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Level set percolation of smooth Gaussian fields

Let f be a smooth centred stationary ergodic Gaussian field on Rd .

We consider the global connectivity of the excursion sets

{f ≤ `} := {x ∈ Rd : f (x) ≤ `}

i.e. ‘level set percolation of Gaussian fields’.
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By monotonicity, there is a critical level `c ∈ [−∞,∞] such that

P({f ≤ `} has an unbounded component) =
{

0 if ` < `c,

1 if ` > `c.

In the planar case d = 2 it is natural to predict that `c = 0 due to
symmetry:

Conjecture (Dykhne ’70, Zallen & Scher ’71)
If f is a smooth planar stationary ergodic Gaussian field (and
perhaps some other mild conditions) then

`c = 0.

More precisely

(1) If ` ≤ 0, {f ≤ `} has bounded components a.s.

(2) If ` > 0, {f ≤ `} has a unique unbounded component a.s.
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To explore further, we distinguish three classes of fields:

1) Short-range dependent: Correlations decay rapidly, i.e. are
absolutely integrable at infinity
e.g. Bargmann-Fock field K (x) = e−|x |2/2.

2) Long-range dependent (regularly varying): Correlations
decay as x−αL(x), α ∈ [0, d ], where L is a slowly-varying function
e.g. Cauchy kernel K (x) = (1 + |x |2)−α/2

e.g. Gaussian free field K (x) ∼ |x |−(d−2), d ≥ 3

3) Long-range dependent (oscillating): Correlations decay
slowly and oscillate infinitely often
e.g. monochromatic random wave K (x) = J0(|x |)
e.g. band-limited random wave K (x) = J1(|x |)/|x |.
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Another way to view these classes is through the lens of the
spectral measure:

1) Short-range dependent: Spectral density exists and is smooth

2) Long-range dependent (regularly varying): Spectral density
has a singularity at the origin and the density blows-up as
|x |α−d L(1/x), α ∈ [0, d ].

3) Long-range dependent (oscillating): Spectral density does
not exist or has singularities away from the origin
e.g. monochromatic random wave: Lebesgue measure on S1

e.g. band-limited random wave: Lebesgue measure on D
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1) The short-range case

The belief is that the model is in the ‘Bernoulli percolation
universality class’, i.e. it has large-scale connectivity properties in
common with all short-range dependent percolation models:

` < `c: diameter/volume of components have exponential tails

` = `c: conformal invariant scaling limit, level sets converge to
CLE (6), critical exponents match Bernoulli percolation

` > `c: unique unbounded component, diameter of finite
components have exponential tails
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2) The regularly-varying case

The belief is that for small α ∈ [0, 2] the field is no longer in the
Bernoulli universality class [Weinrib ’84, Isichenko & Kalda ’91]:

α < 2: volume of subcritical components have stretched
exponential tails with exponent α/2 < 1

α < 3/2: α-dependent conformal invariant scaling limit at
criticality, α-dependent critical exponents

α < 1: diameter of subcritical components have stretched
exponential tails with exponent α < 1

α = 0: phase transition degenerates, ‘scale-free’ behaviour at all
levels
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3) The oscillating case

The belief is that the field is in the Bernoulli universality class if
and only if ∫

B(R)

∫
B(R)

K (x − y)dxdy � R5/2.

i.e. ‘self-averaging’ can cause this to be true even if correlations
decay very slowly [Weinrib ’84, Bogomolny & Schmidt ’06]

E.g. monochromatic random wave: correlations decay as 1/
√
|x |

but nevertheless due to oscillations∫
B(R)

∫
B(R)

K (x − y)dxdy ∼ cR3/2

so the monochromatic wave is believed to be in the Bernoulli
universality class.
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Recent results: Existence of the phase transition

As mentioned, physicists conjectured 50 years ago that `c = 0 for
planar Gaussian fields.

Recently has there been significant progress establishing this
conjecture for short-range fields with positive correlations K ≥ 0.

[Rodriguez ’16, Beffara & Gayet ‘18, Rivera & Vanneuville ’19, M.
& Vanneuville ’20]

The properties of short-range dependency and positive
correlations were crucial in these works, since they allow for
‘direct’ comparison with Bernoulli percolation. However many
important fields do not have these properties.
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In recent work we established the full conjecture without assuming
either of these properties:

Theorem (M., Rivera & Vanneuville ‘20)
Let f be a smooth isotropic planar Gaussian field with correlations
decaying as

|K (x)| � (log log |x |)−3

and assume the support of the spectral measure contains an open
set or a circle. Then `c = 0.

In particular this is true for the monochromatic random wave, the
band-limited random wave etc.
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Our work leaves open what happens at the nodal level `c = 0. Are
the zero level lines bounded?

At the moment this is only known for positively-correlated fields
[Alexander ‘96, Gandolfi, Keane & Russo ‘88].

Proving it in general, e.g. for the monochromatic random wave,
remains a fundamental open problem.
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Recent results: Size of subcritical components

Let us now consider the size of the components of {f ≤ `} for
subcritical levels ` < `c = 0.

As mentioned, physicists predict that in the short-range case
components have an exponential tail, whereas long-range
correlations should promote larger components.

We consider long-range correlated fields in the regularly varying
case K (x) = |x |−αL(x), α ∈ [0, d), and analyse how the diameter
of the components depends on α.
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For simplicity we restrict our attention to the one-parameter family
of smooth isotropic fields on R2 with covariance kernels

K (x) = (q?q)(x) ∼ |x |−α, q(x) ∝ 1
(1 + |x |2)(2+α)/4 , α ∈ (0, 2).

Theorem (M. & Severo ’21+)
Let Arm`(R) be the event that f (0) ≤ ` and the component of
{f ≤ `} containing 0 intersects ∂B(R). Then for ` < `c = 0:

1. If α ∈ (1, 2), − logP[Arm`(R)] � R.

2. If α = 1, − logP[Arm`(R)] ∼ `2R/(4 log R).

3. If α ∈ (0, 1), − logP[Arm`(R)] ∼ cα`2Rα, where

cα = 1
2πB

(1 + α

2 ,
1 + α

2
)

cos
(πα

2
)
∈ (0, 1/2).
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As a corollary, we can analyse the largest component in a ball.

Theorem (M. & Severo ’21+)
Let DR,` be the largest diameter among the components of
{f ≤ `} ∩ B(R). Then for ` < `c = 0:

1. If α ∈ (1, 2),
DR,` � log R in probability.

2. If α = 1,
DR,`

log R log log R →
8
`2

in probability.

3. If α ∈ (0, 1),
DR,`

(log R)1/α →
( 2

cα`2
)1/α

in probability.
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Let DR,` be the largest diameter among the components of
{f ≤ `} ∩ B(R). Then for ` < `c = 0:
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These results can be compared to recent work on the Gaussian free
field [Snitzman ’15, Popov & Rath ’15, Goswami, Rodriguez &
Severo ’21] which has shown that, for ` < `c(d) < 0

− logP[Arm`(R)] =
{
� R d ≥ 4,
∼ (`c − `)2R/(4 log R) d = 3.

Recalling that K (x) ∼ |x |−(d−2) for the GFF, our result shows that
the subcritical behaviour of the GFF is ‘generic’ for Gaussian fields
with regularly varying covariance with index α = d − 2.
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Our result is actually more general than what is described above:

1. It covers a wide class of regularly varying covariance kernels
under suitable assumptions on q and K = q ? q.

2. The proof works for all d ≥ 2 (with `2 7→ (`c − `)2), except if
d ≥ 3 the result is conditional on certain facts about the
‘sharpness’ of the phase transition (expected but not verified).

3. It covers the α = 0 case: if K (x) is slowly varying (plus some
extra assumptions) then, for ` < `c = 0,

− logP[Arm`(R)] ∼ `2

2K (R) .

For example, if K (x) ∼ (log x)−1 then

P[Arm`(R)] ∼ R
−`2(1+o(1))

2 ,

i.e. the model has power-law decay in the subcritical phase.
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Our work leaves open what occurs in the oscillating case.

For the monochromatic random wave it is expected that if ` < `c ,

− logP[Arm`(R)] � R

since it is believed to belong to the Bernoulli universality class.

The best result in this direction [M., Rivera and Vanneuville ’20]

− logP[Arm`(R)] ≥ c
√

log R

is very far from the (conjectural) truth.
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Elements of the proof (size of subcritical components)
Our analysis relies on two ingredients:

1. The notion of the capacity of a set D ⊂ Rd (with respect to
the covariance kernel), defined equivalently as either

CapK (D) =
(

min
µ∈P(D)

∫
D

∫
D

K (x − y)dµ(x)dµ(y)
)−1

or
CapK (D) = min

{
‖h‖2H : h ∈ H, h ≥ 1 on D

}
.

[Adler, Moldavskaya & Samorodnitsky, ’14]

2. A local-global decomposition of the field

f d= gL + hL, L ≥ 1

into a global field gL which carries the covariance of f on
scales R � L, and a local field hL which is L-range
dependent. These are stationary GFs but not independent.
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To form the local-global decomposition we truncate the kernel
qL(·) = q(·)ϕ(·/L) where ϕ is a smooth approximation of 1B(1/2).

Then we have the decomposition

f = q ?W = (q − qL) ?W + qL ?W =: gL + hL

where W is the white noise on Rd .

Clearly gL and hL are stationary and hL is L-range dependent.

Using regular variation, one can show that the global field carries
the covariance on the scale R � L in the sense that

lim
M→∞

lim sup
L→∞

sup
|x |≥ML

∣∣∣E[gL(0)gL(x)]
K (x) − 1

∣∣∣ = 0
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The strategy of the proof is to show that P[Arm`(R)] is carried, in
a large deviation sense, by the event A`(R) in which f has ‘excess’
mean of `c − ` on the line-segment [0,R] ⊂ Rd .

Lower bound. If A`(R) occurs, the field ‘looks supercritical’ in a
neighbourhood of [0,R], so Arm`(R) occurs with good probability.

The Cameron-Martin theorem shows that A`(R) has probabilistic
cost at most e−‖h‖2

H/2, where h ∈ H is any function such that
h|[0,R] ≥ `c − `. This leads immediately to the lower bound

− logP[Arm`(R)] ≤ 1
2 min

{
‖h‖2H : h ≥ `c − ` on [0,R]

}
+ O(1)

= 1
2(`c − `)2CapK ([0,R]) + O(1).
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Upper bound. For the upper bound we use a (one-step)
renormalisation using the (topological) fact that Arm`(R) implies
the existence of a path in {f ≤ `} that crosses many well-separated
annuli on some well-chosen mesoscopic scale 1� L� R.

Fixing δ > 0 small and recalling the local-global decomposition
f = gL + hL, this implies that either:

I The local field excursion set {hL ≤ `c − δ} crosses a positive
fraction of these annuli; or

I The global field has a high exceedence {gL ≥ `c − `− δ} on a
positive fraction of these annuli simultaneously.
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Using some a priori control on P[Arm`c−δ(R)], since hL is L-range
dependent the first event is very unlikely by independence.

On the other hand, one can show using regularly variation that the
exceedence {gL ≥ `c − `− δ} on many annuli has probability

≈ exp
(
− (`c − `)2

2 CapK (‘union of annuli’)
)
.

By a ‘projection’ argument, among all possible configurations of
annuli the capacity is minimised by those aligned along [0,R].

Then by a ‘condensation’ argument this capacity is ∼ CapK ([0,R]).

Putting this together gives the matching upper bound

− logP[Arm`(R)] ≤ 1
2(`c − `)2CapK ([0,R]) + O(R).
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Completing the proof. To finish one can show using properties of
regular variation that:

If α ≥ 1, the measure of minimal energy homogenises, so that

CapK ([0,R]) ∼ R2∫ R
0
∫ R

0 K (x − y)dxdy
∼ R

2
∫ R

0 K (x)dx
.

If α ∈ [0, 1), after rescaling the measure of minimal energy of K
approximates that for the Riesz kernel Kα(x) = |x |−α, so that

CapK ([0,R]) ∼ 1/K (R)
minµ∈P([0,1])

∫ 1
0
∫ 1

0 |x − y |−αdµ(x)dµ(y)

and we take cα = (2 minµ∈P([0,1])
∫ 1

0
∫ 1

0 |x − y |−αdµ(x)dµ(y))−1.
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Thank you!

S. Muirhead, A. Rivera and H. Vanneuville (with an appendix by
L. Köhler-Schindler), The phase transition for planar Gaussian
percolation models without FKG, preprint, 2020

S. Muirhead and F. Severo, Decay of subcritical connection
probabilities for long-range correlated Gaussian fields, in
preparation
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