Analysis of a one-sided limit order book model

Florian Simatos

Eindhoven University of Technology

Workshop on Piecewise Deterministic Markov Processes Rennes, May 17, 2013

Partly based on on-going joint work with **J. Reed** (NYU)

Limit order book: financial tool

Allows traders to place orders to be realized in the future

Limit order (buy order):

- Trader wants to buy asset at price p
- Nobody currently wants to sell at this price
- Order stocked in book, fulfilled as market fluctuates

Market order (sell order)

- Fulfills largest buy order in book
- Book determines price of asset

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

Market order ↔ rightmost point removed

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

Market order ↔ rightmost point removed

 \mathbf{X} : limit order

Limit order \leftrightarrow new point

 \mathbf{X} : limit order

$\overbrace{\mathsf{Limit order} \leftrightarrow \mathsf{new point}}$

 \mathbf{X} : limit order

$\overbrace{\mathsf{Limit order} \leftrightarrow \mathsf{new point}}$

 \mathbf{X} : limit order

$\overbrace{\mathsf{Limit order} \leftrightarrow \mathsf{new point}}$

Market order ↔ rightmost point removed

 \mathbf{X} : limit order

$\overbrace{\mathsf{Limit order} \leftrightarrow \mathsf{new point}}$

 \mathbf{X} : limit order

$\overbrace{\mathsf{Limit order} \leftrightarrow \mathsf{new point}}$

Complicated model

- Two-sided book: limit sell orders/market buy orders
- Cancellations
- Intricate arrival processes

▶ ...

Focus on one feature:

State of the book influences arrivals

Arrival of new order

New order far to the left:

May never be fulfilled

New order far to the right:

Pays too much

Arrival of new order

New order placed in the vicinity of price

Asymptotic behavior of the price

Scaling limit

Discrete time Markov chain

State space: finite point processes on $\mathbb{R} = (-\infty, \infty)$

Two parameters

- $\pi \in (0, 1)$: probability of new order
- ▶ $X \in \mathbb{R}$: random variable, distance of new order with respect to current price

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

At each time step:

- Remove rightmost order with probability 1π
- Add order with probability π at p + X
- I.i.d. displacements $(X_k, k \ge 0)$

Boundary condition

Point process on \mathbb{R}

- Model on $(0,\infty)$ by taking exponential transformation
- Multiplicative rather than additive displacement (geometric Brownian motion)

Total number of orders in the book

Random walk reflected at 0

Asymptotic behavior of the price

Price process

 p_k : position of rightmost order at time k

Asymptotic behavior of p_k as $k \to +\infty$?

Assume $\pi > 1/2$

• $\pi \leq 1/2$: $p_k = 0$ infinitely often

Asymmetric behavior

Price moves freely to the right

• With probability $\pi \mathbb{P}(X > K)$, jump > K

Price "slowed down" by orders sitting to its left

Orders to the left act as a barrier

Price moves freely to the right

• With probability $\pi \mathbb{P}(X > K)$, jump > K

Price "slowed down" by orders sitting to its left

Orders to the left act as a barrier

Price moves freely to the right

• With probability $\pi \mathbb{P}(X > K)$, jump > K

Price "slowed down" by orders sitting to its left

Orders to the left act as a barrier

Price moves freely to the right

• With probability $\pi \mathbb{P}(X > K)$, jump > K

Price "slowed down" by orders sitting to its left

Orders to the left act as a barrier

Price moves freely to the right

• With probability $\pi \mathbb{P}(X > K)$, jump > K

Price "slowed down" by orders sitting to its left

Orders to the left act as a barrier

$$\xrightarrow{\qquad \qquad } \begin{array}{c} & & & \\ & & & \\$$

 $p_k
ightarrow +\infty$ for π large enough?

Theorem

If $\mathbb{E}X > 0$, then $p_k \to +\infty$.

Remarks

• $\mathbb{E}X > 0$: price drifts to the right, no barrier

Theorem If $\mathbb{E}X > 0$, then $p_k \to +\infty$. If $\mathbb{E}X < 0$ and $\mathbb{P}(X > 0) > 0$, then: $p_k \to +\infty$ if $\pi > \frac{1}{1+a}$; $p_k \to -\infty$ if $\pi < \frac{1}{1+a}$; where $a = \inf_{\theta \ge 0} \mathbb{E}(e^{\theta X}) \in (0, 1]$.

Remarks

- $\mathbb{E}X > 0$: price drifts to the right, no barrier
- $\mathbb{E}X < 0: p_k \to +\infty$ if π large enough (barrier)

Theorem If $\mathbb{E}X > 0$, then $p_k \to +\infty$. If $\mathbb{E}X < 0$ and $\mathbb{P}(X > 0) > 0$, then: $p_k \to +\infty$ if $\pi > \frac{1}{1+a}$; $p_k \to -\infty$ if $\pi < \frac{1}{1+a}$; where $a = \inf_{\theta \ge 0} \mathbb{E}(e^{\theta X}) \in (0, 1]$.

Remarks

- $\mathbb{E}X > 0$: price drifts to the right, no barrier
- $\mathbb{E}X < 0: p_k \rightarrow +\infty$ if π large enough (barrier)
- $p_k \to +\infty$ if $\mathbb{E}(e^{\theta X}) = +\infty$ for every $\theta > 0$ (!!)

Theorem If $\mathbb{E}X > 0$, then $p_k \to +\infty$. If $\mathbb{E}X < 0$ and $\mathbb{P}(X > 0) > 0$, then: $p_k \to +\infty$ if $\pi > \frac{1}{1+a}$; $p_k \to -\infty$ if $\pi < \frac{1}{1+a}$; where $a = \inf_{\theta \ge 0} \mathbb{E}(e^{\theta X}) \in (0, 1]$.

Proof: Coupling with branching random walk

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

Each step:

- Each particle removed and replaced by random number of particles
- Each new particle at random distance from "parent"

Coupling via tree representation

Add genealogy/filiation between particles/orders

Start from random tree \mathcal{T}

- Geometric offspring distribution, parameter π
- ▶ I.i.d. labels ~ X
- Root is blue, other nodes black

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

🕨 🤁 with largest label

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

 Γ_k : labels of blue nodes at time k

Theorem $(\Gamma_k, k \ge 0)$ is a realization of the limit order book process. Limit order book as dynamics on tree - idea of proof

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

🕨 🤁 with largest label

Limit order book as dynamics on tree - idea of proof

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

Else, $\blacksquare \rightarrow igodom$

- Probability 1π
- Market order

Limit order book as dynamics on tree - idea of proof

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

Else, $\blacksquare \rightarrow igodom$

- Probability 1π
- Market order
Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\bigcirc \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If has a black child: first $\bullet \rightarrow \bullet$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first igodot \rightarrow igodot

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If has a black child: first $\bullet \rightarrow \bullet$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Run deterministic dynamic on ${\cal T}$

Only rightmost order "reproduces":

e: with largest label

If \blacksquare has a black child: first $\blacksquare \rightarrow \bigcirc$

- Probability π
- Displacement ~ X
- Limit order

- Probability 1π
- Market order

Case $p_k \rightarrow -\infty$: proof

Assume $\mathbb{E}X < 0$, $\mathbb{P}(X > 0) > 0$ and $\pi < 1/(1+a)$

Proof of $p_k
ightarrow -\infty$

- M_k: position of rightmost particle in BRW
- Well-known: $M_k \rightarrow -\infty$
- Fix some *L*: then $p_k \leq L$ for *k* large enough

Case $p_k \rightarrow +\infty$: proof

Assume:

- $\mathbb{E}X < 0$, $\mathbb{P}(X > 0) > 0$ and $\pi > 1/(1+a)$
- or $\mathbb{E}X > 0$
- Goal: prove $p_k \to +\infty$

- Initial order at 0
- ► Event {Initial order stays forever in the book} independent of what happens in (-∞, 0)
- ► Orders placed in (-∞, 0) may as well be instantaneously removed

- Initial order at 0
- ► Event {Initial order stays forever in the book} independent of what happens in (-∞, 0)
- ► Orders placed in (-∞, 0) may as well be instantaneously removed

- Initial order at 0
- ► Event {Initial order stays forever in the book} independent of what happens in (-∞, 0)
- ► Orders placed in (-∞, 0) may as well be instantaneously removed

- Initial order at 0
- ► Event {Initial order stays forever in the book} independent of what happens in (-∞, 0)
- ► Orders placed in (-∞, 0) may as well be instantaneously removed

- Initial order at 0
- ► Event {Initial order stays forever in the book} independent of what happens in (-∞, 0)
- ► Orders placed in (-∞, 0) may as well be instantaneously removed

Consequence

▶ \mathcal{T}' : remove from \mathcal{T} all nodes with label in $(-\infty, 0)$ and their descendants

Theorem (BRW with a barrier) $q = \mathbb{P}(\mathcal{T}' \text{ is infinite}) > 0.$

Proof of $p_k \to +\infty$:

- Each time, probability q > 0 that new order stays forever
- Renewal sequence that pushes the price to $+\infty$

Scaling limit

Set-up

 $(B(k), k \ge 0)$: critical limit order book

- Displacement distribution $X: \mathbb{E}X > 0$
- $\pi = \frac{1}{2}$: total number of orders = critical random walk

Renormalize *B* as follows:

$$egin{aligned} \widehat{B}_n(t)([a,b]) = rac{1}{n}B(n^2t)([na,nb]) \end{aligned}$$

- Scale mass by n^{-1} , time by n^2 and space by n
- $(\widehat{p}_n(t), t \ge 0)$: renormalization of price process (p(k))

Different boundary condition:

Always an order at 0

Conjecture

Conjecture $(\hat{B}_n, \hat{p}_n) \Rightarrow (\hat{B}, \hat{p})$ as $n \to +\infty$, where \hat{p} is a reflected Brownian motion with variance $\mathbb{E}X$ and \hat{B} is Lebesgue measure on $[0, \hat{p}]$:

$$\widehat{B}(t)(A) = rac{1}{\mathbb{E}X}\int_{0}^{\widehat{p}(t)}\mathbbm{1}_{\{x\in A\}}dx.$$

Proof

- Tightness + identification
- Tightness of \hat{B}_n "easy": martingale arguments
- ▶ If $\hat{B}_n \Rightarrow \hat{B}$, then $\hat{p}_n = \sup \operatorname{supp}(\hat{B}) \Rightarrow \sup \operatorname{supp}(\hat{B}) = \hat{p}$ (continuous mapping)

Proof strategy 1/3: continuous mapping

 $B = \Phi(\mathcal{T})$: after scaling, $\widehat{B}_n = \Phi(\widehat{\mathcal{T}}_n)$

Well-known: $\widehat{\mathcal{T}}_n \Rightarrow \widehat{\mathcal{T}}$

- ► Genealogical structure: continuous random tree
- Labels of nodes: Brownian snake

 $\widehat{B}_n \Rightarrow \Phi(\widehat{\mathcal{T}})$: meaning?

Can be done for branching random walk (?)

Proof strategy 2/3: Laplace transform

"Classical" approach for superprocesses

Control convergence of $\mathbb{E}\left[\exp\left(\langle\widehat{B}_n(t), f
angle
ight)
ight]$

• If $\widehat{B}_n \Rightarrow \widehat{B}$, then

$$\mathbb{E}\left(e^{\langle \widehat{B}(t),f
angle}
ight) = \mathbb{E}\left(e^{\langle \widehat{B}(0),f
angle}
ight) + \ \int_{0}^{t} \mathbb{E}\left[e^{\langle \widehat{B}(u),f
angle}\left(f(\widehat{p}(u))^{2} - \mathbb{E}Xf'(\widehat{p}(u))
ight)
ight]du$$

with $\widehat{p} = \sup \operatorname{supp}(\widehat{B})$

- $\widehat{B} = [0, \mathsf{RBM}]$ solves this
- Uniqueness?

Proof strategy 3/3: regenerative trees Assume $X \in \{1, 0, -1, -2, ...\}$

Key observation (same as before)

• Excursions of $(p(k), k \ge 0)$ above level a > 0 are i.i.d.

Proof strategy 3/3: regenerative trees

 $\widehat{p}_n \Rightarrow \widehat{p}$: satisfies the same property and is continuous

Theorem (Weill'07)

 \widehat{p} codes a Lévy tree (scaling limit of Galton Watson tree).

Identify reflected Brownian motion through its length

