Intertwinings for Markov processes

Aldéric Joulin - University of Toulouse

Joint work with :
Michel Bonnefont - Univ. Bordeaux

Workshop 2
"Piecewise Deterministic Markov Processes"
Rennes - May 15-17, 2013

Real-valued Ornstein-Uhlenbeck process, solution to SDE

$$dX_t = \sqrt{2}dB_t - X_t dt.$$

Instantaneous distribution is known: semigroup $(P_t)_{t\geq 0}$ given by

$$P_t f(x) = \int_{\mathbb{R}} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) \mu(dy)$$

 $\underset{t \to \infty}{\longrightarrow} \int_{\mathbb{R}} f d\mu =: \mu(f),$

where invariant (and reversible) measure μ is $\mathcal{N}(0,1)$.

Generator:

$$\mathcal{L}f(x) = f''(x) - x f'(x).$$

Commutation relation between semigroup and gradient:

$$(P_t f)' = e^{-t} P_t(f'),$$

related to long-time behaviour:

- Convergence in Wasserstein distance.
- Convergence in $L^2(\mu)$:

$$\|P_t f - \mu(f)\|_{L^2(\mu)} \le e^{-\lambda_1 t} \|f - \mu(f)\|_{L^2(\mu)},$$

via Poincaré (or spectral gap) inequality: $\lambda_1=1$, where λ_1 best constant in inequality:

$$\lambda_1 \operatorname{Var}_{\mu}(f) := \lambda_1 \left(\mu(f^2) - \mu(f)^2 \right) \le - \int_{\mathbb{R}} f \mathcal{L} f \, d\mu = \int_{\mathbb{R}} |f'|^2 \, d\mu,$$

i.e. given by variational formula

$$\lambda_1 = \inf_f rac{-\int_{\mathbb{R}} f \mathcal{L} f \ d\mu}{\mathrm{Var}_{\mu}(f)}.$$

Exponential decay in entropy:

$$\operatorname{Ent}_{\mu}(P_t f) \leq e^{-2t} \operatorname{Ent}_{\mu}(f),$$

via log-Sobolev inequality:

$$\operatorname{Ent}_{\mu}(f) := \mu(f \log f) - \mu(f) \log \mu(f) \leq -2 \int_{\mathbb{R}} \sqrt{f} \mathcal{L} \sqrt{f} d\mu.$$

Other consequences:

- Hypercontractivity.
- Measure concentration.
- Etc...

Generalization to process solution to SDE

$$dX_t = \sqrt{2}dB_t - U'(X_t)dt,$$

where U smooth potential.

Invariant (and reversible) measure:

$$\mu(dx) \propto e^{-U(x)} dx$$
.

Generator:

$$\mathcal{L}f = f'' - U'f'.$$

Bakry-Émery's criterion through Γ_2 -calculus: if

$$U'' \geq \rho$$
,

then (sub-) commutation relation between gradient and semigroup

$$|(P_t f)'| \leq e^{-\rho t} P_t (|f'|)$$
.

In particular if $\rho > 0$, then good ergodicity properties:

$$\lambda_1 \geq \rho$$
,

i.e. Poincaré inequality

$$ho \operatorname{Var}_{\mu}(f) \ \le \ - \int_{\mathbb{R}} f \mathcal{L} f d\mu \ = \ \int_{\mathbb{R}} |f'|^2 \, d\mu,$$

meaning long-time convergence in $L^2(\mu)$:

$$||P_t f - \mu(f)||_{L^2(\mu)} \le e^{-\rho t} ||f - \mu(f)||_{L^2(\mu)}.$$

Also log-Sobolev, hypercontractivity, measure concentration, etc...

How to obtain Poincaré from Bakry-Émery?

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= & -2 \int_{0}^{+\infty} \int_{\mathbb{R}} P_{t} f \, \mathcal{L} P_{t} f \, d\mu \, dt \\ &\stackrel{IBP}{=} & 2 \int_{0}^{+\infty} \int_{\mathbb{R}} |(P_{t} f)'|^{2} \, d\mu \, dt \\ &\stackrel{Bakry-Emery}{\leq} & 2 \int_{0}^{+\infty} e^{-2\rho t} \int_{\mathbb{R}} P_{t} (|f'|^{2}) \, d\mu \, dt \\ &\stackrel{Invariance}{=} & 2 \int_{0}^{+\infty} e^{-2\rho t} dt \int_{\mathbb{R}} |f'|^{2} \, d\mu \\ &\stackrel{\rho > 0}{=} & \frac{1}{\rho} \int_{\mathbb{R}} |f'|^{2} \, d\mu. \end{aligned}$$

Hence $Sign(\rho)$ is important to obtain long-time convergence.

Intertwining between gradient and generators:

$$(\mathcal{L}f)' = \mathcal{L}^{V}(f'),$$

with \mathcal{L}^V Schrödinger operator $\mathcal{L}-V$ with potential V:=U''.

At level of semigroups:

$$(P_t f)'(x) = P_t^V(f')(x) := \mathbb{E}_x \left[f'(X_t) \exp \left(- \int_0^t U''(X_s) ds \right) \right],$$

where $(P_t^V)_{t\geq 0}$ associated Feynman-Kac semigroup.

Hence Jensen's inequality entails Bakry-Émery's criterion.

General diffusion satisfying the SDE

$$dX_t = \sqrt{2}\sigma(X_t)dB_t + b(X_t)dt.$$

Invariant (and reversible) measure:

$$\mu(dx) \propto \frac{1}{\sigma(x)^2} \exp\left(\int_{x_0}^x \frac{b(u)}{\sigma(u)^2} du\right) dx.$$

Generator of Sturm-Liouville type:

$$\mathcal{L}f = \sigma^2 f'' + bf'.$$

Bakry-Émery's criterion through Γ₂-calculus: if

$$V_{\sigma} := \frac{\mathcal{L}\sigma}{\sigma} - b' \ge \rho_{\sigma},$$

then (sub-) commutation relation holds:

$$|\sigma(P_t f)'| \le e^{-\rho_{\sigma} t} P_t (|\sigma f'|)$$
.

Probabilistic interpretation of V_{σ} ? Using method of tangent process, i.e. differentiate w.r.t. initial point x:

$$\partial_x X_t^x \ = \ 1 + \sqrt{2} \int_0^t \sigma'(X_s^x) \, \partial_x X_s^x \, dB_s + \int_0^t b'(X_s^x) \, \partial_x X_s^x \, ds,$$

hence by Itô's formula, process $\partial_x X^x$ given by

$$\begin{array}{lcl} \partial_{x}X_{t}^{x} & = & \frac{\sigma(X_{t}^{x})}{\sigma(x)} \, \exp\left(-\int_{0}^{t} \left(\frac{\mathcal{L}\sigma}{\sigma} - b'\right) (X_{s}^{x}) \, ds\right) \\ & = & \frac{\sigma(X_{t}^{x})}{\sigma(x)} \, \exp\left(-\int_{0}^{t} V_{\sigma}(X_{s}^{x}) \, ds\right). \end{array}$$

Hence

$$(P_t f)'(x) = \mathbb{E} \left[f'(X_t^x) \, \partial_x X_t^x \right]$$

=
$$\frac{1}{\sigma(x)} \mathbb{E} \left[\sigma(X_t^x) \, f'(X_t^x) \, \exp \left(-\int_0^t V_\sigma(X_s^x) \, ds \right) \right].$$

Denoting the weighted gradient $\nabla_{\sigma}f:=\sigma f'$, it rewrites as the intertwining

$$\nabla_{\sigma} P_{t} f(x) = \mathbb{E} \left[\nabla_{\sigma} f(X_{t}^{x}) \exp \left(- \int_{0}^{t} V_{\sigma}(X_{s}^{x}) ds \right) \right]$$
$$=: P_{t}^{V_{\sigma}} (\nabla_{\sigma} f)(x).$$

Can be recovered through straightforward infinitesimal version:

$$\nabla_{\sigma}\mathcal{L}=\mathcal{L}^{V_{\sigma}}\nabla_{\sigma}.$$

lf

$$\rho_{\sigma} := \inf V_{\sigma} > 0$$
,

then Poincaré inequality:

$$ho_{\sigma}\operatorname{Var}_{\mu}(f) \leq -\int_{\mathbb{R}} f \mathcal{L} f \, d\mu = \int_{\mathbb{R}} |\nabla_{\sigma} f|^2 \, d\mu.$$

But if $\rho_{\sigma} \leq 0$, how to use intertwining to obtain Poincaré, thus L^2 -convergence ?

Idea: change the gradient.

Denote the weighted gradient $\nabla_a f := af'$ for positive function a. We have the intertwining

$$\nabla_{a}\mathcal{L}f = \mathcal{L}_{a}(\nabla_{a}f) - V_{a}\nabla_{a}f =: \mathcal{L}_{a}^{V_{a}}(\nabla_{a}f),$$

where new Sturm-Liouville generator is

$$\mathcal{L}_{a}f = \sigma^{2}f'' + b_{a}f',$$

where

$$b_a := b + 2\sigma\sigma' - 2\sigma^2 \frac{a'}{a} = b + 2\sigma^2 \frac{h'}{h}$$
, with $h := \frac{\sigma}{a}$,

and potential

$$V_a := \frac{\mathcal{L}_a(a)}{a} - b'.$$

At level of semigroups,

$$\nabla_a P_t f(x) = P_{a,t}^{V_a}(\nabla_a f)(x) := \mathbb{E}_x \left[\nabla_a f(X_t^a) \, \exp\left(- \int_0^t V_a(X_s^a) \, ds \right) \right],$$

with $(P_{a,t})_{t\geq 0}$ semigroup of process X^a associated to \mathcal{L}_a .

If $a = \sigma$ then h' = 0 thus $\mathcal{L}_a = \mathcal{L}$ and

$$V_a = \frac{\mathcal{L}_a(a)}{a} - b' = \frac{\mathcal{L}\sigma}{\sigma} - b' = V_{\sigma}.$$

In particular if

$$\rho_a := \inf V_a > 0$$
,

then convergence in (distorting) Wasserstein distance (exponentially fast, depending on function a) and also L^2 -convergence via Poincaré:

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= 2 \int_{0}^{+\infty} \int_{\mathbb{R}} |\nabla_{\sigma} P_{t} f|^{2} \, d\mu \, dt \\ &= 2 \int_{0}^{+\infty} \int_{\mathbb{R}} |\nabla_{a} P_{t} f|^{2} \left(\frac{\sigma}{a}\right)^{2} \, d\mu \, dt \\ &\stackrel{Intertwining}{=} 2 \int_{0}^{+\infty} \int_{\mathbb{R}} |P_{a,t}^{V_{a}}(\nabla_{a} f)|^{2} \left(\frac{\sigma}{a}\right)^{2} \, d\mu \, dt \\ &\stackrel{Jensen}{\leq} 2 \int_{0}^{+\infty} e^{-2\rho_{a} t} \int_{\mathbb{R}} P_{a,t}(|\nabla_{a} f|^{2}) \left(\frac{\sigma}{a}\right)^{2} \, d\mu \, dt \\ &\stackrel{Invariance}{=} 2 \int_{0}^{+\infty} e^{-2\rho_{a} t} \, dt \int_{\mathbb{R}} |\nabla_{a} f|^{2} \left(\frac{\sigma}{a}\right)^{2} \, d\mu \\ &\stackrel{\rho_{a}>0}{=} \frac{1}{\rho_{a}} \int_{\mathbb{R}} |\nabla_{\sigma} f|^{2} \, d\mu, \end{aligned}$$

since $(\sigma/a)^2 d\mu$ is invariant for $(P_{a,t})_{t\geq 0}$.

Hence

$$\lambda_1 \geq \sup_a \rho_a.$$

Recovers Chen-Wang's Theorem on spectral gap, obtained originally via coupling.

Is our criterion optimal? Yes.

Take a = 1/g' where g' > 0. Then

$$V_a = -rac{(\mathcal{L}g)'}{g'}.$$

Hence if g eigenvector associated to λ_1 ,

$$V_a \equiv \lambda_1$$
.

Another consequence of intertwining: if

$$V_{\sigma}:=rac{\mathcal{L}\sigma}{\sigma}-b'>0,$$

then

$$\lambda_1 \geq rac{1}{\int_{\mathbb{R}} rac{1}{V_{\sigma}} d\mu}.$$

Convenient when Bakry-Émery criterion does not apply (for instance $V_{\sigma}>0$ but tends to 0 at infinity).

Some classical examples:

Let
$$U(x)=rac{|x|^{lpha}}{lpha}.$$
 Recall
$$dX_t=\sqrt{2}dB_t-U'(X_t)\,dt,\qquad \mu(dx)\propto e^{-U(x)}\,dx.$$

•
$$\alpha = 2$$
 (O.U.):

with
$$a = \sigma \equiv 1$$
, $\lambda_1 = 1$ (Bakry-Émery).

 \bullet $\alpha = 1$:

with
$$a(x) = e^{-|x|/2}$$
, $\lambda_1 = 1/4$ (Bobkov-Ledoux).

• α = 4:

$$\text{with} \quad \textit{a(x)} = e^{-\frac{\textit{U(x)}}{2} + \frac{\varepsilon x^2}{2}}, \qquad \lambda_1 \geq \varepsilon_{\max} = \sqrt{\frac{3}{2}}.$$

• 1 < α < 2:

$$V_{\sigma}(x) = (\alpha - 1) |x|^{\alpha - 2} \xrightarrow[x \to \infty]{} 0.$$

Hence

$$\lambda_1 \geq \frac{1}{\int_{\mathbb{R}} \frac{1}{V_{\sigma}} d\mu}$$

$$= (\alpha - 1) \alpha^{1 - 2/\alpha} \frac{\Gamma(1/\alpha)}{\Gamma((3 - \alpha)/\alpha)}.$$

Consider new process

$$dX_{t} = \sqrt{2} \sigma(X_{t}) dB_{t} + (2\sigma\sigma' - \sigma^{2}U') (X_{t}) dt,$$

also reversible w.r.t.

$$\mu(dx) \propto e^{-U(x)} dx$$
.

Generator:

$$\mathcal{L}f = \sigma^2 f'' + (2\sigma\sigma' - \sigma^2 U') f'.$$

Choice of diffusion constant σ ?

Heavy-tailed case: weighted Poincaré.

Take

$$U(x) := \beta \log(1+x^2)$$
, with $\beta > 1/2$,

leading to Cauchy-type distribution

$$\mu(dx) \propto \frac{dx}{(1+x^2)^{\beta}}.$$

Then with choice $\sigma(x) := \sqrt{1 + x^2}$,

$$V_{\sigma}(x) = \frac{2\beta - 1}{1 + x^2} \underset{x \to \infty}{\longrightarrow} 0.$$

Hence for $\beta > 3/2$,

$$\lambda_1 \geq \frac{1}{\int_{\mathbb{R}} \frac{1}{V_{\sigma}} d\mu}$$

$$= \frac{(2\beta - 1)(\beta - 3/2)}{\beta - 1}$$

$$=: C_{\beta},$$

meaning that weighted Poincaré holds:

$$C_{\beta} \operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}} |\nabla_{\sigma} f|^2 d\mu$$

= $\int_{\mathbb{R}} (1 + x^2) |f'(x)|^2 \mu(dx).$

Coming back to general case, why process X^a and potential

$$V_a:=\frac{\mathcal{L}_a(a)}{a}-b',$$

appear in the intertwining relation?

Answer: (Doob's) h-transform.

 $(P_t^V)_{t\geq 0}$ original Feynman-Kac semigroup with some potential V. New dynamics: "multiply inside and divide outside by some function h".

$$P_t^{V^{(h)}}f:=\frac{P_t^V(hf)}{h}.$$

At level of generator (of Schrödinger type):

$$\mathcal{L}^{V^{(h)}} f = \frac{\mathcal{L}^{V}(hf)}{h}$$

$$= \mathcal{L}f + 2\frac{\Gamma(f,h)}{h}f' + \left(\frac{\mathcal{L}h}{h} - V\right)f$$

$$= \underbrace{\sigma^{2}f'' + \left(b + 2\sigma^{2}\frac{h'}{h}\right)f'}_{generator\ of\ h-transform} + \underbrace{\left(\frac{\mathcal{L}h}{h} - V\right)f}_{h-potential}.$$

In case V=0 then Doob's h-transform is Markov if and only if h is \mathcal{L} -harmonic, i.e. $\mathcal{L}h=0$.

Group structure:

- hk-transform is the h-transform of the k-transform.
- *h*-transform and original dynamics have the same distribution if and only if *h* is constant.

lf

$$V = V_{\sigma} := rac{\mathcal{L}\sigma}{\sigma} - b'$$
 and $h := rac{\sigma}{a}$,

then X^a is Doob's h-transform of X, and

$$\mathcal{L}^{V^{(\sigma/a)}}f = \mathcal{L}_{a}f + \left(\frac{\mathcal{L}h}{h} - V_{\sigma}\right)f$$

$$= \mathcal{L}_{a}f + \left(\frac{\mathcal{L}(\sigma/a)}{\sigma/a} - \underbrace{\frac{\mathcal{L}\sigma}{\sigma} - b'}\right) f$$

$$= \mathcal{L}_{a}f - \left(\frac{\mathcal{L}_{a}(a)}{a} - b'\right)f$$

$$= \mathcal{L}_{a}^{V_{a}}f.$$

Probabilistic interpretation of intertwining:

• first perform the classical intertwining by using method of tangent process:

$$abla_{\sigma}P_{t}f=P_{t}^{V_{\sigma}}(
abla_{\sigma}f), \quad \text{with potential} \quad V_{\sigma}:=rac{\mathcal{L}\sigma}{\sigma}-b';$$

ullet then use h-transform with $h:=\sigma/a$ to obtain the final intertwining

$$abla_a P_t f = P_{a,t}^{V_a}(
abla_a f), \quad \text{with potential} \quad V_a := \frac{\mathcal{L}_a(a)}{a} - b'.$$