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Random polynomials

Two ingredients:
– (ak)k∈N a family of independent NC(0, 1) random variables
– ν ∈ P(C) and its logarithmic potential Vν(z) = ∫ log ∣z −w∣dν(w).

Définition

If (Rk,N)k≤N is an O.N.B. of CN[X] for ⟨P,Q⟩ = ∫ PQe−2NVν
dν

PN(z) =
N

∑
k=0

akRk,N(z)

This model was initially introduced by Zeitouni and Zelditch with a geometric
point of view. It covers all known model of random polynomials for good
choices of ν.
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Zeros of random polynomials.
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Outliers?

For this model of random polynomials, the behavior of the empirical measures is
well understood, 1

N
∑Nk=1 δzk ⟶

N→∞
ν

– For a very large class of measures ν (Zeitouni–Zelditch)
– and for most distributions of coe�icients with a nice density, with a large

deviations principle (B.–Zeitouni)
Universality for the convergence of empirical measures is a very wide topic.

Outliers
For a given connected component Ω of C \ suppν, we want to understand the
behavior of the outliers in Ω

ΦΩ,N = {z ∈ Ω,PN(z) = 0}.
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Jellium on the unit circle and disk, β = 2

ν = uniform on D. ν uniform on S
1.
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Coulomb gas in dimension 2

N electrons with charge −1, under an electrical field (N + 1)V

For 2 electrons, at the locations x1, x2 ∈ C, the total energy is
– Coulombian repulsion between electrons: − log ∣x1 − x2∣
– Electrical field: 3V(x1) + 3V(x2)

A�ention: We consider an electrical field (N + 1)V proportional to the number of
electrons. For N electrons, the total energy becomes

HN(x1, . . . , xN) = ∑
i<j

− log ∣xi − xj∣ + (N + 1)
N

∑
k=1

V(xk)
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The "Jellium"

A�ention ! Jellium has several meaning in statistical physics, o�en related to the
idea of charge neutrality. For my model, this terminology is not standard (yet).

The jellium model corresponds toV(z) = Vν(z) = ∫ log ∣z−w∣dν(w), whereν ∈ P(C).

A positive, continuous distribution of charges a�racts the electrons. The system is
nearly neutral, the charge of ν is (N + 1). The system cannot be charge neutral in
infinite volume.
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Determinantal jellium

Définition
The determinantal jellium with N particles and background (N + 1)ν is a random
vector in C

N, with distribution

(x1, . . . , xN) ∼ 1
ZN

e
−2(∑i<j − log ∣xi−xj∣+(N+1)∑Nk=1V

ν(xk))dλCN

where ZN(V ,β) is a normalizing constant.

This model is expected to "look like" the zeros of a random polynomials with Gaus-
sian coe�icients, associated to ν (because the joint distributions look alike).
The macroscopic convergence is already known for this model

1
N

N

∑
k=1

δxk
a.s.
⟶
N→∞

ν
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Comparison
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Outliers for random polynomials

Theorem (B.– García-Zelada–Nishry–Wenmann (2021))

Let ν ∈ P(C), supported on a closed analytic Jordan curve Γ , with a real analytic
density on this curve.
LetΩ be a any of two components of C \ suppν.

ΦΩ,N
L
⟶
N→∞

BΩ

where BΩ is the Bergman process onΩ. In addition, the two limiting processes are
independent.

The limiting point process is the zero set of the Szegő random function of Ω

fΩ(z) =
+∞

∑
k=0

akψk(z) where the a ′ks are i.i.d. NC(0, 1)

and ψk’s O.N.B of H2(Γ ) for < f,g >= ∫Γ fḡdσΓ , where σΓ is the arclenght measure.
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Remarks

Results from B.–García-Zelada

– This result holds without any regularity condition on ν if it is radial.
– In the radial case, the result holds for any distribution of the coe�icients.

In the case where ν is supported on the unit circle, the Szegő function is

f(z) =
+∞

∑
k=0

akz
k, where the a ′ks are i.i.d. NC(0, 1).

Conjecture

The result should hold for any distribution on the coe�icients, and for reasonable
supports as in the jellium case.

We lack evidence to support this conjecture apart from the link with the jellium.
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Every point is an outlier
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Outliers of the jellium

Theorem (B.– García-Zelada–Nishry–Wenmann (2021))

Let ν ∈ P(C), be a "nice" measure.
LetΩ be a simply connected component C \ suppν.

XN ∩Ω
L
⟶
N→∞

BΩ

where BΩ is the Bergman process onΩ (DPP associated to the Bergman kernel ofΩ).

BΩ is the kernel of the orthogonal projection L2(Ω) → L2(Ω) ∩H.

∀z,w ∈ Ω, BΩ(z,w) =
∞

∑
k=0

φk(z)φk(w).

Radial case, without regularity condition: B.–García-Zelada.
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Nice measures, illustration by Alon Nishry

On the le�, on admissible measure, on the right, an illustration of what the jellium
should look like (not a simulation). The boundary of the components areCω curves,
and the densities with respect to Lebesgue or arclenght are smooth.

14 / 34



Illustration

φU ∶ D → U conformal map φU(BD) = BU

BD determinantal with kernel

BD(z,w) = 1
π(1 − zw̄)2

.

In particular, for any A ⊂ D

E(BD ∩A) = ∫
A

1
π(1 − ∣z∣2)2

d`(z).
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Bergman process in the unit disk
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Convergence of kernels: random polynomials

Random polynomials give a Gaussian field

(PN(z))z∈Ω Gaussian field, with correlation kernel CN(z,w) =
N

∑
k=0

Rk,N(z)Rk,N(w).

Multiplying the covariance kernel by any non-vanishing function does not chance
the distribution of the zeros.
Local uniform convergence of the kernel in Ω ×Ω implies the convergence of the
zeros as a point process.
It is su�icient to find a sequence of non-vanishing functions hn such that

hn(z)hn(w)CN(z,w) loc unif
⟶
N→∞

SΩ(z,w)

The zero set of the GAF with covariance kernel SΩ is the Bergman point process of
Ω (Peres–Virág)
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Determinantal Jellium: β = 2.

Theorem
The Coulomb gas with N particles, potential V and inverse temperature β = 2 is a
determinantal point process on C, with kernel associated to the Lebesgue measure

∀z,w ∈ C KN(z,w) =
N−1

∑
k=0

Qk,N(z)Qk,N(w)e−(N+1)(V (z)+V (w))

where the Qk,n’s are an orthonormal basis of L2(e−(N+1)V ) ∩ CN−1[X].

The kernel is not unique, for instance, one can add to V a complex phase of
the form iV1.
The Qk,N are not the Rk,N ! The inner products are

⟨P,Q⟩ = ∫
C
PQ̄e

−2(N+1)Vν
d` and ⟨P,Q⟩ = ∫

Γ
PQ̄e

−2NVν
dν
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Why are DPPs so convenient?

Local convergence of the kernels ⟹ Weak convergence of point processes (law
of number of points in compact sets)

We have some freedom in the choice of the kernel KN (for the complex phase), and
we want to find a good sequence such that, locally uniformly in Ω ×Ω

KN(z,w) loc unif
⟶
N→∞

BΩ(z,w).
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Sketch of proof

Step 1: the key inequality Using reproducing kernel properties, one can show
that, if Ω is simply connected

∀z ∈ Ω,∀N ∈ N, KN(z, z) ≤ BΩ(z, z)

and for random polynomials, if ν is supported on a curve and hN is nonvanishing
and holomorphic

∀z ∈ Ω,∀N, ∣hN(z)∣2CN(z, z) ≤ S(z, z).

If you chose the kernels to be holomorphic in z and w̄, Montel’s theorem implies
that the kernels form a normal family. Hence you only have to show pointwise
convergence on the diagonal to identify the local uniform limit.
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Making kernels holomorphic

Jellium: As Vν is harmonic on Ω (simply connected), there exists an harmonic
conjugate iV1 such that V = V

ν + iV1 is holomorphic.

Random polynomials: By analogy with the jellium, we choose hN(z) = eNV (z)
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Reduction to pointwise convergence of orthogonal polynomials (Hard part)

Step 2: Pointwise convergence of orthogonal polynomials.
For random polynomials: The kernel does not depend on the choice of the orthonor-
mal basis. Our goal is to find a good basis of the Hardy space H2(Γ ), (ψk)k∈N and
orthonormal bases of CN[X] ∩ L2(e−2NVν

dν) such that for fixed k

∣Rk,N(z)∣2e−2NVν(z)
⟶
N→∞

∣ψk(z)∣2.

For the Jellium, the idea is the same but the scalar products are di�erent. If (ψk)k∈N
is a "good" orthonormal basis of L2(Ω) ∩ H and Qk,N is an O.N.B. of CN[X] ∩
L

2(e−2(N+1)Vν
d`,Ω)

∣Qk,N(z)∣2e−2(N+1)Vν(z)
⟶
N→∞

∣φk(z)∣2.
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How do we obtain the asymptotic?

Starting point: (φk)k∈N orthonormal in L2(Ω) ∩H. For simplicity, imagine thatΩ
is the unbounded component.

1. Extend these functions in a larger domain Ω ′ and multiply by a cuto� χ to
define the function on C. Fk,N(z) = χ(z)φk(z)e(N+1)V (z)

2. the Fk,N are orthonormal in L2(e−2(N+1)Vν
d`,Ω), but they are not polynomials

and are not holomorphic.
3. ∂̄ magic: there exists a correction vk,N with small L2 norm such that
Fk,N − vk,N is holormorphic on C

+ Liouville Theorem (f entire, ∣f(z)∣ ≤ C∣z∣k ⟹ f polynomial or degree ≤ k.)
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∂̄ magic

Theorem (∂̄ Hörmander estimates)

Under some regularity assumptions on the weight φ, for any f ∈ L∞(C), there exists a
solution v ∶ C → C to the equation ∂̄v = f such that

∫
C
∣v(z)∣2e−φ(z)

dm(z) ≤ ∫ ∣f(z)∣2 e
−φ(z)

∆φ(z)dm(z).

We apply this theorem with φ = 2κNV
ν and f = ∂̄Fk,N, so we get ∂̄(Fk,N − v) = 0 .

We cannot apply Hörmander’s theorem directly, but we can make it work a�er some
mollifications.
For random polynomials, the ideas are the same, but one need to show that Γ can
be thickened a li�le to apply the cuto�.
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End of proof

The polynomials Q̃k,N = Fk,N−vk,N di�er from an orthonormal system by a quan-
tity with norm going to zero.

We apply the Gram–Schmidt procedure to this family and we obtain an orthonor-
mal basis Qk,N which has the same convergence properties as the Fk,N.

The continuity of the Gram-Schmidt algorithm gives

∣Qk,N(z)∣2e−2(N+1)Vν(z)
⟶
N→∞

∣φk(z)∣2
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Jellium in the non-simply connected case

Théorème (B.–García-Zelada–Nishry–Wenmann)

Let ν be a nice measure, and letΩ be a l-connected component of C \ supp ν. We fix
z1, . . . , zl in each of the hole inΩ and we write q1, . . . ,ql the charge of this
components. Assume that

(e2iπ(N+1)q1 , . . . , e2iπ(N+1)ql) ⟶
subsequence

(e2iπQ1 , . . . , e2iπQl)

then
{x1, . . . , xn} ∩Ω

L
⟶

subsequence
BΩ,Q

where BΩ,Q is the Bergman process onΩ associated to the weight ∏l
k=1 ∣z − zk∣−2qk .

The outliers process does not converge (in general), but we know all the possible
limits of subsequences.

The limiting process is a DPP associated to the kernel of
the projection L2(∏l

k=1 ∣z − zk∣−2qk1Ω)⟶ L
2(∏l

k=1 ∣z − zk∣−2Qk1Ω) ∩H.
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Two circles with charge (N + 1)q and (N + 1)(1 − q)
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Practical case

Three domains can be considered here: 1) the inner disk, 2)the middle annulus and
3) the exterior of the disk.

1. For the inner disk, the theorem applies directly as it is simply connected.
2. For the middle annulus, the convergence of the outlier process will depend on

the convergence of e2iπ(N+1)q
→ e

2iπQ.
3. For the unbounded component, the convergence will depend on the

convergence of e2iπ(N+1), which is for free.
For the annulus, we can compute the possible intensities in the limit

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q = 0 B(z, z) = 1
2∣z∣2π log 2

+∑k∈Z\{−1}
k+Q+1

π(1−0.52k+2Q+2) ∣z∣
2(k+Q)

Q ∈ (0, 1) BQ(z, z) = ∑k∈Z k+Q+1
π(1−0.52k+2Q+2) ∣z∣

2(k+Q)
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Practical case

Three domains can be considered here: 1) the inner disk, 2)the middle annulus and
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Can you spot the di�erence? Q = 0
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Can you spot the di�erence? Q = 2/3
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Can you spot the di�erence? Q = 0.9
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It was a trap. The di�erence is of order 10−11.
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Thank you for
your attention.



How do we get the key inequality?

Ω is simply connected and Vν is harmonic on Ω
⟹ there is a function V1 such that V0 = V

ν + iV1 is holomorphic on Ω.

Variational formula for the Bergman kernel, ρ non-vanishing holomorphic on Ω.

BΩ(z, z) = sup
f∈L2(Ω)∩H

∣f(z)∣2

∫Ω ∣f(z)∣2dz
= sup
g∈L2(U,∣ρ∣2)∩H

∣g(z)∣2∣ρ(z)∣2

∫U ∣g(z)∣2∣ρ(z)∣2dz

One can also easily show that

KN(z, z) =
N−1

∑
k=0

Qk,N(z)Pk,N(z)e−κN(V0(z)+V0(z))
= sup
CN−1[X]

∣P(z)∣2e−2κNV (z)

∫C ∣P(z)∣2e−2κNVν(z)dz

Chose ρ(z) = e−κNV0(z) and you get

∀z ∈ U,∀N ∈ N, KN(z, z) ≤ BU(z, z).
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On word in the non-simply connected case

How can a weighted Bergman kernels appear?
What is the di�erence with the simply connected case?

As Vν is harmonic on Ω, there exists a holormorphic function on Ω such that

V(z) +
l

∑
j=1

κNqj log ∣z − zi∣ = Re(V0(z))

This leads to

e
−κN(Vν(z)+iVi(z))

=

l

∏
j=1

∣z − zi∣−[κNqj]e−κNV0(z)

And we can get the corresponding inequality

∀z ∈ Ω,∀N ∈ N,KN(z, z) ≤ BΩ,[κNq](z, z).
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