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This talk is inspired by:
� Reduction of stochastic conductance-based neuron models

with time-scales separation, J. of Comp. Neuro. (2011) G.
Wainrib, M. Thieullen, K. Pakdaman.

� Averaging and large deviation principles for fully-coupled
piecewise deterministic Markov processes, Markov Proc. Rel.
Fields (2009) A. Faggionato, D. Gabrielli and M. Ribezzi
Crivellari.

� Averaging for a Fully-Coupled Piecewise Deterministic Markov
Process in Infinite Dimensions, Adv. in App. Proba. (2012) A.
G. and M. Thieullen.

� An exact stochastic hybrid model of excitable membranes
including spatio-temporal evolution, J. Math. Bio. (2011) E.
Buckwar and M. Riedler.

� Limit theorems for infinite-dimensional piecewise deterministic
Markov processes. Applications to stochastic excitable
membrane models, Elect. J. Prob. (2012), M. Riedler, M.
Thieullen and G. Wainrib.
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The neural cell

axon

synapse

synapses

soma

dendrite

• the soma contains the ’organs’ of the cell body;
• the dendrites where the neural cell receives inputs from other
neurons or muscles or peripheral organs;

• the axon responsible for transmitting neural information, that
is the inputs, to interconnected target neurons;

• the synapses at the interfaces of axon terminals with target
cells.
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The nerve impulse

axon (zoom) ionic channel
membrane

+

+

+
+

+

+

+

-

+
+

+ +
+

-

• K+: potassium.
• Na+: sodium.
• Cl−: chloride.
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• Increasing the voltage of the axon membrane produces a large,
but transient, flow of positive charge carried by Na+ ions
flowing into the cell: inward current.

• This transient inward current is followed by a sustained flow of
positive charge out of the cell, the outward current carried by
a sustained flux of K+ ions moving out of the cell.
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The nerve impulse

membrane potential

input

inward current

outward current

Action potential in the pointwise Hodgkin-Huxley model.
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Mathematical model
A membrane with N ionic channels and an axon considered as a
segment I .

r(1)

z1

r(2)

z2

r(3)

z3

r(N)

zN

Generation and propagation of an action potential:

Cm∂tvt =
a
2R

∂xxvt

+
1
N

N∑
i=1︸︷︷︸

sum over the channels

crt(i)︸︷︷︸
conductance

(vrt(i) − vt(zi ))︸ ︷︷ ︸
difference of potential︸ ︷︷ ︸

current intensity of channel at zi in state rt (i)

δzi︸︷︷︸
Dirac mass

with initial and boundary conditions.
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Mathematical model

Dynamic of ionic channels (voltage-dependent):

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(vt(zi ))︸ ︷︷ ︸
rate of jump

h + o(h)

r(1)

z1

r(2)

z2

r(3)

z3

r(N)

zN

• rt(i) ∈ E state of the channel at locus zi at time t.
• State space: r = (r(i), i = 1, . . . ,N) ∈ EN .
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An excitable system

Input Excitable dynamics Output

a)

b)

c)

d)
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A class of switching PDEs

An evolution equation:

Cm∂tvt =
a
2R

∂xxvt +
1
N

N∑
i=1

crt(i)(vrt(i) − vt(zi ))δzi

with coefficient r = (r(i), i = 1, . . . ,N) updated at voltage
dependent rates:

qr r̃ (v) =

{
0 if r and r̃ differ from more than one component,

αr(i)r̃(i)(v(zi ))

αr(i)(v(z(i)))
if r(i) 6= r̃(i) and all the other components agree.

A PDMP !
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A class of switching PDEs
Remarks on the evolution equation :
• Smoothed choice:

Cm∂tvt =
a
2R

∂xxvt +
1
N

N∑
i=1

crt(i)(vrt(i) − (vt , φzi ))φzi ,

• Compartment type models:

Infinitesimal generator:

Af (v , r) = C(r)f (·, r)(v) + J (v)f (v , ·)(r)

Macroscopic generator and microscopic generator:

C(r)f (·, r)(v) =< fv (v , r),
a
2R

∆v +
1
N

N∑
i=1

cr(i)(vr(i) − v(zi ))δzi >

J (v)f (v , ·)(r) =
N∑

i=1

∑
ζ∈E

[f (v , rr(i)→ζ)− f (v , r)]αr(i),ζ(v(zi ))
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When N goes to infinity

• At a fixed N:

{
∂tvt = ∂xxvt + 1

N
∑N

i=1 crt(i)(vrt(i) − (vt(zi ))δzi ,

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(vt(zi ))h + o(h).

• Langevin approximmation:

{
v (N)
t ' vt + 1√

N
Vt ,

1
N
∑N

i=1 1ξ(rt(i))δzi ' pξ,t + 1√
N
Pξ,t .

• Deterministic limit:

{
∂tvt = ∂xxvt +

∑
ξ∈E cξ(vξ − vt),

∂tpξ,t =
∑

ζ 6=ξ pζ,tαζξ(vt)− pξ,tαξζ(vt).



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

When N goes to infinity

• At a fixed N:

{
∂tvt = ∂xxvt + 1

N
∑N

i=1 crt(i)(vrt(i) − (vt(zi ))δzi ,

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(vt(zi ))h + o(h).

• Langevin approximmation:

{
v (N)
t ' vt + 1√

N
Vt ,

1
N
∑N

i=1 1ξ(rt(i))δzi ' pξ,t + 1√
N
Pξ,t .

• Deterministic limit:

{
∂tvt = ∂xxvt +

∑
ξ∈E cξ(vξ − vt),

∂tpξ,t =
∑

ζ 6=ξ pζ,tαζξ(vt)− pξ,tαξζ(vt).



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

When N goes to infinity

• At a fixed N:

{
∂tvt = ∂xxvt + 1

N
∑N

i=1 crt(i)(vrt(i) − (vt(zi ))δzi ,

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(vt(zi ))h + o(h).

• Langevin approximmation:

{
v (N)
t ' vt + 1√

N
Vt ,

1
N
∑N

i=1 1ξ(rt(i))δzi ' pξ,t + 1√
N
Pξ,t .

• Deterministic limit:

{
∂tvt = ∂xxvt +

∑
ξ∈E cξ(vξ − vt),

∂tpξ,t =
∑

ζ 6=ξ pζ,tαζξ(vt)− pξ,tαξζ(vt).



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

Introduction of two time scales

The model with two time scales: ∂tv εt = ∂xxv εt + 1
N

N∑
i=1

crεt (i)(vrεt (i) − v εt (zi ))δzi

P(r εt+h(i) = ζ|r εt (i) = ξ) = αεξζ(v εt (zi ))h + o(h)

with l different classes: E = E1 t · · · t El .



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

Introduction of two time scales

The model with two time scales: ∂tv εt = ∂xxv εt + 1
N

N∑
i=1

crεt (i)(vrεt (i) − v εt (zi ))δzi

P(r εt+h(i) = ζ|r εt (i) = ξ) = αεξζ(v εt (zi ))h + o(h)

with l different classes: E = E1 t · · · t El .

1
ε

1
ε

1
ε

1
ε

1
ε

1
ε 1

ε

1
ε

1
1

1



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

Introduction of two time scales

The model with two time scales: ∂tv εt = ∂xxv εt + 1
N

N∑
i=1

crεt (i)(vrεt (i) − v εt (zi ))δzi

P(r εt+h(i) = ζ|r εt (i) = ξ) = αεξζ(v εt (zi ))h + o(h)

with l different classes: E = E1 t · · · t El .

E1
E2

E3

E4



Biological Description CBNMs as PDMPs Limit theorems Some Simulations

Introduction of two time scales

The model with two time scales: ∂tv εt = ∂xxv εt + 1
N

N∑
i=1

crεt (i)(vrεt (i) − v εt (zi ))δzi

P(r εt+h(i) = ζ|r εt (i) = ξ) = αεξζ(v εt (zi ))h + o(h)

with l different classes: E = E1 t · · · t El . The aggregated
process:

r εt (i) = j iff r εt (i) ∈ Ej
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When v is held fixed...

E1
E2

E3

E4

(Q1, µ1)

(Q2, µ2)

(Q3, µ3)

(Q4, µ4)

Let v held fixed and i = 1, . . . ,N, r ε(i) converges weakly toward
the Markov process r(i) with generator:

J [v ]f (r(i))

=
l∑

j=1

1j(r(i))
l∑

k=1,k 6=j

(f (k)− f (j))
∑
ξ∈Ek

∑
ζ∈Ej

αζ,ξ(v(zi ))µj(v(zi ))(ζ)

︸ ︷︷ ︸
averaged jump’s rate from Ej to Ek
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When ε goes to zero
• When ε is held fixed:{

∂tv εt = ∂xxv εt + 1
N
∑

i∈N crεt (i)(vrεt (i) − v εt (zi ))δzi

P(r εt+h(i) = ζ|r εt (i) = ξ) = αεξζ(v εt (zi ))h + o(h)

• Langevin approximation:{
dv εt = [∂xxv εt + Fr t (v εt )]dt +

√
εBr t (v εt )dWt

P(r t(i) = l2|r t(i) = l1) = αl1l2(vt(zi ))h + o(h)

• Averaged model:
∂tvt =

∂xxvt +
1
N

N∑
i=1

l∑
j=1

1Ej (r t(i))
∑
ξ∈Ej

µj(vt(zi ))(ξ)cξ(vξ − vt(zi ))δzi

P(r t(i) = l2|r t(i) = l1) = αl1l2(vt(zi ))h + o(h)
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Another multiscale model

What happens if the potential is also fast?
∂tvt =

1
ε

[
∂xxvt +

1
N

N∑
i=1

2∑
k=1

crk
t (i)

(vrk
t (i)
− (vt , φzi ))φzi

]
P(r (1)t+h(i) = ζ|r (1)t (i) = ξ) =

1
ε
α
(1)
ξζ ((vt , φzi ))h + o(h)

P(r (2)t+h(i) = ζ|r (2)t (i) = ξ) = α
(2)
ξζ ((vt , φzi ))h + o(h)

In this case, the fast part of the process is a still a PDMP...
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Another multiscale model

Fix r (2) and consider the PDMP:
∂tvt = ∂xxvt +

1
N

N∑
i=1

2∑
k=1

crk
t (i)

(vrk
t (i)
− (vt , φzi ))φzi

P(r (1)t+h(i) = ζ|r (1)t (i) = ξ) = α
(1)
ξζ ((vt , φzi ))h + o(h)

There exists a unique invariant measure µr (2) .

Remark: one can show that the speed of convergence towards the
invariant measure is exponential in Wasserstein distance.

Averaged model: a CTMC r̄ (2) with rates:

q̄(2)r r̃ =

∫
L2(I )×E1

q(2)r r̃ ((v , φzi ))µr (dv , dr1)
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Example: ε goes to zero

m0h1 m1h1 m2h1 m3h1

m0h0 m1h0 m2h0 m3h0

3am

bm

2am

2bm

am

3bm

3am

bm

2am

2bm

am

3bm
bhah bhah bhah bhah

∂tv εt = ν∂xxv εt +
1
N

∑
1m3h1(r εt (i))cNa(vNa − v εt (zi ))δ i

N
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0 1

ah

bh

∂tvt = ν∂xxvt+
1
N

∑
11(r t(i))µ1(vt(zi ))(m3h1)cNa(vNa−vt(zi ))δ i

N
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Example

Figure: Simulation of the averaged model with N = 250
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Example: N goes to infinity, ε held fixed
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Example: N goes to infinity, ε held fixed
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ε−1bm

2ε−1am
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∂tv εt = ∂xxv εt +
1
N

∑
1m3h1(r εt (i))cNa(vNa − v εt (zi ))δ i

N

Converges to:{
∂tv εt = ∂xxv εt + pm3h1,tcNa(vNa − v εt )
∂tpξ,t =

∑
ζ 6=ξ α

ε
ζξ(v

ε
t )pζ,t − αξζ(v εt )pξ,t

for ξ ∈ E = {m0h0,m1h0,m2h0,m3h0,m0h1,m1h1,m2h1,m3h1}.
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Example: deterministic averaging, N =∞, ε→ 0

m0h1 m1h1 m2h1 m3h1

m0h0 m1h0 m2h0 m3h0

3ε−1am

ε−1bm

2ε−1am

2ε−1bm

ε−1am

3ε−1bm

3ε−1am

ε−1bm

2ε−1am

2ε−1bm

ε−1am

3ε−1bm
bhah bhah bhah bhah

{
∂tv εt = ∂xxv εt + pm3h1,tcNa(vNa − v εt )
∂tpξ,t =

∑
ζ 6=ξ αζξ(v

ε
t )pζ,t − αξζ(v εt )pξ,t

for ξ ∈ E = {m0h0,m1h0,m2h0,m3h0,m0h1,m1h1,m2h1,m3h1}.
The model converges to{

∂tvt = ∂xxvt +
(

am(vt)
am(t)+bm(vt)

)3
htcNa(vNa − vt),

∂tht = (1− ht)ah(vt)− bh(vt)ht .
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Example

Figure: Simulation of the averaged deterministic model (N =∞)
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Simulations for various N.

Remarks: The speed of the deterministic front wave is always
greater than the mean speed of the stochastic wave.

The difference for large N is of order
1√
N
.
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Concluding remarks

• The joint convergence (ε,N)→ (0,∞) need to be clarify.
• Dependence of the model w.r.t. the initial conditions of ionic
channels.

• Why, in the presented example, the stochastic celerity is
smaller (in mean) than the deterministic one?

• In the model where both the potential and some ionic channels
are fast, may we say more about the invariant measure of the
fast system?

Thank you for your attention !
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