Piecewise Deterministic Markov Processes Perspectives in Analysis and Probability, Centre Henri Lebesgue, Rennes, 16/05/13

Stochastic billiard in an inhomogeneous medium

Francis Comets Serguei Popov Gunter Schütz Marina Vachkovskaia

Univ. Paris Diderot, UNICAMP, Forsch. Jülich

May 16, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain $\mathcal{D} \subset \mathbb{R}^d$ until it hits the boundary and bounces randomly inside according to some reflection law.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Introduction

Stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain $\mathcal{D} \subset \mathbb{R}^d$ until it hits the boundary and bounces randomly inside according to some reflection law.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Piecewise Deterministic Markov Processes

Motivations

Kinetic theory of gases

Knudsen's book [1952] Diffusion in nanopores: Coppens-Malek [2003], Coppens-Dammers [2006] Goldstein-Kipnis-Ianiro [1985]: a mechanical particle system with stochastic boundary conditions

• Dynamical systems:

Feres [2007-2013]: how stochasticity emerges from dynamical systems with microstructures

S. Evans [2001]: C¹ boundary or polygon, uniform reflection law

• Monte Carlo Markov Chains, algorithms and games:

Lalley-Robbins [1987, 1988]: convex $\ensuremath{\mathcal{D}}$ and cosine law. "princess and monster"

Borovkov [1991, 1994], Romeijn [1998]: Monte Carlo Markov chains algorithm ("running shake-and-bake algorithm")

Diaconis: Hit and Run algorithm

Outline

- 2 Long time behavior in the compact case
- Ballistic regime for Stochastic billiard with a drift

Billiard table

 $\mathcal{D} \subset \mathbb{R}^d$ open connected domain, with boundary $\partial \mathcal{D}$ locally Lipschitz and almost everywhere continuously differentiable:

 $1 - \forall x \in \partial D$, we can rotate ∂D so that it is locally the graph of a Lipschitz function.

 $2-\exists \mathcal{R} \subset \partial \mathcal{D}$ open such that $\partial \mathcal{D}$ is continuously differentiable on \mathcal{R} and the (d-1)-dimensional Hausdorff measure of $\partial \mathcal{D} \setminus \mathcal{R}$ is equal to zero.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reflection law for stochastic billiard

Outgoing direction is random, with density (in the relative frame) γ on the open half sphere $\mathbb{S}_e = \{u \in \mathbb{R}^d : |u| = 1, u \cdot e > 0\}$, with e = the first unit vector, such that

 $\inf_{\mathsf{K}} \gamma > \mathbf{0} \qquad \forall \mathsf{K} \text{ compact } \subset \mathbb{S}_{\mathsf{e}}$

Main example for γ : cosine density,

 $\gamma(u) = \gamma_d \ e \cdot u$ on half sphere \mathbb{S}_e

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

cf Knudsen [1952].

Figure: Bounce at $x \in \partial D$ in dimension d = 2. The outgoing direction u is such that its angle $\varphi_x(u)$ with the normal n(x) has density γ ; independent of the ingoing direction.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Construction of KRW and KSB:

- ... standard way, with an i.i.d. sequence of law γ on \mathbb{S}_{e} .
 - Knudsen Random Walk (KRW) (*ξ_n*, *n* ≥ 0) = sequence of impacts on the boundary. Markov chain in {∂D, ∞, 𝔅}. Note:: Start from *ξ*₀ ∈ . Then, with probability 1, *ξ* does not enter 𝔅.
 - Knudsen Stochastic billiard: time-continuous process moving at speed 1. Is defined for all times, a.s..

(ロ) (同) (三) (三) (三) (三) (○) (○)

The couple (position, velocity) is Markov (PDMP).

Change the variable

Figure: $du = ||x - y||^{-(d-1)} \cos \beta \, dy$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transition kernel for the random walk

Changing variable from $u \in S_e$ to $y = h_x(U_x u)$, we get for $x \in \mathcal{R}$,

$$\mathbf{P}[\xi_{n+1} \in A \mid \xi_n = x] = \int_A K(x, y) \, dy \; ,$$

where dy is the surface measure on $\partial \mathcal{D}$ and

$$\mathcal{K}(x,y) = \frac{\gamma(U_x^{-1}\frac{y-x}{\|y-x\|})\cos(\mathbf{n}(\widehat{y}), y-x)}{\|x-y\|^{d-1}}\mathbf{1}\{x, y \in \mathcal{R}, x \leftrightarrow y\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where we write $x \leftrightarrow y$ (see each other) if the open segment $(x, y) \subset \mathcal{D}$.

Outline

- 2 Long time behavior in the compact case
- Ballistic regime for Stochastic billiard with a drift
- 4 Law of Large Numbers for ballistic RWRE with unbounded jumps

Invariant measure for Knudsen random walk

Knudsen popularized and justified the choice $\gamma =$ Cosine law. Then, the transition density is

$$\mathcal{K}(x,y) = \gamma_d \frac{\left((y-x) \cdot \mathbf{n}(x)\right) \left((x-y) \cdot \mathbf{n}(y)\right)}{\|x-y\|^{d+1}} \mathbf{1}\{x, y \in \mathcal{R}, x \leftrightarrow y\}$$

symmetric ! The surface measure dx on ∂D is reversible,

$$dx K(x, dy) = dy K(y, dx),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

... and then invariant.

Asymptotics on a bounded table (for a general γ)

Assumption :

 $\text{diam}(\mathcal{D}) < \infty$

By the Lipschitz assumption, this implies that $|\partial D| < \infty$. The chain satisfies Döblin condition: there exist $n, \varepsilon > 0$ such that for all $x, y \in \mathcal{R}$

$$K^n(x,y) \ge \varepsilon$$
 (1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Asymptotics on a bounded table (for a general γ)

Assumption :

 $\operatorname{diam}(\mathcal{D}) < \infty$

By the Lipschitz assumption, this implies that $|\partial D| < \infty$. The chain satisfies Döblin condition: there exist $n, \varepsilon > 0$ such that for all $x, y \in \mathcal{R}$

$$K^n(x,y) \ge \varepsilon$$
 (1)

Theorem

- (i) There exists a unique probability measure μ̂ on ∂D which is invariant for the random walk ξ_n. Moreover, dμ̂ << dx.
- (ii) $\|\mathbf{P}[\xi_n \in \cdot] \hat{\mu}\|_{\mathsf{v}} \le \beta_0 e^{-\beta_1 n}$ ($\|\cdot\|_{\mathsf{v}} = total variation distance$).
- (iii) Central Limit Theorem: ∀A ⊂ ∂D measurable there exists σ_A (σ_A > 0 if 0 < |A| < |∂D|) such that

$$n^{-1/2}\Big(\sum_{i=1}^{n} \mathbf{1}\{\xi_i \in A\} - n\hat{\mu}(A)\Big) \stackrel{\text{law}}{\longrightarrow} \mathcal{N}(\mathbf{0}, \sigma_A^2)$$

For the cosine law, $d\hat{\mu} = |\partial D|^{-1} dx$ uniform on ∂D .

Outline

- 2 Long time behavior in the compact case
- Ballistic regime for Stochastic billiard with a drift
- 4 Law of Large Numbers for ballistic RWRE with unbounded jumps

Infinite horizontal "tube"

To understand large scale properties of billard, we consider a table $D = \omega$, which is infinite in the first direction, write $x = (\alpha, u)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Infinite horizontal "tube"

To understand large scale properties of billard, we consider a table $\mathcal{D} = \omega$, which is infinite in the first direction, write $x = (\alpha, u)$:

Figure: Infinite tube

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Random tube = random environment

Any tube $\omega = (\omega_{\alpha}, \alpha \in \mathbb{R})$ is seen as the process of its sections

$$\omega = \{ (\alpha, \mathbf{U}) \in \mathbb{R}^{\mathbf{d}} : \mathbf{U} \in \omega_{\alpha} \}$$

Let \mathfrak{E} to be the set of all open domains $A \subset \mathbb{R}^{d-1}$ contained in a fixed ball,

$$A \subset \Lambda := \{ u \in \mathbb{R}^{d-1} : \|u\| \le M \}.$$

Let $\Omega = \mathcal{C}(\mathbb{R} \to \mathfrak{E})$ "space of tubes" (equipped with the distance $\rho(A, B) = |(A \setminus B) \cup (B \setminus A)|$ on \mathfrak{E} and cylinder sigma-algebra).

Random tube = random environment

Any tube $\omega = (\omega_{\alpha}, \alpha \in \mathbb{R})$ is seen as the process of its sections

$$\omega = \{ (\alpha, \mathbf{u}) \in \mathbb{R}^{\mathbf{d}} : \mathbf{u} \in \omega_{\alpha} \}$$

Let \mathfrak{E} to be the set of all open domains $A \subset \mathbb{R}^{d-1}$ contained in a fixed ball,

$$A \subset \Lambda := \{ u \in \mathbb{R}^{d-1} : \|u\| \le M \}.$$

Let $\Omega = C(\mathbb{R} \to \mathfrak{E})$ "space of tubes" (equipped with the distance $\rho(A, B) = |(A \setminus B) \cup (B \setminus A)|$ on \mathfrak{E} and cylinder sigma-algebra). Assume

$$\omega \sim \mathbb{P},$$

with \mathbb{P} a probability measure on Ω , stationary and ergodic (w.r.t. shifts in α).

Random tube: assumptions, notations

Assumptions: \mathbb{P} -a.s., ω is open, connected, and:

- (L) $\partial \omega$ is Lipschitz with uniform constants
- (R) { $x \in \partial \omega : \partial \omega$ is C^1 in $x, |\mathbf{n}_{\omega}(x) \cdot e| \neq 1$ } has full measure \mathcal{H}_{d-1} -measure
- (P) Points on the boundary which are close, communicate "well" and "quickly": ∃*N*, ε, δ: ℙ-a.s., ∀*x*, *y* ∈ *R* with |(*x* − *y*) ⋅ *e*| ≤ 2, ∃*B*₁,..., *B_n* ⊂ ∂ω, *n* ≤ *N* with ν^ω(*B_i*) ≥ δ(*i* = 1,..., *n*), s.t. *K*(*x*, *z*) ≥ ε for all *z* ∈ *B*₁, *K*(*y*, *z*) ≥ ε for all *z* ∈ *B_n*,

(日) (日) (日) (日) (日) (日) (日)

- $K(z, z') \ge \varepsilon$ for all $z \in B_i, z' \in B_{i+1}, i = 1, ..., n-1$
- $d \ge 3$ or "finite horizon condition"

Random tube: assumptions, notations

Assumptions: \mathbb{P} -a.s., ω is open, connected, and:

- (L) $\partial \omega$ is Lipschitz with uniform constants
- (R) { $x \in \partial \omega : \partial \omega$ is C^1 in $x, |\mathbf{n}_{\omega}(x) \cdot e| \neq 1$ } has full measure \mathcal{H}_{d-1} -measure
- (P) Points on the boundary which are close, communicate "well" and "quickly": ∃*N*, ε, δ: ℙ-a.s., ∀*x*, *y* ∈ *R* with |(*x* − *y*) ⋅ *e*| ≤ 2, ∃*B*₁,..., *B*_n ⊂ ∂ω, *n* ≤ *N* with ν^ω(*B_i*) ≥ δ(*i* = 1,..., *n*), s.t. *K*(*x*, *z*) ≥ ε for all *z* ∈ *B*₁, *K*(*y*, *z*) ≥ ε for all *z* ∈ *B*_n,
 - $K(z, z') \ge \varepsilon$ for all $z \in B_i, z' \in B_{i+1}, i = 1, \ldots, n-1$
- *d* ≥ 3 or "finite horizon condition"

Notation:

 $\nu^{\omega} =$ restriction of (d-1)-dimensional Hausdorff measure on $\partial \omega$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift of intensity $\lambda > 0$:

Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift of intensity $\lambda > 0$: acceptance/rejection. If $\xi_n = x$,

- First select $y \in \partial \omega$, $y \sim K(x, y)$
- Then,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Typical path of the random walk (rejected jumps are shown as dotted lines).

Figure: Knudsen random walk with drift

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift of intensity $\lambda > 0$: acceptance/rejection. If $\xi_n = x$,

- First select $y \in \partial \omega$, $y \sim K(x, y)$
- Then,

• if
$$(y - x) \cdot \mathbf{e} > 0$$
, set $\xi_{n+1} = y$,
• if $(y - x) \cdot \mathbf{e} < 0$,
set $\xi_{n+1} = y$ with probability $\exp\{-\lambda | (y - x) \cdot \mathbf{e} |\}$, and $\xi_{n+1} = x$ otherwise.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then, the measure u_{λ}^{ω} with

$$rac{d
u_\lambda^\omega}{d
u^\omega}(x) = \exp\{\lambda x \cdot oldsymbol{e}\}$$

is invariant and reversible for ξ_n .

Law of large numbers

Theorem

Assume $d \ge 3$. There exists $\hat{v} > 0$ deterministic such that, a.s.,

$$\frac{\xi_n \cdot \mathbf{e}}{n} \to \hat{\mathbf{v}} \qquad \text{as } n \to \infty$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Law of large numbers

Theorem

Assume $d \ge 3$. There exists $\hat{v} > 0$ deterministic such that, a.s.,

$$\frac{\xi_n \cdot \mathbf{e}}{n} \to \hat{\mathbf{v}} \qquad \text{as } n \to \infty$$

Idea of proof: using condition (P), we make a coupling of ξ in a fixed ω , with a Random Walk in Random Environment (RWRE) on \mathbb{Z} , with unbounded jumps and stationary ergodic environment. We use a (new) Law of Large Numbers for the latter.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coupling Stochastic Billiards with Random Walk

Let $(\eta_i; i \ge 1)$ i.i.d. uniform on $\{1, 2, ..., N\}$, $J(n) = \eta_1 + \cdots + \eta_n$. Condition P implies that: $\exists \delta > 0$ s.t.

$$\mathbb{P}_{\omega}^{x}[\xi_{\eta_{1}} \in B] \geq \delta \nu^{\omega}(B),$$

for all $x \in \partial \omega$ and $B \subset \{y \in \partial \omega : |(y - x) \cdot \mathbf{e}| \leq 1\}.$

Coupling Stochastic Billiards with Random Walk

Let $(\eta_i; i \ge 1)$ i.i.d. uniform on $\{1, 2, ..., N\}$, $J(n) = \eta_1 + \cdots + \eta_n$.

Condition P implies that: $\exists \delta > 0$ s.t.

$$\mathbb{P}_{\omega}^{x}[\xi_{\eta_{1}} \in B] \geq \delta \nu^{\omega}(B),$$

for all $x \in \partial \omega$ and $B \subset \{y \in \partial \omega : |(y - x) \cdot \mathbf{e}| \le 1\}$.

Let $U_j = \{x \in \partial \omega : x \cdot \mathbf{e} \in (j, j + 1]\}$, and $\pi^j = \nu^{\omega}(\cdot | U_j)$ the uniform distribution on U_j .

We couple the process $(\xi_{J(n)}, n \ge 0)$ with i.i.d. Bernoulli $(\zeta'_n, n \ge 1)$ (independent of ω) of parameter δ ,

$$P[\zeta'_n = 1] = 1 - P[\zeta'_n = 0] = \delta,$$

so that

on the event $\{\zeta'_n = 1\}, \xi_{J(n)}$ has distribution $\pi^{[\xi_{J(n-1)} \cdot \mathbf{e}]}$ on $U_{[\xi_{J(n-1)} \cdot \mathbf{e}]}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Set $\kappa_0 = 0$, and

$$\kappa_{m+1} = \min\{k > \kappa_m : \zeta'_k = 1\}, \qquad m \ge 1.$$

Then, under $P^{\zeta'} \otimes \mathbb{P}^{x}_{\omega,\zeta'}$, the sequence $(\xi_{J(\kappa_m)}, m \ge 0)$ is a Markov chain, with law of the form $\sum_{i \in \mathbb{Z}} a_i \pi^i$. The Markov chain is weakly lumpable.

Lemma

Under $P^{\zeta'} \otimes \mathbb{P}^{U_0}_{\omega,\zeta'}$, the sequence $([\xi_{J(\kappa_m)} \cdot \mathbf{e}], m \ge 0)$ is a RWRE on \mathbb{Z} , with transition probabilities

$$Q_{\omega}(i,j) = P^{\zeta'} \otimes \mathbb{P}_{\omega,\zeta'}^{U_i}[\xi_{J(\kappa_1)} \in U_j].$$

This is the bridge between SB in Random Tube and RWRE. With some extra estimates on hitting times of sets by SB, it is enough to get a LLN for RWRE.

Outline

- 2 Long time behavior in the compact case
- Ballistic regime for Stochastic billiard with a drift
- 4 Law of Large Numbers for ballistic RWRE with unbounded jumps

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Random walk in random environment with unbounded jumps on \mathbb{Z}

Attention: in this section,

$$\omega = (\omega_{x,y}; x, y \in \mathbb{Z}), \quad \omega_{x,y} \ge 0, \sum_{y} \omega_{x,y} = 1.$$

Let S_n be the RWRE in \mathbb{Z} with $P_{\omega}(S_{n+1} = x + y | S_n = x) = \omega_{x,y}$.

Random walk in random environment with unbounded jumps on $\mathbb Z$

Attention: in this section,

$$\omega = (\omega_{x,y}; x, y \in \mathbb{Z}), \quad \omega_{x,y} \ge 0, \sum_{y} \omega_{x,y} = 1.$$

Let S_n be the RWRE in \mathbb{Z} with $P_{\omega}(S_{n+1} = x + y | S_n = x) = \omega_{x,y}$.

Assume $(\omega_{x,\cdot})_x$ is stationary and ergodic under some \mathbb{P} .

Consider also the RW in the truncated environment ω^{ϱ} ($\varrho \ge 1$ truncation parameter)

$$\omega_{xy}^{\varrho} = \begin{cases} \omega_{xy}, & \text{if } 0 < |y| < \varrho, \\ 0, & \text{if } |y| \ge \varrho, \\ \omega_{x0} + \sum_{y:|y| \ge \varrho} \omega_{xy}, & \text{if } y = 0, \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

RWRE: assumptions

Assume uniform ellipticity, uniform tails, strong transience (no traps):

Condition E. There exists $\tilde{\varepsilon}$ such that $\mathbb{P}[\omega_{01} \geq \tilde{\varepsilon}] = 1$.

Condition C. $\exists \alpha > 1, \gamma_1 > 0$ s.t. for all $s \ge 1$,

$$\sum_{y:|y|\geq s}\omega_{0y}\leq \gamma_1s^{-lpha},\qquad \mathbb{P} ext{-a.s.}$$

A D F A 同 F A E F A E F A Q A

Condition D. $\exists g_1 \ge 0$ with $\sum_{k=1}^{\infty} kg_1(k) < \infty$, $\exists \varrho_0 < \infty$, such that $\forall x \le 0, \varrho \ge \varrho_0$, $E^0_{\omega} N^{\varrho}_{\infty}(x) \le g_1(|x|)$, $\mathbb{P} - \text{a.s.}$ with $N^{\varrho}_n(x) = \sum_{k \le n} \mathbf{1} \{S^{\varrho}_k = x\}$.

Law of Large Numbers for ballistic RWRE with unbounded jumps

Proposition

Then, $\forall \varrho \in [\varrho_0, \infty], \exists v_{\varrho} > 0$ s.t. we have

$$rac{S_n^{\varrho}}{n}
ightarrow V_{\varrho}, \quad n
ightarrow \infty, \quad \mathrm{a.s.}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Law of Large Numbers for ballistic RWRE with unbounded jumps

Proposition

Then, $\forall \varrho \in [\varrho_0, \infty], \exists v_\varrho > 0 \text{ s.t. we have }$

$$\frac{S_n^\varrho}{n} \to v_\varrho, \quad n \to \infty, \quad \text{a.s.}$$

- ∠ No reversibility is assumed.
- RWRE on Z with bounded jumps: long-time behavior determined by middle Lyapunov exponents of random matrices. Transience/recurrence by Key [1984], LLN by Goldsheid [2003, 2008], Brémont [2009]; lingering "à la Sinai" by Bolthausen and Goldsheid [2008].

(日) (日) (日) (日) (日) (日) (日)

Inly reference for unbounded jumps: 0-1 law by Andjel [1988].

Law of Large Numbers for RWRE with unbounded jumps: ideas of proof

 \Box Fix $\varrho_0 \leq \varrho < \infty$. Let $T_z^{\varrho} = \min\{k \geq 0 : S_k^{\varrho} \geq z\}$ first hitting time of $[z, \infty)$ by RWRE.

Lemma

Conditions E, C, D. imply there exists $\varepsilon_1 > 0$ such that, \mathbb{P} -a.s.,

$$\mathbb{P}_{\omega}{}^{x}[S^{\varrho}_{\mathcal{T}^{\varrho}_{0}}=0]\geq 2arepsilon_{1}$$

for all $x \leq 0$ and for all $\varrho \in [\varrho_0, \infty]$.

We can couple RWRE S^{ϱ} with an i.i.d. Bernoulli (ε_1) sequence $\zeta = (\zeta_1, \zeta_2, \zeta_3, \ldots)$ in such a way that

$$\zeta_j = 1 \implies S^{\varrho}_{T^{\varrho}_{j\varrho}} = j\varrho.$$

(日) (日) (日) (日) (日) (日) (日)

Denote by ℓ_k the time of k-th success of $\zeta_{..}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma

 $\begin{array}{ll} \textit{The pair}\left(\theta_{S_{k}^{\varrho}\omega}, \mathsf{T}_{\ell_{k}\varrho}^{\varrho}\right) \textit{ is cycle-stationary and ergodic.} \\ \textit{In particular,} & \theta_{\ell_{k}\varrho}\omega \stackrel{\text{law}}{=} \omega. \end{array}$

Hence, for finite ρ , we derive:

Lemma

 $\begin{array}{ll} \textit{The pair}\left(\theta_{S_{k}^{\varrho}\omega}, \mathsf{T}_{\ell_{k}\varrho}^{\varrho}\right) \textit{ is cycle-stationary and ergodic.} \\ \textit{In particular,} & \theta_{\ell_{k}\varrho}\omega \stackrel{\text{law}}{=} \omega. \end{array}$

Hence, for finite ρ , we derive:

- the proposition using the ergodic theorem.
- There exists an invariant measure \mathbb{Q}^{ϱ} for the environment seen from the walker.
- By condition (D),

$$\gamma \leq \frac{d\mathbb{Q}^{\varrho}}{d\mathbb{P}}(\omega) \leq 1/\gamma.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lemma

 $\begin{array}{ll} \textit{The pair}\left(\theta_{S_{k}^{\varrho}\omega}, \mathsf{T}_{\ell_{k}\varrho}^{\varrho}\right) \textit{ is cycle-stationary and ergodic.} \\ \textit{In particular,} & \theta_{\ell_{k}\varrho}\omega \stackrel{\text{law}}{=} \omega. \end{array}$

Hence, for finite ρ , we derive:

- the proposition using the ergodic theorem.
- There exists an invariant measure \mathbb{Q}^{ϱ} for the environment seen from the walker.
- By condition (D),

$$\gamma \leq rac{d\mathbb{Q}^{arrho}}{d\mathbb{P}}(\omega) \leq 1/\gamma.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Any weak limit \mathbb{Q}^{∞} is invariant for *S*, and $v_{\infty} = \lim v_{\varrho}$ is its speed.

Past and Future

References

F.COMETS, S.POPOV, G.SCHÜTZ, M.VACHKOVSKAIA: Billiards in a general domain with random reflections *Arch. Rat. Mech. Anal.* 2009

F.COMETS, S.POPOV, G.SCHÜTZ, M.VACHKOVSKAIA: Quenched invariance principle for the Knudsen billiard in a random tube *Annals of Probability* 2010

F.COMETS, S.POPOV, G.SCHÜTZ, M.VACHKOVSKAIA: Transport diffusion coefficient for a Knudsen gas in a random tube. *J. Stat. Phys.* 2010

F.COMETS, S.POPOV: Ballistic regime for Knudsen random walk with drift and RWRE with unbounded jumps. *Ann. I.H.Poincaré* 2012.

Open Questions

Compact Domain: what geometric feature of the domain D determines the rate of approach to equilibrium ? Estimate the spectral gap for the cosine law ?

Feres-Zhang 2010,2012, Cook-Feres 2012

Infinite random tube: Study the sub-ballistic regime ? Slowdowns and traps ?