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Random spherical harmonics

Spherical eigenfunctions are solutions of the Helmholtz equation

∆S2f + λ`f = 0,

∆S2 is the spherical Laplacian, λ` = `(`+ 1) for ` ∈ N. For any eigenvalue −λ`
choose an arbitrary L2-orthonormal basis {Y`m(·)}m=−`,...,` and consider random
eigenfunctions

f`(x) =

√
4π

√
2`+ 1

∑̀
m=−`

a`mY`m(x),

the coefficients {a`m} are complex-valued Gaussian, for m 6= 0, Re(a`m), Im(a`m)
are zero-mean, independent Gaussian with variance 1/2, while a`0 is a standard
Gaussian. The standardization is such that

Var(f`(x)) = 1.

The random fields {f`(x) : x ∈ S2} are isotropic centred Gaussian with covariance

E[f`(x)f`(y)] = P`(cos d(x, y)),

P` Legendre polynomial, d(x, y) = arccos〈x, y〉 geodesic distance on the sphere.



Critical points and critical values

The number of critical points of f` is denoted by

N c
` = #{x ∈ S2 : ∇f`(x) = 0}.

Let I ⊆ R be any interval in the real line, the number of critical points of f` with value in
I, number of critical values, is denoted by

N c
` (I) = #{x ∈ S2 : ∇f`(x) = 0, f`(x) ∈ I}.

We investigate how much the number of critical points and critical values
characterizes the geometry of the random spherical eigenfunctions in the high
frequency limit, i.e. the excursion sets

Au(f`) = {x ∈ S2 : f`(x) ≥ u},

for arbitrary levels u ∈ R.

[Wigman, 2011], [Marinucci-Wigman, 2014], [Marinucci-Rossi, 2015], [Rossi, 2019],
[C.-Marinucci, 2019 and 2020], [C.-Todino, 2021]



Asymptotic variance

[C.-Marinucci-Wigman, 2016] and [C.-Wigman, 2017] show that as `→∞

The expected number of critical values behaves like

E[N c
` (I)] =

2
√

3
`2

∫
I

√
3

√
8π

(2e−t2 + t2 − 1)e−
t2

2 dt+O(1),

the constant in the O(·) term is universal, i.e. the integral of the error term on any
interval I is uniformly bounded by its value when I = R.

The investigation of the asymptotic variance is more challenging

Var(N c
` (I)) = `3[νc(I)]2 +O(`5/2),

νc(I) =

∫
I

1
√

8π
[2− 6t2 − et

2
(1− 4t2 + t4)]e−

3
2
t2 dt, νc(R) = 0,

for I = R the leading term vanishes and

Var(N c
` ) =

1

33π2
`2 log `+O(`2).

Similar results hold for extrema and saddles. Proof: via (approximate) Kac-Rice
formula for moments.



Interpretation in terms of Wiener chaoses

These results on the asymptotic variance can be interpreted in terms of the L2(Ω)
expansion of critical points into Wiener chaoses

N c
` (I) =

∞∑
q=0

N c
` (I)[q],

N c
` (I)[q] denotes the projection of N c

` (I) on the q-order chaos component that is the
space generated by the L2-completion of linear combinations of the form

Hq1 (ξ1) ·Hq2 (ξ2) · · ·Hqk (ξk), k ≥ 1,

Hqi are Hermite polynomials, with qi ∈ N such that q1 + · · ·+ qk = q and (ξ1, . . . , ξk)
standard real Gaussian vector.

It results that (after centring) a single term dominates the L2(Ω) chaos expansion of
N c

` (I) and N c
` .



We define the random variables called sample polyspectra

h`,q =

∫
S2
Hq(f`(x)) dx,

we have that [Marinucci-Wigman, 2014]

Var(h`,2) = (4π)2
2

2`+ 1
, Var(h`,4) = 576

log `

`2
+O(`−2),

and, for q = 3 and q ≥ 5, the order of magnitude of the variances is smaller

Var(h`,q) =
cq

`2
+ o(`−2), cq =

∫ ∞
0

ψ J0(ψ)q dψ,

J0(·) is the Bessel function of order zero.

These results suggest that the asymptotic behaviour of the total number of
critical points is dominated by the projection into the fourth chaotic component,
which can be expressed by the integral h`,4.

The number of critical values in I is dominated by the projection into the second
chaotic component, which can be expressed by h`,2.



We introduce the random variables

S`(I) =
λ`

2
νc(I)

1

2π

∫
S2
H2(f`(x))dx, F` = −

λ`

2332
√

3π

∫
S2
H4(f`(x))dx.

[C.-Marinucci, 2020] shows that, as `→∞, for I ⊂ R such that νc(I) 6= 0,

N c
` (I)− E[N c

` (I)] = N c
` (I)[2] +R`(I), N c

` (I)[2] = S`(I),

E[R2
` (I)] = o(`3) uniformly over I. N c

` (I) is fully correlated in the limit with S`(I)

Corr(N c
` (I),S`(I)) =

Cov(N c
` (I),S`(I))√

Var(N c
` (I))Var(S`(I))

→ 1.

[C.-Marinucci, 2019] shows that, as `→∞

N c
` − E [N c

` ] = N c
` [4] + oP(

√
`2 log `), N c

` [4] = F`,

i.e. N c
` is fully correlated in the limit with F`

Corr(N c
` ,F`) =

Cov(N c
` ,F`)√

Var(N c
` )Var(F`)

→ 1.



Important consequences

I While the computation of N c
` and N c

` (I) via Kac-Rice formula requires the
evaluation of gradient and Hessian fields, the dominant terms depend, in the
high frequency limit, only on the second-order and fourth-order Hermite
polynomials evaluated at the eigenfunctions f`, i.e. only on h`,4 and h`,2,
respectively.

I h`,2 is proportional to a sum of independent and identically distribute random
variables with zero mean and finite variance

h`,2 =

∫
S2
f2` (x) dx− 4π =

4π

2`+ 1

∑̀
m=−`

|a`m|2 − E|a`m|2

as a simple corollary, a quantitative Central Limit Theorem for N c
` (I). Similarly

for N c
` , the limiting distribution of h`;4 was studied in [Marinucci-Wigman, 2014],

where it is shown a quantitative Central Limit Theorem for h`;4.



Correlation structure between N c
` (I) and N c

`

Partial correlation coefficient between two random variables Xi, i = 1, 2, with respect
to a random variable Z

CorrZ(X1, X2) =
Corr(X1, X2)− Corr(X1, Z)Corr(X2, Z)√

1− Corr2(X1, Z)
√

1− Corr2(X2, Z)
= Corr(X∗1 , X

∗
2 ),

where the random variables X∗i are defined by

X∗i := (Xi − E[Xi])−
Cov(Xi, Z)

Var(Z)
(Z − E[Z]).

In our context the random variables involved are

X1 = N c
` , X2 = N c

` (I), Z = ||f`(x)||2
L2(S2),

the partial correlation coefficient measures the liner dependence between N c
` and

N c
` (I) after getting rid of the components depending on the random L2-norm of

the eigenfunctions f`.

[C.-Todino, 2021] shows that the correlation between N c
` (I) and N c

` is
asymptotically zero when I 6= R and νc(I) 6= 0, while the partial correlation, after
controlling for the random L2-norm on the sphere of the eigenfunctions, is
asymptotically one.



Assuming I1 ⊆ R is such that νc(I1) = 0

lim
`→∞

Corr(N c
` (I1),N c

` (I2)) =

{
0 if νc(I2) 6= 0,

1 if νc(I2) = 0,

and for every I1, I2 ⊆ R

lim
`→∞

Corr||f`(x)||2L2(S2)

(N c
` (I1),N c

` (I2)) = 1.

In particular for I1 = R.

Theorem
For subsets I ⊂ R such that νc(I) 6= 0,

lim
`→∞

Corr(N c
` ,N

c
` (I)) = 0,

and for every I ⊆ R

lim
`→∞

Corr||f`||2L2(S2)

(N c
` ,N

c
` (I)) = 1.



Proof
Built the approximating sequence

N c
`,ε(I) =

∫
S2
|det∇2f`(x)|I{f`(x)∈I}δε(∇f`(x))dx, δε(z) =

1

ε2
I{z∈[−ε/2,ε/2]2}

for every ` ∈ N, we have, both ω-a.s. and in L2(Ω), that N c
` (I) = limε→0N c

`,ε(I).

For I1, I2 ⊆ R, compute the second and fourth order chaos

N c
` (Ii)− E[N c

` (Ii)] = N c
` (Ii)[2] +N c

` (Ii)[4] +R`(Ii),

N c
` (Ii)[2] =

λ`

2
νc(I)

1

2π

∫
S2
H2(f`(x))dx,

N c
` (Ii)[4] = λ`

51I0(I)− 2 · 11I2(I) + I4(I)

23π

∫
S2
H4(f`(x)) dx,

Compute the variance with (approximate) Kac-Rice

Var(N c
` (I)) = [νc(I)]2`3 +

[51I0(I)− 2 · 11I2(I) + I4(I)]2

26π2
`2 log `+O(`2).

Use orthogonality of Wiener chaoses and N c
` (I)∗ =

∑∞
q=3N c

` (I)[q] to derive

lim
`→∞

Corr(N c
` (I1),N c

` (I2)), lim
`→∞

Corr(N c
` (R),N c

` (I2)), lim
`→∞

Corr(N c
` (I1)∗,N c

` (I2)∗).



Remark

N c
` and N c

` (I) are asymptotically independent, but, when the effect of random
fluctuations of the norm of f` is properly subtracted, their joint distribution is completely
degenerate and the behaviour of the fluctuations of N c

` (I) is fully explained by N c
` , in

the high energy limit.

More precisely, denoting with N̂ c
` and N̂ c

` (I) the standardised variables, as `→∞, for
I ⊂ R such that νc(I) 6= 0,

(N̂ c
` , N̂

c
` (I))

law→ (Z1, Z2), (N̂ c∗
` , N̂ c∗

` (I))
law→ (Z,Z),

(Z1, Z2) bivariate vector of standard independent Gaussian variables, Z standard
Gaussian variable.



Excursion sets

Our result fits in the framework of the literature which has investigated the relationship
between geometric functionals of excursion sets of f` at different levels u

Au(f`) = {x ∈ S2 : f`(x) ≥ u}.

The functionals which describe the geometry of such sets are the so called
Lipschitz-Killing Curvatures, which correspond to

I area L2(u, `)

I (half of the) boundary length L1(u, `)

I Euler characteristic L0(u, `)

of the excursion sets.



Level curves and nodal lines

[Wigman 2010] showed that the behaviour of level curves L1(u, `) is very different
compared to the behaviour of nodal lines L1(0, `); the variances are asymptotic to

Var(L1(u, `)) ∼ c2u4e−u2
`, Var(L1(0, `)) =

1

32
log `+O(1).

[Wigman 2011] showed that the length of the level curves becomes asymptotically fully
correlated for large `; for u1, u2 6= 0

Corr(L1(u1, `),L1(u2, `)) = 1 + o`→∞(1).

Proof: Kac-Rice.



Lipschitz-Killing curvatures

[Marinucci-Wigman, 2014], [Marinucci-Rossi, 2015], [C.-Marinucci, 2018] show that the
three Lipschitz-Killing curvatures are asymptotically fully correlated to h2;` for all
u1, u2 6= 0 (and u 6= 1,−1 for the Euler characteristic) and then

lim
`→∞

Corr(Lj(u1, `),Lk(u2, `)) = 1, j, k = 0, 1, 2.

The number of critical values is then perfectly correlated, as `→∞, with the
area, the Euler characteristic and the boundary length at any nonzero level u

lim
`→∞

Corr(Lk(u, `),N`(u,∞)) = 1, k = 0, 1, 2.



Nodal lines, level curves and critical points

The leading term corresponding to h2;` of all these geometrical functionals vanishes
and the asymptotic behaviour is different: for u 6= 0

lim
`→∞

Corr(L1(0, `), h4;`) = 1, lim
`→∞

Corr(L1(0, `),L1(u, `)) = 0,

after removing the effect of the norm [Marinucci-Rossi, 2021] for any u ∈ R, it holds that

lim
`→∞

Corr||f`(x)||L2(S2)
(L1(0, `),L1(u, `)) = 1.

Critical values and critical points are asymptotically independent, hence critical points
carry no information about the other geometrical functionals at any non-zero levels, for
u 6= 0,

lim
`→∞

Corr(Lk(u, `),N c
` ) = 0, k = 0, 1, 2,

the sample norm dominates the Lipschitz-Killing curvatures of the excursion sets at
non-zero levels. When its effect is adequately removed, the behaviour of L1(u, `) at
any level is fully explained by the total number of critical points

lim
`→∞

Corr(L1(0, `),N c
` ) = 1, lim

`→∞
Corr||f`(x)||L2(S2)

(L1(u, `),N c
` ) = 1 u 6= 0.



Euler characteristic and critical points

[C.-Marinucci-Wigman, 2016] shows that

Var(L0(u, `)) =
`3

4

[
H1(u)H2(u)

e−u2/2

√
2π

]2

+O(`2 log2 `),

and [C.-Marinucci 2018] shows that the high frequency behaviour of L0(u, `) is
dominated by the projection onto the second order chaos

L0(u, `)− E[L0(u, `)] = L0(u, `)[2] + oP(
√

Var(L0(u, `))),

with

L0(u, `)[2] =
`2

2

[
H1(u)H2(u)

e−u2/2

√
2π

]
h`,2 +R(`)

where E[R2(`)] = O(`2 log `). The projection onto the second order chaos term
disappears in the nodal case. However, differently from what happens with nodal
length and critical points, the fourth chaos vanishes as well

Theorem

L0(0, `)[4] = 0.



Thank you!


