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Introduction

Stochastic billiards on general tables: a particle moves according to its
constant velocity inside some domain D c R until it hits the boundary and
bounces randomly inside according to some reflection law.

. & oD
2 &
Vi

3
&1



Introduction

Stochastic billiards on general tables: a particle moves according to its
constant velocity inside some domain D c R until it hits the boundary and
bounces randomly inside according to some reflection law.

. & oD
2 &
Vi

3
&1

Piecewise Deterministic Markov Processes



Motivations

@ Kinetic theory of gases
Knudsen’s book [1952]
: Coppens-Malek [2003], Coppens-Dammers
[2006]
Goldstein-Kipnis-laniro [1985]: a mechanical particle system with
stochastic boundary conditions

@ Dynamical systems:
Feres [2007-2013]: how stochasticity emerges from dynamical systems
with microstructures
S. Evans [2001]: C' boundary or polygon, uniform reflection law

@ Monte Carlo Markov Chains, algorithms and games:
Lalley-Robbins [1987, 1988]: convex D and cosine law. “princess and
monster”
Borovkov [1991, 1994], Romeijn [1998]: Monte Carlo Markov chains
algorithm (“running shake-and-bake algorithm”)
Diaconis: Hit and Run algorithm
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Stochastic billiard on a general table

Billiard table

D c RY open connected domain, with boundary 8D locally Lipschitz and

1-Vx € 9D, we can rotate 9D so that it is locally the graph of a Lipschitz
function.

3R C 9D open such that 9D is continuously differentiable on R and the
(d—1)-dimensional Hausdorff measure of 9D \ R is equal to zero.



Stochastic billiard on a general table

Reflection law for stochastic billiard

Outgoing direction is random, with density (in the relative frame) v on the
open half sphere Se = {u € R? : |u| = 1, u - e > 0}, with e = the first unit
vector, such that
irI}ffy >0 VK compact C Se
Main example for : cosine density,
~v(u) =g €-u on half sphere Se

cf Knudsen [1952].



Stochastic billiard on a general table

Figure: Bounce at x € 9D in dimension d = 2. The outgoing direction u is such that its
angle ¢x(u) with the normal n(x) has density ~; independent of the ingoing direction.



Stochastic billiard on a general table

Construction of KRW and KSB:

... standard way, with an i.i.d. sequence of law ~ on Se.

@ Knudsen Random Walk (KRW) (&5, n > 0) = sequence of impacts on
the boundary.
Markov chain in {0D, 0o, &}.
: Start from &, € R. Then, with probability 1, £ does not enter &.
@ Knudsen Stochastic billiard: time-continuous process moving at speed 1.
Is defined for all times, a.s..
The couple (position, velocity) is Markov (PDMP).



Stochastic billiard on a general table

Change the variable

du

Figure: du = ||x — y|| (=" cos B dy



Stochastic billiard on a general table

Transition kernel for the random walk

Changing variable from u € S¢ to y = hyx(Uxu), we get for x € R,
P[§n+1 €A | én = X] :/K(X:y)dy7
A
where dy is the surface measure on 9D and

(U =) cos (n(y).y — X)
l[x = yljo=

where we write x <> y (see each other) if the open segment (x, y) C D.

Y
K(x,y) = 1{x,y e R,x <y}
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Long time behavior in the compact case

Invariant measure for Knudsen random walk

Knudsen popularized and justified the choice v = Cosine law. Then, the
transition density is

((y =x)-n(x) ((x - y) - n(y))

[Ix = yllo+

K(x,y) = a 1H{x,y e R,x <y}

symmetric | The surface measure dx on 9D is ,
dx K(x, dy) = dy K(y, dx),

...and then invariant.



Long time behavior in the compact case

Asymptotics on a bounded table (for a general ~)

Assumption : diam(D) < oo

By the Lipschitz assumption, this implies that |0D| < oc.
The chain satisfies Doblin condition: there exist n, € > 0 such that for all
X,y ER
K'(x,y) > ¢ (1



Long time behavior in the compact case

Asymptotics on a bounded table (for a general ~)

Assumption : diam(D) < oo

By the Lipschitz assumption, this implies that |0D| < oc.
The chain satisfies Doblin condition: there exist n, € > 0 such that for all

X,y ER
K"(x,y) > ¢ (1)

Theorem
(i) There exists a unique probability measure [ on 0D which is invariant for
the random walk &,. Moreover, dji << dx.
(ii) IP[én € ] — fillv < Boe™?1" (I - |Iv = total variation distance).

(iiiy Central Limit Theorem: YA C 0D measurable there exists oa (ca > 0 if
0 < |A| < |0D|) such that

n*‘/z(i 1{& € A} — nﬂ(A)) 2 N(0,0%)
i=1

For the cosine law, dji = |9D|~" dx uniform on dD.
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Ballistic regime for Stochastic billiard with a drift

Infinite horizontal “tube”

To understand large scale properties of billard, we consider a table D = w,
which is infinite in the first direction, write x = (a, u):
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Infinite horizontal “tube”

To understand large scale properties of billard, we consider a table D = w,
which is infinite in the first direction, write x = (a, u):

Figure: Infinite tube



Ballistic regime for Stochastic billiard with a drift

Random tube = random environment

Any tube w = (wa, @ € R) is seen as the process of its sections

w={(a,u) eR?:UCw.}

Let € to be the set of all open domains A C R contained in a fixed ball,
AcA:={ueR’":|u| <M}

Let Q = C(R — €) “space of tubes” (equipped with the distance
p(A,B) = |(A\ B)U (B A)| on € and cylinder sigma-algebra).



Ballistic regime for Stochastic billiard with a drift

Random tube = random environment

Any tube w = (wa, @ € R) is seen as the process of its sections

w={(a,u) eR?:UCw.}

Let € to be the set of all open domains A C R contained in a fixed ball,
AcA:={ueR’":|u| <M}

Let Q = C(R — €) “space of tubes” (equipped with the distance
p(A,B) = |(A\ B)U (B A)| on € and cylinder sigma-algebra).

w~ P

with IP a probability measure on €, stationary and ergodic (w.r.t. shifts in ).



Ballistic regime for Stochastic billiard with a drift

Random tube: assumptions, notations

P-a.s., w is open, connected, and:
(L) Ow is Lipschitz with uniform constants
(R) {Xx € 0w : dwis C"in x,|n.(x) - €| # 1} has full measure Hy_;-measure

(P) Points on the boundary which are close, communicate "well” and
“quickly”:
IN,e,o: P-as.,Vx,y e Rwith|(x —y)-e] <2,3By,...,B, COw,n <N
with v“(B;) > §(i=1,...,n), s.t.
o K(x,z) >cforallze By, K(y,z) > eforall z € By,
e K(z,Z/)>¢eforallze B,z € Bjy1,i=1,...,n—1

e d > 3 or "finite horizon condition”
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Random tube: assumptions, notations

P-a.s., w is open, connected, and:
(L) Ow is Lipschitz with uniform constants
(R) {Xx € 0w : dwis C"in x,|n.(x) - €| # 1} has full measure Hy_;-measure

(P) Points on the boundary which are close, communicate "well” and
“quickly”:
IN,e,o: P-as.,Vx,y e Rwith|(x —y)-e] <2,3By,...,B, COw,n <N
with v“(B;) > §(i=1,...,n), s.t.
o K(x,z) >cforallze By, K(y,z) > eforall z € By,
e K(z,Z/)>¢eforallze B,z € Bjy1,i=1,...,n—1

e d > 3 or "finite horizon condition”

v* = restriction of (d — 1)-dimensional Hausdorff measure on dw



Ballistic regime for Stochastic billiard with a drift

Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift of intensity A > 0:
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Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.

Dynamics for KRW with drift of intensity A > 0: acceptance/rejection.
|f En = X,

e Firstselect y € dw, y ~ K(x, y)
@ Then,

o if(y—x)-e>0,setény =y,
o if(y—x)-e<0,
set £p1 = y with probability exp{—XA|(y — x) - e[|}, and {51 = x otherwise.



Ballistic regime for Stochastic billiard with a drift

Typical path of the random walk (rejected jumps are shown as dotted lines).

§10 = &1t

Figure: Knudsen random walk with drift



Ballistic regime for Stochastic billiard with a drift

Stochastic billiard with drift in a random tube

Same assumptions as above on the random tube.
Dynamics for KRW with drift of intensity A > 0: acceptance/rejection.
If & = x,

@ Firstselect y € 0w, y ~ K(x,y)
@ Then,
o if(y—x)-e>0,setén1 =y,
e if(y—x)-e<0,
set &1 = y with probability exp{—A|(y — x) - e|}, and £,4.1 = x otherwise.
Then, the measure v with
dvw

is invariant and reversible for &,.

(x) = exp{ x - e}



Ballistic regime for Stochastic billiard with a drift

Law of large numbers

Assume d > 3. There exists ¥ > 0 deterministic such that, a.s.,

e .
£"——>v asn— oo
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Law of large numbers

Assume d > 3. There exists ¥ > 0 deterministic such that, a.s.,

e .
£"——>v asn— oo

Idea of proof: using condition (P), we make a coupling of £ in a fixed w, with a
Random Walk in Random Environment (RWRE) on Z, with unbounded jumps
and stationary ergodic environment. We use a (new) Law of Large Numbers
for the latter.



Ballistic regime for Stochastic billiard with a drift

Coupling Stochastic Billiards with Random Walk

Let (n;;i > 1) ii.d. uniformon {1,2,... N}, J(n) =n1 + -+ + nn.
Condition P implies that: 36 > 0 s.t.
P [¢n, € B] > §v(B),

forallx cowand BC {y € dw :|(y — x)-e| <1}



Ballistic regime for Stochastic billiard with a drift

Coupling Stochastic Billiards with Random Walk

Let (n;;i > 1) ii.d. uniformon {1,2,... N}, J(n) =n1 + -+ + nn.
Condition P implies that: 3§ > 0 s.t.

p."[€n, € B] > 6v(B),
forallxcdwand BC {y € ow: |(y — x)-e| < 1}.
Let U= {x € dw : x-e € (j,j+ 1]}, and 7/ = v*( - |U;) the uniform
distribution on U;.
We couple the process (£, n > 0) with i.i.d. Bernoulli (¢;,n > 1)
(independent of w) of parameter 4,

PlGn=1]=1- Pl =0] =4,

so that

on the event {¢}, = 1}, &) has distribution 7%~ on Upe, . o-



Ballistic regime for Stochastic billiard with a drift

Set ko = 0, and

Kme1 = min{k > km : G = 1}, m>1.

Then, under p¢’ ® PfJ,C,, the sequence (&y(.,,, M > 0) is a Markov chain, with
law of the form 3", _, ay7’. The Markov chain is weakly lumpable.

Under P¢’ ® Pg?g" the sequence ([, - €], m > 0) is a RWRE on Z, with
transition probabilities

Qulirf) = P @ Pl [euwn) € U]

This is the bridge between SB in Random Tube and RWRE.
With some extra estimates on hitting times of sets by SB, it is enough to get a
LLN for RWRE.
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Law of Large Numbers for bal

Random walk in random environment with unbounded jumps on Z

Attention: in this section,

w:(OJx’y;X7_yeZ), UJx,yZO,ZWx’y:‘I.
y

Let S, be the RWRE in Z with P, (Spt1 = X 4+ y|Sh = X) = wx,y.



Law of Large Numbers for bal

Random walk in random environment with unbounded jumps on Z

Attention: in this section,

w:(OJx’y;X7_yeZ), UJx,yZO,ZWx’y:‘I.
y

Let S, be the RWRE in Z with P, (Spt1 = X 4+ y|Sh = X) = wx,y.
Assume (wy,.)x is stationary and ergodic under some P.
Consider also the RW in the truncated environment w? (¢ > 1 truncation
parameter)
Wxys if0 <yl <e
[C— 07 If |y| 2 9,

wxy =
Wx0 + E Wxy |f y = 07
yilyl>e



Law of Large Numbers for bal

RWRE: assumptions

Assume uniform ellipticity, uniform tails, strong transience (no traps):
Condition E. There exists & such that Plwor > &] = 1.
Condition C. 3o > 1,7 > 0s.t. forall s > 1,

Z woy < 1 s, P-a.s.
y:lyl=s

Condition D. 3g; > 0 with >~;2, kg1 (k) < 00,300 < oo, such that
vx < 0,0 > oo,
EINS(x) < gi(]x]), P—as.

with N3 (x) = >, 1{S¢ = x}.



Law of Large Numbers for bal

Law of Large Numbers for ballistic RWRE with unbounded jumps

Proposition

Then, Yo € [00, o0], 3V, > 0 s.t. we have
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Law of Large Numbers for ballistic RWRE with unbounded jumps

Proposition
Then, Yo € [00, o0], 3V, > 0 s.t. we have

# No reversibility is assumed.

# RWRE on Z with bounded jumps: long-time behavior determined by
middle Lyapunov exponents of random matrices.
Transience/recurrence by Key [1984], LLN by Goldsheid [2003, 2008],
Brémont [2009]; lingering "a la Sinai” by Bolthausen and Goldsheid
[2008].

# Only reference for unbounded jumps: 0-1 law by Andjel [1988].



Law of Large Numbers for bal

Law of Large Numbers for RWRE with unbounded jumps: ideas of proof

O Fix go < 0 < c0. Let T? = min{k > 0: S/ > z} first hitting time of [z, co)
by RWRE.

Conditions E, C, D. imply there exists ¢1 > 0 such that, P-a.s.,

P.*[S%, = 0] 2 2¢4

for all x < 0 and for all ¢ € [go, >].

We can couple RWRE S¢ with an i.i.d. Bernoulli (¢1) sequence
¢ = (¢1,¢2, s, .. .) in such a way that

G=1 = 8% =jo.
Je

Denote by ¢ the time of k-th success of (..



Law of Large Numbers for bal

The pair (Hskgw, T; ) Is cycle-stationary and ergodic.

law

In particular, Opow = w.

Hence, for finite o, we derive:
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The pair (Hskgw, T; ) Is cycle-stationary and ergodic.

law

In particular, Opow = w.

Hence, for finite o, we derive:

@ the proposition using the ergodic theorem.

@ There exists an invariant measure Q?¢ for the environment seen from the
walker.

@ By condition (D),

4
v < dﬁp (w) < 1 /7.




Law of Large Numbers for bal

The pair (Hskgw, T; ) Is cycle-stationary and ergodic.

law

In particular, Opow = w.

Hence, for finite o, we derive:

@ the proposition using the ergodic theorem.

@ There exists an invariant measure Q?¢ for the environment seen from the
walker.
@ By condition (D),
aqQe
< <1/~.
TS g W =1/

@ Any weak limit Q°° is invariant for S, and v, = lim v, is its speed.



Law of Large Numbers for bal

Past and Future
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Open Questions

@ Compact Domain: what geometric feature of the domain D determines
the rate of approach to equilibrium ? Estimate the spectral gap for the
cosine law ?

Feres-Zhang 2010,2012, Cook-Feres 2012

@ Infinite random tube: Study the sub-ballistic regime ? Slowdowns and

traps ?
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