^{t A}$.
For $Q \in \mathcal{K}$ we have

$$
\begin{aligned}
& \sum_{k \geq 1} \lambda_{k}^{-2 \rho}\left|e^{(s-t) A}\left(C^{*}(s) Q+Q C(s)\right) e^{(s-t) A} e_{k}\right|_{H}^{2} \leq \\
& \sum_{k \geq 1} \lambda_{k}^{-2 \rho} e^{-2 \lambda_{k}(s-t)}\left[\left|e^{(s-t) A} C^{*}(s)\right|_{L(H)}^{2}\left|Q e_{k}\right|_{H}^{2}+\left|e^{(s-t) A}\right|_{L\left(V^{*} ; H\right)}^{2}\left|Q C(s) e_{k}\right|_{H}^{2}\right] \\
& \leq e^{-2 \lambda_{1}(t-s)} M_{A}^{2}\left(|C|_{L^{\infty}(L(H))}^{2} \sum_{k \geq 1} \lambda_{k}^{-2 \rho}\left|Q e_{k}\right|_{H}^{2}+(s-t)^{-2 \rho}|Q|_{L_{2}\left(H ; V^{*}\right)}^{2} \sum_{k \geq 1} \lambda_{k}^{-2 \rho}\left|C(s) e_{k}\right|_{H}^{2}\right) \\
& \leq C^{\prime}\left(M_{A}, \lambda_{1},|C|_{L^{\infty}(L(H))}, T\right)(s-t)^{-2 \rho}|Q|_{\mathcal{K}}^{2}
\end{aligned}
$$

Fix now $\left.Q \in L_{\mathcal{P}}^{2}(\Omega \times[T-\delta, T] ; \mathcal{K})\right)$ and assume there exists a solution $(\hat{P}, \widehat{Q}) \in$ $\left.L_{\mathcal{P}}^{2}(\Omega, C([T-\delta, T] ; \mathcal{K})) \times L_{\mathcal{P}}^{2}(\Omega \times[T-\delta, T] ; \mathcal{K})\right)$ of the mild equation:

$$
\begin{aligned}
\widehat{P}(t) & =e^{(T-t) A} P_{T} e^{(T-t) A}+\int_{t}^{T} e^{(s-t) A}\left(C^{*}(s) Q(s)+Q(s) C(s)\right) e^{(s-t) A} d s \\
& +\int_{t}^{T} e^{(s-t) A} L(s) e^{(s-t) A} d s+\int_{t}^{T} e^{(s-t) A} \widehat{Q} e^{(s-t) A} d W(s)
\end{aligned}
$$

First we deduce the following estimate on P :

$$
\mathbb{E} \sup _{t \in[T-\delta, T]}|\hat{P}(t)|_{L(H)}^{2} \leq C\left[\mathbb{E}\left|P_{T}\right|_{L(H)}^{2}+\delta^{1-2 \rho} \mathbb{E} \int_{T-\delta}^{T}|Q(s)|_{\mathcal{K}}^{2} d s+\delta^{2}|L|_{L^{\infty}}^{2}\right]
$$

Then we introduce the following dual equation

$$
X(t):=\int_{T-\delta}^{t} e^{(s-t) A} G(s) e^{(s-t) A} d W(s)
$$

where $G(s) e_{k}=\lambda_{k}^{-2 \rho} \widehat{Q}(s) e_{k}, \quad k \geq 1$.
We have

$$
\mathbb{E} \sum_{k=1}^{\infty} \lambda_{k}^{2 \rho}\left|X(t) e_{k}\right|_{H}^{2} \leq \mathbb{E} \int_{T-\delta}^{t} \sum_{k=1}^{\infty} \lambda_{k}^{-2 \rho}\left|\widehat{Q}(s) e_{k}\right|_{H}^{2} d s
$$

So by duality, we obtain the following estimate on \widehat{Q} :

$$
\frac{1}{4} \mathbb{E} \int_{T-\delta}^{T}|\widehat{Q}(s)|_{\mathcal{K}}^{2} d s \leq C\left[\mathbb{E}\left|P_{T}\right|_{L(H)}^{2}+\delta^{1-2 \rho_{\mathbb{P}}} \mathbb{E} \int_{T-\delta}^{T}|Q(s)|_{\mathcal{K}}^{2} d s\right]
$$

Scheme of the proof

- Therefore can build a map Γ - using ad hoc approximations- from $L_{\mathcal{P}}^{2}(\Omega, C([T-$ $\left.\delta, T] ; \mathcal{K})) \times L_{\mathcal{P}}^{2}(\Omega \times[T-\delta, T] ; \mathcal{K})\right)$ into itself:

$$
\Gamma(P, Q):=(\hat{P}, \widehat{Q})
$$

and we prove that there is a $\bar{\delta}$ such that Γ is a contraction.

- Global existence and uniqueness then follows easily.
- Typical parabolic regularity: exploit the regularizing property of the semigroup $t \rightarrow e^{t A}$ in H.

Some references

J.-M. Bismut.

Linear quadratic optimal stochastic control with random coefficients.
SIAM J. Contr. Optim. 14 (1976), 419-444.
Y. Hu and S. Peng.

Adapted solution of a backward semilinear stochastic evolution equation.
Stochastic Anal. Appl. 9 (1991), 445-459.
S. Peng.

Stochastic Hamilton-Jacobi-Bellman Equations.
SIAM J. Contr. Optim. 30 (1992), 284-304.

S. Tang.

General linear quadratic optimal control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Contr. Optim. 42 (2003), 53-75.
G. Guatteri and G. Tessitore.

On the backward stochastic Riccati equation in infinite dimensions.
SIAM J. Contr. Optim. 44 (2005), 159-194.
Lu-Zang. Preprint 2012.

