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Fractional calculus

HJB and fHJB

General HJB:

∂S

∂t
+ LS + sup

u
[f (x , u)

∂S

∂x
+ g(x , u)] = 0. (1)

Game theory: HJB Isaacs equation

∂S

∂t
+ LS + sup

u
inf
v

[f (x , u, v)
∂S

∂x
+ g(x , u, v)] = 0. (2)

fHJB
∂βS

∂tβ
+ LS + sup

u
[f (x , u)

∂S

∂x
+ g(x , u)] = 0 (3)

We’re particularly interested in the case when
L = a(x)D∗α0,x , α ∈ (0, 2].
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CTRW and optimal payoff equation

A random variable γ in DOA (β-stable law) if as n→∞∑n
i=1 γi − an

bn
→ Z , (4)

in distribution, for some an, bn, where Z is stable. In other
notation, as n→∞ if ν(dr) is the law for γi waiting times∫

|r |>n
ν(dr) ∼ 1

Γ[1− β]nβ
(5)

for β ∈ (0, 1).

Waiting times γi ∈ DOA(β-stable law), β ∈ (0, 1).
Denote X (n) =

∑n
i=1 γi and ZX (t) = infn{n : X (n) > t}

Jumps ξi ∈ DOA(α-stable law), α ∈ (0, 2], ξi ∈ Rd .

The process YZX
(t) =

∑ZX (t)
i=1 ξi is the CTRW.

Control set U at every jump: ξi (ui ), i ∈ N.
Set of all possible controls for all jump times:

Ũ = {ũ = (u1, u2, . . .)}, ui ∈ U. (6)
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Basics

Fractional integral defined via iterations for f ∈ S , Schwartz
space: Let If (x) =

∫ x
−∞ f (y)dy for f ∈ S .

I k f (x) =
1

(k − 1)!

∫ x

−∞
(x − y)k−1f (y)dy , for k ∈ N. (7)

Now replace integer k by fractional β:

I βf (x) =
1

Γ[β]

∫ x

−∞
(x − y)β−1f (y)dy , for β > 0. (8)

Related fractional derivative for β ∈ (0, 1):

dβf (x)

dxβ
=

d

dx
I 1−βf (x). (9)
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The left-sided Caputo derivative for β ∈ (0, 1) is defined for
f ∈ S by

D∗β0,x f (x) =
1

Γ[1− β]

∫ x

0

df (y)

dy
(x − y)−βdy . (10)

Fractional Laplacian operator (−∇)α:

− 1

Γ(1− α)

∫ ∞
−∞

(f (x)− f (y))

|x − y |1+α
dy . (11)

The operators −D∗β0,y and (−∇)β/2 are generators of stable
Levy motions.

A general β-stable Levy motion Lt can be described by the
following log-characteristic function:

logE[e iθLt ] = −tκβ|θ|β(1− iβsign(θ)tan(βπ/2)) + itmθ (12)

for β 6= 1, β stability index.
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Mittag-Leffler function: power series definition

A Mittag-Leffler function Eβ,α(z) is defined as:

Eβ,α(z) :=
∞∑
k=0

zk

Γ[βk + α]
=

1

2πi

∫
Ha

eλ
λβ−α

λβ − z
dλ, (13)

for α, β > 0, z ∈ C , and where Ha denotes a Hankel path, which is
a contour starting and finishing at −∞ and encircling the disc
|λ| ≤ |z |1/β counter clockwise.
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Examples of Caputo derivatives of functions

D∗β0,t(e
λt) = t−βE1,1−β(λt)− t−β

Γ[1−β] ,

D∗β0,t(cosh(
√
λt)) = t−βE2,1−β(λt2)− t−β

Γ[1−β] ,

D∗β0,t(H(t)) = 0, where H(t) is the unit Heaviside function.
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Mittag-Leffler function: examples

For example,
E1,1(z) = ez (14)

and

E1,2(z) =
ez − 1

z
(15)

and

E2,2(z2) =
sinh(z)

z
. (16)
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Simple fDE

For β ∈ (0, 1], λ ∈ R,

D∗β0,ty(t) = λy(t), (17)

with initial condition
y(0) = y0. (18)

Solution is given by

y(t) = y0Eβ,1(λtβ). (19)

When β = 1, y(t) = y0
∑∞

n=0
(λt)n

Γ(n+1) = y0e
λt , a standard result.
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CTRW and optimal payoff equation

Waiting times γi ∈ DOA(β-stable law), β ∈ (0, 1).

Denote X (n) =
∑n

i=1 γi

Denote ZX (t) = infn{n : X (n) > t}
Jumps ξi ∈ DOA(α-stable law), α ∈ (0, 2], ξi ∈ Rd .

The process YZX
(t) =

∑ZX (t)
i=1 ξi is the CTRW. Y considered

at jump times only is a Markov process.

Controlling jump sizes to optimise payoff:

Control set U at every jump time

Set of all possible controls for all jump times:

Ũ = {ũ = (u1, u2, . . .)}, ui ∈ U. (20)
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The optimal payoff function S(t, y) is defined as follows:

S(t, y) = sup
ũ∈Ũ

ES0(y + Y (t, ũ)), t ≥ 0. (21)

Scaling jump sizes by τ1/α and waiting times by τ1/β, then

Y τ (u, t) =
∑ZXτn

(t)

i=1 τ1/αξi (ui ) and

Sτ (t, y) = sup
ũ∈Ũ

ESτ0 (y + Y τ (t, ũ)). (22)

Sτ (t, y) = sup
u∈U

[
Sτ0 (y)

∫ ∞
t

ν(dr/τ1/β)

+

∫ t

0

∫
Rd

Sτ (t − r , y + ξ)µu(dξ/τ1/α)ν(dr/τ1/β)

]
. (23)

As τ → 0, assume ∀t ≥ 0, y ∈ Rd , Sτ (t, y)→ S̃(t, y), where S̃

belongs to domains of the stable generator L and A∗β0,t .
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Extensions and other versions

1 Motion during waiting times can be deterministic, e.g. in case
d = 1, with a generator of the form f (x) d

dx . I.e. the process
Y is piecewise deterministic.

2 This only slightly changes the equation for the optimal payoff,
adding an extra term with the generator of the motion during
waiting time intervals.

3 running costs- for waiting and for jumping, apart from
arriving: represented by functions f and g.

4 Time and position dependence:

X τ
n = X τ

n−1 + γn(Xn−1), (24)

and
Y τ
n = Y τ

n−1 + ξn(Yn−1), (25)

and the process we study is YZX (t).
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Construction of the jump process

For an arbitrary Feller process Ỹ with a generator Lu, it is always
possible to construct a family of measures µu,τ (y , dξ), such that

Y τ
n = Y τ

n−1 + ξn(Y τ
n−1), (26)

where ξn, n ∈ N are r.v.’s with distributions given by µu,τ , and such
that ∫

Rd

f (t, y + ξ)− f (t, y)

τ
µu,τ (y , dξ)→ Luf (t, y). (27)

Then
Y τ

[t/τ ] →d Ỹ . (28)

Essentially, in such a case we obtain the same form of payoff
equation.
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fDE

Let τ → 0, obtain the limiting equation of the form:

D∗β0,tS(t, y) = −LS(t, y) + H (u, t, y ,DyS) . (29)

First, we study

D∗β0,tS(t, y) = −LS(t, y) + f (t, y), (30)

We study the case when L : D(L)→ C∞(Rd), with the resolvent
set ρ(L) including the right half plane. More precisely this theory
applies to L = −|∇|α, α ∈ (0, 2] and to

L =
∑d

i ,j=1 ai ,j
∂2

∂xi∂xj
+
∑d

i=1 bi
d
dxi

, where ai ,j , bi are constants.

Applying Laplace transform and re-arranging:

Ŝ(λ) = λβ−1(λβI + L)−1S0(y) + (λβI + L)−1f̂ (λ). (31)
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Mittag-Leffler function

Other representation of the Mittag-Leffler function:

Eβ,α(−tβL) =
1

2πi

∫
Ha(ε)

estL
1/β

sβ−α

sβ + 1
ds =

∫ ∞
0

e−rtL
1/β

Kβ,α(r)dr ,

(32)
where

Kβ,α(r) =
1

π

r2β−α sin(απ)− rβ−α sin((β − α)π)

r2β + 2rβcos(βπ) + 1
. (33)

We will need

Kβ,β(r) =
1

π

rβ sin(βπ)

r2β + 2rβcos(βπ) + 1
. (34)

Here e−rtL
1/β

is a bounded operator.
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A Laplace transform and an unbounded operator L

Theorem

Let L : D(L)→ C∞(Rd), such as L = (−∇)α, α ∈ (1, 2], and
β ∈ (0, 1). Then the following holds:∫ ∞

0
e−λttα−1Eβ,α(−tβL)dt =

λβ−α

(λβI + L)
. (35)

Consider L : D(L)→ L2(Rd) first. The power series representation
of Eβ,α(−tβL)f holds for any vector f of L, satisfying

∞∑
n=1

‖Lnf ‖L2(Rd )

n!
tn <∞ (36)

for any t > 0. This set of vectors is dense in L2(Rd). Cc(Rd)
dense in L2(Rd). Approximate functions in C∞(Rd) by functions in
Cc(Rd) ⊂ L2(Rd).

Apply the inverse Laplace transform to obtain the mild form.



Fractional calculus

Mild form of the equation

D∗0,tS(t, y) = −LS(t, y) + f (t, y) (37)

turns to

S(t, y) = Eβ,1(−tβL)S0(y)

+

∫ t

0
(t − s)β−1Eβ,β(−(t − s)βL)f (t, y)ds. (38)
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Application to the limiting payoff equation

Theorem

Let β ∈ (0, 1), L = (−∇)α, α ∈ (1, 2] or L =
∑d

i ,j=1 aij
d2

dxidxj
,

where aij are constants. The fDE

D∗β0,tS(t, y) = −LS(t, y) + H (t, y , u,DyS(t, y)) (39)

has the mild form

S(t, y) = Eβ,1(−tβL)S0(y)

+

∫ t

0
(t − s)β−1Eβ,β(−(t − s)βL)H (t, y , u,DyS(t, y)) ds. (40)
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Theorem 3

Assumptions:

The domain of L is D = C 2
∞(Rd), unbounded as an operator

in C∞(Rd), e.g. L = (−∇)α, α ∈ (1, 2].

‖e−tL1/β
f ‖C1(Rd ) ≤ tε(β)‖f ‖C0(Rd ).

H(u, t, y , p) is Lipschitz in p uniformly in y , i.e., with a
Lipschitz constant κ independent of y , and

|H(u, y , 0)| ≤ h (41)

for a constant h and all y .

A restriction on stability parameters α, β:

β − β

α
+ 1 > 0. (42)

Under the above assumptions on H and L, for any S0 ∈ C 1
∞(Rd)

there exists a unique C 1
∞(Rd) solution S(t, y) of the mild

equation, for all t ≥ 0.
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The space C ([0,T ],C 1
∞(Rd)) has the norm

‖φ(·)‖ = sup
t∈[0,T ]

‖φ‖C1(Rd ) (43)

Denote by BT
S0

the space of continuous functions from the closed

convex subset of C ([0,T ],C 1
∞(Rd)) with φ0 = S0.
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Sketch of the proof

Denote the RHS operator by Ψ(·). By triangle inequality:

sup
t∈[0,T ]

‖Ψ(φ)‖C1(Rd ) ≤ sup
t∈[0,T ]

‖
∫ t

0
(t − s)β−1Eβ,β(−(t − s)βL)

H

(
u, s, y ,

dφ(s, y)

dy

)
ds‖C1(Rd )

+ sup
t∈[0,T ]

‖Eβ,1(−tβL)S(0)‖C1(Rd ).(44)
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Let φ1 6= φ2 ∈ BT
S0

.

sup
t∈[0,T ]

‖Ψ(φ1
t − φ2

t )‖C 1(Rd ) ≤

sup
t∈[0,T ]

∥∥∥∥∫ t

0

(t − s)β−1Eβ,β(−(t − s)βL)

×
(
H(u, s, y ,

dφ1
s

dy
)− H(u, s, y ,

dφ2
s

dy
)

)
ds

∥∥∥∥
C 1(Rd )

≤ ω(t)

(
κ sup

s≤t
‖φ1

s − φ2
s‖C 1(Rd )

)
.

(45)
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The RHS operator Ψ is a contraction in the closed convex subset
of C ([0,T ],C 1

∞(Rd)) for small enough T .

As a consequence, it has a unique fixed point, i.e., there is a
unique continuous solution S(t, y) for the mild form of the fHJB,

which is approximated by the iterations of Ψ on S0(y) by Banach
fixed point theorem.
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Theorem 4

The assumptions of the previous theorem remain and we add a
new one:

|H(u, t, y1, p)− H(u, t, y2, p)| ≤ κ̃|y1 − y2|(1 + |p|) with a
certain constant κ̃ ≥ 0.

If S0(y) ∈ C 2
∞(Rd), the unique solution constructed previously

belongs to C 2
∞(Rd) and represents a classical solution to the

original fDE.
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Sketch of the proof

Denote by BT ,R,2
S0

the space of functions which are twice

continuously differentiable in y from the closed convex subset BT
S0

of C ([0,T ],C 1
∞(Rd)), have φ0 = S0 and

sup
t≤T
‖φt‖C2(Rd ) ≤ R (46)

for some constant R > 0. Then

sup
t≤T
‖Ψ(φt)‖C 2(Rd ) ≤ sup

t≤T

∥∥Eβ,1(−tβL)S(0)
∥∥
C 2(Rd )

+

∫ t

0

ω(s)R(κ+ κ̃)ds. (47)
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Want supt≤T ‖Ψ(φt)‖C2(Rd ) ≤ R, so that Ψ maps BT ,R,2
S0

to itself.
Re-arrange to obtain an expression for R:

R ≥ sup
t≤T
‖Eβ,1(−tβL)S(0)‖C2(Rd )

×
(

1−
∫ T

0
ω(s)ds(κ+ κ̃)

)−1

. (48)

If necessary, reduce T to ηT for some η ∈ (0, 1), so that the
denominator is positive.

If (48) is satisfied then Ψ maps BR,T ,2
S0

into itself and consequently

the limit of iterations of Ψ on S0 is also of class C 2(Rd).

By the previous theorem we know that the solution to the fHJB is
unique in C 1(Rd), hence, the solution limk→∞Ψk(S0) is a unique
solution of class C 2(Rd). So, by the principle of dynamic
programming, there exists a unique classical solution for the simple
fHJB on any interval [0,T ].
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Further research

Still remains to prove Sτ → S .

What if the restriction on α and β is not satisfied?

If L = supu∈U a(y)g(u)D∗αy , how to analyse the fHJB?

SDE approach to the limiting process, links to fractional
Fokker-Planck equation.

Applications to insurance, for example considering a difference
of two sums of jumps with waiting times dependent on related
stability parameters β1 and β2 and introducing re-insurance as
an additional running cost.

CTRW with regenerations in limit order book theory

Many-particle systems behaving as a similar CTRW,
mean-field interaction of such systems in games

CTRW approach to queueing theory
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Thank You for listening.
Merci de votre attention.
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