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Basic Hypotheses

e Let H be real separable Hilbert space.

e Let W be a one dimensional Wiener process defined on a probability basis
(2, F,P). We denote by F; for t > 0 its natural filtration completed.

e Let A: D(A) C H — H be an unbounded operator that generates a Cy
semigroup.



We consider this Lyapunov equation

(—dP(t) = (A"P(t) + P()A+ [C* (1) P(H)C(t) + C*(1)Q(t) + Q1) C(2)]) dt

< +L(¢) dt + Q) dW(¢), ¢ e [0,T],

| P(T) = Pr 0
1

notice that L € L3,((0,T) x €2; L(H)) and Pr € LF(S2, Fr; L(H)).



Motivation

e It arise as the dual equation of the second variation in the maximum prin-
ciple for optimal control problems for SPDEs: Tang-Li(LNPAM 1994),

Fuhrman-Hu-Tessitore (CRAS 2012), Lu-Zang (Preprint 2012), Du-Meng
(Preprints 2012)

e First step to solve the Riccati backward stochastic differential equation
(BSRE), G. Tessitore (Sicon 2005)

([ —dP(t) = (A"PQ@)+P@)A+ C* (1) PR)C() + C*(1)Q(H) + Q(1)C(1)) dt
X —(P(t)B(t)B*(t)P(t) — L(t)) dt + Q(t) dW (1) t €[0,T]
\ P(T) — PT

(2)



Main difficulty in the infinite dimensional case:
L(H) that is not an Hilbert space.

New questions arise:
1 Is there a meaningful formulation for mild equation?

2 Characterization of Q@7 P has a natural characterization in terms of a
stochastic quadratic form / value function

3 Once you find such a formulation, is the equation well posed? Which is
the regularity for P and Q7

If the data are more regular, Hilbert Schmidt valued, then the Lyapunov
equation is well posed.

Unfortunately the space X>(H), of Hilbert Schmidt operators from H to H,
is far too small to cover significant applications.

IDEA: give meaning to the equation in L(H) working in a bigger Hilbertian
space close enough to it



Besides previous assumptions we ask

e A to be a self adjoint operator in H and there are a b.o.c {e; : k> 1} in
H and w > 0O, such that

Aekz—)\kek, with wé)\lg)\gé---<>\k<...,

e that there exists p € (,3), such that

2
Z )\ip < 4.

k>1

In particular A is the infinitesimal generator of an analytic semigroup in H.

These assumptions are satisfied if H = L?(0,1) and A = A + Dirichlet b.c.



Let us define

+oo
Vi=D((-A))={z € H: Y XNF(z,ex)s < +oo} = H"(0,1)
k=1

Clearly:

e ¢, cV forevery k:1,2,...

e VV is a separable Hilbert space and k . k>1tis a b.o.c. of V.
A

e the dual space V* is an Hilbert space and {e,\}: k> 1} is a b.o.c. of
V.

M M
e there is a constant M4 > 0 such that |€UA|L(H'V) <4 |€JA|L(V*'H) <4
' oP ' oP

we have following dense inclusions:

V%dHZH*;)dV*



Next we introduce the following space of operators
K=Lx(V:H)NLx(H; V")

Given two separable Hilbert spaces G and F', the space of operators L>(G; F)
is the space of linear and bounded operators from G to F such that

0.}

> |Tgl? < oo
k=1

where {gr : k > 1} is a complete orthonormal basis of G.
e K is a separable Hilbert space,
e L(H) CK,

e TcKiff T e L(V;H)NL(H;V*) and 72, A *(|Tex|? + [T er]2) < co.



We can then prove the following result

Theorem 1 There exists a unique solution (P,Q) &€ L%’S(Q, C([0,T]; L(H)) x
L%(€2 x [0,T]; K)) such that

T
P(t) — e(T—t)APTe(T—t)A + / e(s—t)A(C*(S>P(S)C(S) i ’Y(C(S))Q(S))G(S_t)A ds
t
T T
+ / e(s—t)AL(S)e(S—t)A ds + / e(s—t)AQ(S)e(s—t)A dB,
¢ ¢

where v(C)G = C*G 4+ GC for any C € L(H) and G € K.

Moreover (P, ., Q\.,.) € L3(2,C([0, T—¢]; X2(H)))x L3 (2% [0, T—e]; Z2(H))),
for any € > 0.



Proof (idea)
Main difficulty:

if C € L(H), the operator v(C)Q = C*Q + QC, that is bounded in X>(H) is
not a bounded operator from K into itself

More precisely
-2
D A 1QCek|
k>1

may not be bounded:

even if e, € V for every kK > 1, Ce;. just belongs to H so that we only have
QCe, € V*

As a consequence we cannot use the result of Hu-Peng (1991) because we
have an unbounded term in @



Solution: We exploit the regularizing property of the semigroup et4.

For @) € K we have

Y A eCTIACH (5)Q + QC(5))el ey <

k>1

D NP PAEI [0 () [T gy | QenlFr + 1€ F (1 1y |QC () en| )
k>1

< e PMEIME(C ey DA 1QenlF + (s =) IQIZ vy D Ak IC()exl?)
k>1 k>1

< C'"(Ma, A1, [Cl ey T (s — ) 72P1Q|%

Fix now Q € L2(2 x [T'—46,T]; K)) and assume there exists a solution (P, Q) €
LE(2,C([T -6, T]; K)) x L3(2 x [T —6,T]; K)) of the mild equation:

T
P(t) = T4 ppeT 04 + / eTIAC()Q(s) + Q(s)C(s))e P ds
t

T T
+/ e(st)AL(S)e(st)AdS_l_/ e-DAG DA gu ()
t t
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First we deduce the following estimate on P:

T

E sup PO < CEIPHE +57E [ |Q@)Rds+5ILE.
te[T—6,T] T-9

Then we introduce the following dual equation

t

X (t) :=/ e™AG(5)els AW (5)
T-6

where G(s)e, = )\;2’)@(8)6;{, kE>1.

We have

t

oo
EY X @al; <E [
k=1 T

So by duality, we obtain the following estimate on Q:

> N 1Q(s)ex|F ds

=0 p=1

1 . 2 2 1-2p g 2
E | |Q)Rds < CEIP )+ 7E | |Q(s)[F ds]

4 Jr_s T—5



Scheme of the proof

e Therefore can build a map '- using ad hoc approximations- from L% (<2, C([T—
6, T];K)) x L£(2 x [T — 6, T]; K)) into itself:

r(pP,Q) = (P,Q)

and we prove that there is a § such that I is a contraction.
e Global existence and uniqueness then follows easily.

e Typical parabolic regularity: exploit the regularizing property of the semi-
group t — et in H.
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