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Level set percolation of smooth Gaussian fields

Let f be a smooth centred stationary ergodic Gaussian field on RY.

We consider the global connectivity of the excursion sets
{(F<ty:={xeRy:f(x) <t}

i.e. ‘level set percolation of Gaussian fields".
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By monotonicity, there is a critical level /. € [—o0, 00] such that

0 ife<de,

P({f < ¢} has an unbounded component) = _
1 ifé> /..

In the planar case d = 2 it is natural to predict that /. = 0 due to
symmetry:

Conjecture (Dykhne '70, Zallen & Scher '71)

If f is a smooth planar stationary ergodic Gaussian field (and
perhaps some other mild conditions) then

lc=0.
More precisely
(1) If£ <0, {f <} has bounded components a.s.

(2) If£ >0, {f < ¢} has a unique unbounded component a.s.
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To explore further, we distinguish three classes of fields:

1) Short-range dependent: Correlations decay rapidly, i.e. are
absolutely integrable at infinity
e.g. Bargmann-Fock field K(x) = e /2,

2) Long-range dependent (regularly varying): Correlations
decay as x “L(x), a € [0, d], where L is a slowly-varying function
e.g. Cauchy kernel K(x) = (1 + |x|?)~*/2

e.g. Gaussian free field K(x) ~ |x| (472, d >3

3) Long-range dependent (oscillating): Correlations decay
slowly and oscillate infinitely often

e.g. monochromatic random wave K(x) = Jo(|x|)

e.g. band-limited random wave K(x) = Ji(|x|)/|x]|.
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Another way to view these classes is through the lens of the
spectral measure:

5|24



Another way to view these classes is through the lens of the
spectral measure:

1) Short-range dependent: Spectral density exists and is smooth

5|24



Another way to view these classes is through the lens of the
spectral measure:

1) Short-range dependent: Spectral density exists and is smooth

2) Long-range dependent (regularly varying): Spectral density
has a singularity at the origin and the density blows-up as
Ix|*~9L(1/x), a € [0, d].

5|24



Another way to view these classes is through the lens of the
spectral measure:

1) Short-range dependent: Spectral density exists and is smooth

2) Long-range dependent (regularly varying): Spectral density
has a singularity at the origin and the density blows-up as
Ix|*~9L(1/x), a € [0, d].

3) Long-range dependent (oscillating): Spectral density does
not exist or has singularities away from the origin

5|24
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spectral measure:

1) Short-range dependent: Spectral density exists and is smooth

2) Long-range dependent (regularly varying): Spectral density
has a singularity at the origin and the density blows-up as
Ix|*~9L(1/x), a € [0, d].

3) Long-range dependent (oscillating): Spectral density does
not exist or has singularities away from the origin

e.g. monochromatic random wave: Lebesgue measure on St

e.g. band-limited random wave: Lebesgue measure on D
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1) The short-range case

The belief is that the model is in the ‘Bernoulli percolation
universality class’, i.e. it has large-scale connectivity properties in
common with all short-range dependent percolation models:

¢ < l¢: diameter/volume of components have exponential tails

{ = {.: conformal invariant scaling limit, level sets converge to
CLE(6), critical exponents match Bernoulli percolation

£ > {c: unique unbounded component, diameter of finite
components have exponential tails
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2) The regularly-varying case

The belief is that for small « € [0, 2] the field is no longer in the
Bernoulli universality class [Weinrib "84, Isichenko & Kalda '91]:
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2) The regularly-varying case

The belief is that for small « € [0, 2] the field is no longer in the
Bernoulli universality class [Weinrib "84, Isichenko & Kalda '91]:

a < 2: volume of subcritical components have stretched
exponential tails with exponent /2 < 1

a < 3/2: a-dependent conformal invariant scaling limit at
criticality, a-dependent critical exponents

« < 1: diameter of subcritical components have stretched
exponential tails with exponent o < 1

a = 0: phase transition degenerates, ‘scale-free’ behaviour at all
levels
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3) The oscillating case

The belief is that the field is in the Bernoulli universality class if

and only if
/ / K(x — y)dxdy < R%2.
B(R) /B(R)

i.e. 'self-averaging’ can cause this to be true even if correlations
decay very slowly [Weinrib '84, Bogomolny & Schmidt '06]
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3) The oscillating case

The belief is that the field is in the Bernoulli universality class if

and only if
/ / K(x — y)dxdy < R%2.
B(R) /B(R)

i.e. 'self-averaging’ can cause this to be true even if correlations
decay very slowly [Weinrib '84, Bogomolny & Schmidt '06]

E.g. monochromatic random wave: correlations decay as 1/+/|x]
but nevertheless due to oscillations

/ / K(x — y)dxdy ~ cR3/?
B(R) /B(R)

so the monochromatic wave is believed to be in the Bernoulli
universality class.
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Recent results: Existence of the phase transition

As mentioned, physicists conjectured 50 years ago that ¢ = 0 for
planar Gaussian fields.

Recently has there been significant progress establishing this
conjecture for short-range fields with positive correlations K > 0.

[Rodriguez '16, Beffara & Gayet ‘18, Rivera & Vanneuville '19, M.
& Vanneuville '20]

The properties of short-range dependency and positive
correlations were crucial in these works, since they allow for
‘direct’ comparison with Bernoulli percolation. However many
important fields do not have these properties.
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In recent work we established the full conjecture without assuming
either of these properties:
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In recent work we established the full conjecture without assuming
either of these properties:

Theorem (M., Rivera & Vanneuville ‘20)

Let f be a smooth isotropic planar Gaussian field with correlations
decaying as
|K(x)| < (log log |x[)~°

and assume the support of the spectral measure contains an open
set or a circle. Then {. = 0.

In particular this is true for the monochromatic random wave, the
band-limited random wave etc.
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Our work leaves open what happens at the nodal level /. = 0. Are
the zero level lines bounded?
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Our work leaves open what happens at the nodal level /. = 0. Are
the zero level lines bounded?

At the moment this is only known for positively-correlated fields
[Alexander '96, Gandolfi, Keane & Russo ‘88|.

Proving it in general, e.g. for the monochromatic random wave,
remains a fundamental open problem.
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Recent results: Size of subcritical components

Let us now consider the size of the components of {f < ¢} for
subcritical levels ¢ < ¢. = 0.
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Recent results: Size of subcritical components

Let us now consider the size of the components of {f < ¢} for
subcritical levels ¢ < ¢. = 0.

As mentioned, physicists predict that in the short-range case
components have an exponential tail, whereas long-range
correlations should promote larger components.

We consider long-range correlated fields in the regularly varying
case K(x) = |x|7“L(x), o € [0, d), and analyse how the diameter
of the components depends on .
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For simplicity we restrict our attention to the one-parameter family
of smooth isotropic fields on R? with covariance kernels

1

K() = (axa)() ~ 1™ 600 s @ € (0,2)

Theorem (M. & Severo '21+)

Let Arm(R) be the event that f(0) < ¢ and the component of
{f < ¢} containing 0 intersects OB(R). Then for { < {. = 0:
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K) = (ava)(0) ~ X172 a) oy @ € (0.2).

Theorem (M. & Severo '21+)

Let Arm(R) be the event that f(0) < ¢ and the component of
{f < ¢} containing O intersects OB(R). Then for { < {. = 0:

1. Ifa € (1,2), —logP[Army(R)] = R.
2. Ifa =1, —logP[Army(R)] ~ (?R/(4log R).
3. Ifa €(0,1), —log P[Army(R)] ~ col?R®, where

Ca

- (5 s () €017
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As a corollary, we can analyse the largest component in a ball.

Theorem (M. & Severo '21+)

Let Dry be the largest diameter among the components of
{f <} NB(R). Then for ¢ < {.=0:

L Ifae(1,2),
Dr¢ =<logR in probability.
2. Ifa=1, 5 :

R¢ _ -
logRloglogR 2 bability.
log Rlog log R — 2 [N probability.

3. Ifa €(0,1),

Dr¢ ( 2

1/a M ape
(log R)Y/« - Cagz) in probability.
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These results can be compared to recent work on the Gaussian free
field [Snitzman '15, Popov & Rath '15, Goswami, Rodriguez &
Severo '21] which has shown that, for £ < ¢.(d) <0

=R d >4,

—log P[Army(R)] = {N (b — 6)2R/(4|0g R) d ; 3.

Recalling that K(x) ~ |x|~(¢=2) for the GFF, our result shows that
the subcritical behaviour of the GFF is ‘generic’ for Gaussian fields
with regularly varying covariance with index @ = d — 2.
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Our result is actually more general than what is described above:

1. It covers a wide class of regularly varying covariance kernels
under suitable assumptions on g and K = g * gq.

2. The proof works for all d > 2 (with £? — (£. — £)?), except if
d > 3 the result is conditional on certain facts about the

‘sharpness’ of the phase transition (expected but not verified).

3. It covers the a = 0 case: if K(x) is slowly varying (plus some
extra assumptions) then, for £ < ¢, =0,

—log P[Army(R)] ~ IK(R)'

For example, if K(x) ~ (logx)~! then
—02(140(1))

P[Army(R)] ~R™ 2,

i.e. the model has power-law decay in the subcritical phase.
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Our work leaves open what occurs in the oscillating case.
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Our work leaves open what occurs in the oscillating case.

For the monochromatic random wave it is expected that if £ < £,
—log P[Army(R)] < R
since it is believed to belong to the Bernoulli universality class.

The best result in this direction [M., Rivera and Vanneuville '20]

—log P[Arm(R)] > c/log R

is very far from the (conjectural) truth.
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Elements of the proof (size of subcritical components)
Our analysis relies on two ingredients:
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the covariance kernel), defined equivalently as either

Cope(0) = (min [ [ K= nnadn()
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Capy(D) = min {||h||3,: h€ H,h >1on D}.

[Adler, Moldavskaya & Samorodnitsky, '14]
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1. The notion of the capacity of a set D C RY (with respect to
the covariance kernel), defined equivalently as either

Cope(0) = (min [ [ K= nnadn()

or
Capy(D) = min {||h||3,: h€ H,h >1on D}.

[Adler, Moldavskaya & Samorodnitsky, '14]

2. A local-global decomposition of the field
d
f=g+h, L>1

into a global field g; which carries the covariance of f on
scales R > L, and a local field h; which is L-range
dependent. These are stationary GFs but not independent.
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To form the local-global decomposition we truncate the kernel
qL(-) = q(-)¢(-/L) where ¢ is a smooth approximation of 11 /).
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To form the local-global decomposition we truncate the kernel
qL(-) = q(-)¢(-/L) where ¢ is a smooth approximation of 11 /).

Then we have the decomposition
f=qxW=(q—qu)*W+qxW=:g +h

where W is the white noise on RY.

Clearly g; and h; are stationary and h; is L-range dependent.

Using regular variation, one can show that the global field carries
the covariance on the scale R > L in the sense that

w_1’:0

lim limsup sup ’ K(x)
X

M=o | soo |x|>ML
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The strategy of the proof is to show that P[Arm,(R)] is carried, in
a large deviation sense, by the event Ay(R) in which f has ‘excess’
mean of /. — £ on the line-segment [0, R] C R¥.
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The strategy of the proof is to show that P[Arm,(R)] is carried, in

a large deviation sense, by the event Ay(R) in which f has ‘excess’

mean of /. — £ on the line-segment [0, R] C R¥.

Lower bound. If Ay(R) occurs, the field ‘looks supercritical’ in a
neighbourhood of [0, R], so Arm;(R) occurs with good probability.

The Cameron-Martin theorem shows that A;(R) has probabilistic
cost at most e‘“””i/z, where h € H is any function such that
h’[O,R] > {. — £. This leads immediately to the lower bound

—

—log P[Army(R)] < = min {||h||3: h > €. — £ on [0, R]} + O(1)

(€ — €)*Capi([0, R]) + O(1).

l\)\l—ll\)
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Upper bound. For the upper bound we use a (one-step)
renormalisation using the (topological) fact that Arm,(R) implies
the existence of a path in {f < ¢} that crosses many well-separated
annuli on some well-chosen mesoscopic scale 1 < L < R.
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Upper bound. For the upper bound we use a (one-step)
renormalisation using the (topological) fact that Arm,(R) implies
the existence of a path in {f < ¢} that crosses many well-separated
annuli on some well-chosen mesoscopic scale 1 < L < R.

Fixing & > 0 small and recalling the local-global decomposition
f = g + hy, this implies that either:

» The local field excursion set {h; < ¢. — §} crosses a positive
fraction of these annuli; or

» The global field has a high exceedence {g; > ¢ — ¢ —d} on a
positive fraction of these annuli simultaneously.

21 | 24



Using some a priori control on P[Arm,__s(R)], since h; is L-range
dependent the first event is very unlikely by independence.
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Using some a priori control on P[Arm,__s(R)], since h; is L-range
dependent the first event is very unlikely by independence.

On the other hand, one can show using regularly variation that the
exceedence {g; > ¢. — ¢ — §} on many annuli has probability

(L — )

5 Capg (‘union of annuli')).

zexp(—

By a ‘projection’ argument, among all possible configurations of
annuli the capacity is minimised by those aligned along [0, R].

Then by a ‘condensation’ argument this capacity is ~ Capk/([0, R]).

Putting this together gives the matching upper bound

~log P[Arm(R)] < 5(£e — £)°Capx ([0, Rl) + O(R).
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Completing the proof. To finish one can show using properties of
regular variation that:

If & > 1, the measure of minimal energy homogenises, so that

R? R

Cap ([0, R]) ~ ~ .
2px([0. D) IR IRK(x — y)dsdy 2 [RK(x)dx
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Completing the proof. To finish one can show using properties of
regular variation that:

If & > 1, the measure of minimal energy homogenises, so that

R? R
IS K(x = y)dxdy 2 [ K(x)dx

Capk ([0, R]) ~

If a €[0,1), after rescaling the measure of minimal energy of K
approximates that for the Riesz kernel K,(x) = |x|~¢, so that

1/K(R)
min,ep([0,1]) fol fol Ix — y|=*du(x)du(y)

CapK([07 R]) ~

and we take ¢, = (2min,ep(o1)) Jo Jo X — ¥I~*du(x)du(y)) L.
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Thank you!

S. Muirhead, A. Rivera and H. Vanneuville (with an appendix by
L. Kohler-Schindler), The phase transition for planar Gaussian
percolation models without FKG, preprint, 2020

S. Muirhead and F. Severo, Decay of subcritical connection
probabilities for long-range correlated Gaussian fields, in
preparation

24 | 24



