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Backward stochastic differential equations
(2, F,P) basic probability space.

W)>0 Wiener process in R% with natural completed filtration (}"W).
= t

T T
Vit [ zawo=e+ [ £ zyds telo),
t t
or
—dYy = —Z; dWi + fi(Ye, Z) dt, Yr = €.
Unknown (FV)-progressive processes:
Vi(w): Qx[0,T] >R, Z/(w): Qx[0,T] >R, (j=1,...,d).

Given data: ¢(w) 1 Q — R F¥-measurable,
fi(w,y,2) : Q2 x[0,T] x Rx R =+ R (F}V)-progressive in (w,t),

In the original paper by Pardoux-Peng (1990) two basic ingredients:
representation theorem for (F/V) martingales;
Lipschitz conditions on (v, z) — fi(w,vy, z).

Some early extensions beyond the Brownian case:
El Karoui - Peng - Quenez. Math. Finance 7 (1997).
El Karoui - Huang. In: Pitman R.N.M. 364, 1997.

Aim: study BSDEs using the filtration of a marked point process.



Marked (multivariate) point processes
(Th,&n)n>1 random variables defined on (2, F,P).
&, take values in (K, ), a Lusin space called state (mark) space.
To := 0. T, take values in [0, o0], are increasing and satisfy, for n > 0O,

T, < oo = Th < Tpg1.
Random measure p(dtdy) on (0,00) x K: for C € B((0,>)) ® I,
p(w,C) = 1((Th(w), &(w)) € C).
n>1
Counting processes: fort > 0, B € IC,
Ni(B) =p((0,t] x B), Ny=N(K)=)» 1(Tn < 1),
n>1
and associated filtration (F;);>o:
Fi = o(Ny(B) : s€[0,t], BeK).
P = (Fy)-predictable o-algebra.

State (forward) process (X:);>o:

Xy = Z&n 1(Tn <t< Tn—l—l)a
n>0

where & =z € K (deterministic).



Dual predictable projections (compensators)

Given (T,,&)n>1, Ne = > -1 1(Tn <t), p(dtdy), the compensator of N is an
increasing, right-continuous, predictable process A, with Ag = 0 such that

E/ thNt:E/ thAt
0 0

for every predictable (P-measurable) Hy(w) > 0.

Standing assumption: A has continuous trajectories. This implies

Ty =7 1Iim7T, = 4+o0.
n

The compensator of p(dtdy) is a predictable random measure p(dtdy) such

that
E /O ) /K Hy(y) pldt dy) = E /O ) /K Hy(y) 7(dt dy)

for every P ® K-measurable Hy(w,y) > 0.

p(dt dy) exists and has the form

p(dt dy) = ¢u(dy) dA;
where B — ¢:(w, B) is a probability on I, and (w,t) — ¢:(w, B) is predictable.



Example: the Poisson random measure on RY has compensator
p(dtdy) = X(dy) dt

for some (deterministic, fixed) intensity measure XA on RY.

o:(dy) dA; may be thought of as a “generalized intensity”.

Stochastic integrals and martingale representation

Suppose H;(w,y) is P ® K-measurable over 2 x [0,T] and

T
E /O /K Hi(y)] de(dy) dA; < o. (1)

Then one defines the compensated stochastic integral: for t € [0,T]

M; :=/O /KHs(y)q(dsdy) 2=/O /KHs(y)p(dsdy)—/o /KHs(y)cbs(dy)dAs(-Q)
Shortly: ¢(dsdy) = p(dsdy) — ¢s(dy) dAs.

Martingale representation: M defined in (2) is a cadlag martingale; conversely,
any cadlag martingale has the form (2) for some process H satisfying (1).



BSDE driven by point processes

%—I—/tT/KZs(y)(J(dsdy) =€+/tTfs(Y;,Zs(-))dAs,

or

4y, = — /K Zi(y) a(dt dy) + f.(Vi, Zi(-)) dAr,

A = compensator of N. ¢(dsdy) = p(dsdy) — ¢s(dy) dAs.
Given data: f,&. Unknown processes:

Yi(w) : Q2 x [0, T] — R, (Fr)-adapted cadlag;

Zi(w,y) : 2 x[0,T] x K —- R, P® K-measurable.



Earlier results
BSDESs driven by a noise “Wiener 4+ Poisson’:

T T T
Yt+/ Z;dWs+/ /Zs(y>q(dsdy)=§+/ £V, Zo(), 21 ds,
t t K t

Here p(dtdy) is a Poisson random measure on K = RV\{0},
hence p(dtdy) = \(dy) dt with

| (AT Mdy) < oo

Many results:
Tang, S. Li, X. SIAM J. Control Optim. (1994).
M. Royer. Stoch. Proc. Appl. (2006).
Barles-Buckdahn-Pardoux. Stochastics (1997).

More general BSDE in: Xia, J. Acta Math. Appl. Sinica (2000).
T T
Yi + / Z0dM, + / / Z(y) q(ds dy)
t T t K T
=£+/ f;(Ys,Z;)st+/ /fs<y,m,zs(ym<dsdy>.
t t K

Here K = R, M is a martingale, N is increasing and X is another random

measure (0,00) X K.

BSDEs related to Markov chains: Cohen-Elliott (2008, 2010); Cohen-Szpruch
(2012).



Solution of the BSDE: L2 theory

4y, = — / Zi(y) aldtdy) + (Y, Zi()) dA, Yo =&
K

Y;(w) cadlag adapted in £%#, Z(w,y) P ® K-measurable in £2?(p), i.e

T
MWé@:E/‘JMEFWh<m%
0

T
um@%N:E/h/JMz@W@uwm%<m.
0 JK
Assumptions:
o ¢{(w) is Fr-measurable.

o fi(w,r,2(-)) is defined for r €

z(1) € L2(K,K,¢t(w,dy)), such that
F(w.r. Z:(w)) is progressive for Z € £27

(p).
o [filw,r,2()) = filw,r, Z () < L|r —r'| + L (/ 2(y) — z'<y>|2¢t<w,dy>)5
K

o E [ eP4f,(0,0)2dA; + Eef4r[¢]? < oo.

Theorem (Confortola, F.; SICON, to appear) Suppose 3 > 2L/ + L?.
Then the BSDE has a unique solution (Y, Z) € £%# x £%8(p).



4y, = — / Zi(y) aldtdy) + (Y, Ze()) dA, Yo =&
K

Proof: representation theorem for (F;)-martingales, Ito's formula to compute
d(eP4|Y;?) and get

T T
E e’V + E / Be“s\mszﬁE/ / e\ Zs(y)I? 65 (dy) dA,
¢ t JK

T
= Ee’[¢|* 4 2E / e"MY, fo(y, Ye, Zs(y)) dAs.
t

Note: to solve even with & = constant one needs
Ee’4r < oo.
If p is Poisson with compensator \(dy) dt one needs A(RV\{0}) < oo.



Solution of the BSDE: ! theory

4y, = — / Zi(y) aldtdy) + (Y, Zi()) dA, Yo =&
K

Y;(w) cadlag adapted, Z;(w,y) P ® K-measurable in £} (p), i.e.

loc

T
/ / 1 Zi(y)|pe(dy) dA; < o0, P—a.s.
0 K

Assumptions:
o {(w) is Fr-measurable, E¢| < cc.

o fi(w,r z()) is defined for r € R, z(-) € L1(K,K, ¢:(w,dy)), such that
fi(w,r, Z;(w)) is progressive for Z € L} (p).

loc
o [filw,m,2(-)) — filw, 7,2’ ()| < L'fr —r'| + L/K 12(y) — 2'(y) ¢t (w, dy),

° f0T|ft(O,O)|dAt < o0, P-a.s.

Theorem (Confortola, F., Jacod; in progress)
Suppose 0 < T1 <Tpr =T3 = ... = oo (one jump case) with P(7Ty > T) > 0.
Then the BSDE has a unique solution (Y, Z2), Z € L} (p).

loc
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Solution of the BSDE: L! theory and pathwise solutions

For t < Ti(w) we have
ft(w,T,Z(°)) — ft(raz('))a gbt(wady) — th(dy)

Moreover there exist u € R and deterministic functions a(t),v(¢,y) such that

dAt(w) — da(t) 1t§T1(w)7 S(w) —u 1T1(w)>T + ’U(T]_(Cd), gl (CU)) 1T1(w)§T7
(a(t) continuous increasing) and the solution (Y, Z) has the form

Y%(CU) — y(t) 1t<T1(w) _l_ U(Tl (C«)), &-1 (Cd)) 1tZT1(w)a Zt(wa y) — Z(ta y) 1t§T1(w)7
where y(t) solves the ODE on [0,T]:

T
y(t) = u+ / [fs<y<s>,v<s,->—y<s>>+ /K o(s,9) 6a(dy) — y(s)| da(s)

and
z(t,y) = v(t,y) — y(t).

Similar results are in preparation for the general (multi-jump) case.

11



Application: stochastic optimal control
Given (Tn,fn)nzl, Xy = ZnZO fn 1(Tn <t< Tn_|_1).
The controller acts on the (generalized) intensity, i.e. on the compensator.

The control problem is defined in a weak form, i.e. via a change of probability
measure.

This approach is classical, see e.g. the book by P. Brémaud, 1981. We need.:
a space of control actions U and a space of control processes;
a function r specifying the effect of the choice of a control process;

two cost functions [, g defining the cost functional.

(U,U = B(U)) compact metric space: the space of control actions.

A control u(-) is a predictable processes u : Q2 x [0,T] — U. Then
w =y u" UTn <t < Topa),
n>0

with «(™ Fr ® B(RT)-measurable, Fr = o(To,&o,...,Th,&): at each Ty, the
controller chooses his control actions for ¢t > T,, based on T;,&, (0 <7 <mn) and
updates his decisions only at time 7,,4+1.

12



ri(w,y,u) : 2 x[0,T] x K xU — [0,C,], P® K ® U-measurable, continuous
in u.

Given u(-), let L be the solution of

L;=1 —|—/0 /KLS_(rs(y,us) — 1) q(dsdy).

Let v >1, B=~4+14+C)/(y—1). Then

Eexp(BAr) < oo = ELp=1, sup E|L{" < .
te[0,T]

Define P,(dw) = L1 (w)P(dw). Then the compensator of p under P, is

p'(dtdy) = ri(y,u) p(dt dy) = re(y, ut) ¢e(dy) dA;.
“The choice of a control u(-) multiplies the intensity by 7:(-, u:)".

li(w,z,u) : 2 x [0, T] x K xU — R, P® K ® U-measurable, bounded,
continuous in uw; and
g(w,z) : Q2 x K - R, Fr ® K-measurable, bounded (for simplicity).

The cost of a control u(-) is

T
J(’LL()) — EU/O lt(Xt, ’U,t) dAt —|— ]Eu g(XT).

13



Optimal control problem via BSDEs

Hamiltonian function:

st 200) = Inf {0 + [ 20) G = D duCeondn) |

Theorem (Confortola, F.; SICON, to appear) Assume i)-ii)- and
Eexp(BAr) < oo for 3 =3+ C#*. Then the BSDE

T T
Yi + / /K Z.(y) q(ds dy) = g(Xr) + / F(s, X, Zo()) dA,,

has a unique solution (Y, Z2) € £37 x £28(p). There exists a control u”(-)
such that

[, X, Zi(+)) = lt(XtautZ>+/K Zi(y) (re(y,uf)—1) ¢e(dy), dA(w)P(dw)—a.s.

Finally any such control is optimal and
Yo = J(u?(-)) = ir(n; J(u(-)).

14



An example with explicit solution
State space K = {a,b,c}. Single jump: T,, = o0 if n > 2.

Xo = a; at time 171 the system jumps to &;;
P(&1 =b) =P(é1 =¢) = 3;

Ty (w) € (0,00] has distribution function F;
T1 and &; are independent.

The compensator p(dtdy) = ¢:(dy) dA; is

F(dt) 1
dAy(w) = 1_—Fm1{t§T1(w)}a ¢t(a) = 0, ¢:(b) = ¢i(c) = >
Assume F(T) <1 = Apr bounded. Take
re(w,b,u) =u, 7r(w,c,u) =2 —u, uwe U =[0,2]
The compensator p“(dtdy) under P, has
u u
du(a) =0, qb) =7, ¢le)=1--,

The control changes the probabilities of jumping to the state b or c.

Final cost g and running cost I:

9(a) =g(®) =0, g(c) =1,  L(w,z,u) = %.

where o« > 0 is a parameter.

15



We will represent the optimal cost by the solution Yy of the BSDE

T

v; + / / Z,(y)q(ds dy)
t K

T . au

=X+ [ inf [— + [ 2.0 - Donlay) | da,
¢ u€l0,2] | 2 K
that can be written
AT F(dt)
Y+ Z1,(§1) 1peni<ry = Lin<ry Lie=c) + / [Zs(c) N (a4 Zs(b))] 1_F()
t _

The solution is

T F(ds)
Y= (1A 1 —ex — _ 1 1 1,
= (1A a) ( P ( /t = F(S))> (t<n} T Lim<ey 1y =cp

T
Z,(b) = (1 A @) (exp (—/t 11?_(—%) _ 1) Liery,

Zt(a) — O, Zt(C) — (1 —|— Zt(b))l{thl}-

F(ds)

Optimal cost: Yo = (1 A @) (1 —e Jo 1F<s>>.

u=0 Ifa>1,

Optimal control: { w=2 ifa<l.

16



Dynamic programming
We consider the point process (Xﬁ"’“")se[t’T] starting at any time t € [0,7T] from
any x € K. It is associated with the restriction of the random measure p(dt dy)

to (¢,T] x K. For any probability P, associated to a control u(-) we introduce
the random cost and value function

T
Ji(z,u(-)) =E, [/ (X5 ug) dAs + g(X%w) |]—"t] , v(t,x) = eSSLr(].]; Ji(z,u(-)).

Then we have similar results: there exists a unique solution to the BSDE

T T
Yo +/ / Zy*(y) q(dr dy) = g(X7") +/ flr, Xp", 2,7 () dAy, s € [, T,
s K s

there exists an optimal control, and

Y"" = ess |r21; Ji(z, u(+)), P — a.s.

17



The stochastic Hamilton-Jacobi-Bellman equation (HJB)
Unknown processes:
v(w,t,z) : 2 x[0,T] x K - R, Prog ® K-measurable;
V(w,t,z,y) : Q2 x [0,T] x K x K - R, P® K ® K-measurable.

o(t,z) + / / V(s, 2, y) q(ds dy)
= g(2) + / / (v(s,) —v(s,2) + V(s,9,9) — V(s,2,9)) ¢s(dy) dA,
—I—/ f s, Xs,v(s,-) —v(s,z) + V(s,-, )) dAs.

P-a.s., this must hold for all t € [0,T], z € K. We require

T T
Sup]E/ lv(t, z)|?e’Md A, —I—IE/ lv(t, X¢)|2e®d A,
0 0

reK

T
+Sup/ /IV(t,m,y)|2¢t(dy)dAt
K

xeK Jt
T

+E / / o(t,y) + V(t, 1) di(dy)e® dA, < oo,
0 K

18



Theorem (Confortola, F.; SICON, to appear) Assume i)-ii)- and
K finite or countable.There exists By > 0 (explicitly computable) such that if

B > 607 IE’[eﬁAT] < 00,

then HJB has a unique solution (v, V).
We also have

Y;t,m — U(S7 Xﬁ’m% Z?m — U(S_a y) _ U(S_a Xzf) + V(37 Y, y)
where (Y%, Z5%) e i the solution to the BSDE

T T
yie 4 / / 207 (y) a(dr dy) = g(X1%) + / FOr X5 7289 ()) dA, s € [t T,
S K S

In particular, v(t,x) = Ytt’x coincides with the value function:

v(t,x) = ess Ir(n; Ji(x,u(+)), P —a.s.

Stochastic HJB introduced by Peng, SIAM J. Control Optim. (1992), in the
diffusive case.

Proof. Uniqueness: Ito’s formula for dv(s,Xﬁ"’”).
Existence: fixed point argument 4+ estimates on the BSDE.
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T he Markovian case
We give an outline of some results in Confortola, F. - preprint arxiv 2013.

Let (2, X,P"*) a (non-homogeneous) Markov process on (K, K).

We have PH?(X; = x) = 1 and we require:
Pure jump process: each trajectory is piecewise constant, right-continuous.
Non-explosive: jump times diverge to +oo.

Given t,z, let (T,) be the jumps times after t. The trajectories of X are
determined by

M = (TnyXTn>n217 (Xoo = A ¢ K)

Under each P%*, M is a time-homogeneous discrete Markov process, and it
iS our basic marked point process.

Let v(t,z,dy) denote the rate transition measure of X (the rate matrix
v(x,{y}) in the case of a stationary finite Markov chain). Then:

p(dtdy) = v(t, Xi—, dy) dt.
We assume sup;>o.ecx v(t, z, K) < oo and consider the BSDE

T T
Y, + / /K Z,:(y) a(dr dy) = g(X1) + / Fr X Yo Zo()) dr, s € [LT).

20



Under appropriate measurability and Lipschitz assumptions on the coeffi-
cients, the BSDE has a unique solution (Y, Zs) e 17, Such that:
Y;(w) cadlag adapted, Zs;(w,y) P ® K-measurable,

T T
Et’w/ |YS|2ds—|—Et’x/ / 1 Zs(y)|?v(s, Xs, dy) ds < oo.
t t K
Denote the solution (Yy", Zo™) - The function

v(t,z) =Y,
is the unique solution to the non-linear Kolmogorov equation:

T T
o(t,2) = g(x) + / Lov(s,z) ds + / F (s, 2,0(s,2),0(s, ) — v(s, 2)) ds,

where L;¢(z) = [ (¢(y) — ¢(x)) v(t,z,dy) is the generator of X, in the class
of measurable functions v : [0,T] x K — R satisfying

T T
Et’x/ |fu(s,X5)|2ds + Et’x/ / lv(s,y) — U(S,Xs)|21/(S,X3, dy) ds < oo.
t t K
Moreover,

Yst’w — U(SaXS)a Z?x(y) — U(S7y) T U(S7XS—)7 CHS [t7T]a
Remark. The equation is easy to solve when f, g are bounded, but we only
require EH* ftT |f(s, Xs,0,0)|%ds + Eb*|g(X7)|? < oo.

Optimal control problems in the Markov case can also be addressed. The
non-linear Kolmogorov equation is the Hamilton-Jacobi-Bellman equation.
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Further developments

The semi-Markov case: non-linear Kolmogorov equations, optimal con-
trol problems (in preparation with F. Confortola and E. Bandini).

Extensions to more general classes of processes.
Infinite horizon, quadratic growth conditions.

L' theory and pathwise solutions in more general cases (processes with
explosion, discontinuous compensators etc.)

22



Thank you for your attention!
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