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Sub-Riemannian Laplacian

(M,D, g) sub-Riemannian (sR) structure:

M smooth connected manifold of dimension n

m ∈ IN∗, D = Span(X1, . . . ,Xm) ⊂ TM (horizontal distribution: sub-sheaf)

sR metric defined by

∀q ∈ M ∀v ∈ Dq gq(v , v) = inf

{ m∑
i=1

u2
i

∣∣∣ v =
m∑

i=1

ui Xi (q)

}

Examples:
n = 3, m = 2

(flat) 3D contact case: X1 = ∂x , X2 = ∂y + x ∂z (also called 3D Heisenberg)

(flat) Martinet case: X1 = ∂x , X2 = ∂y + x2

2 ∂z

n = 2, m = 2 (“almost-Riemannian” case)

(flat) Baouendi-Grushin case: X1 = ∂x , X2 = x ∂y

(flat) p-Grushin case: X1 = ∂x , X2 = xp∂y



Sub-Riemannian Laplacian

(M,D, g) sub-Riemannian (sR) structure:

M smooth connected manifold of dimension n

m ∈ IN∗, D = Span(X1, . . . ,Xm) ⊂ TM (horizontal distribution: sub-sheaf)

sR metric defined by

∀q ∈ M ∀v ∈ Dq gq(v , v) = inf

{ m∑
i=1

u2
i

∣∣∣ v =
m∑

i=1

ui Xi (q)

}

µ: arbitrary smooth measure on M

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

(X∗i : adjoint in L2(M, µ))
3D contact: 4 = ∂2

x + (∂y + x ∂z )2

Martinet: 4 = ∂2
x + (∂y + x2

2 ∂z )2

Grushin: 4 = ∂2
x + x2∂2

y



Sub-Riemannian Laplacian

Equivalent definitions:

−4 = selfadjoint nonnegative operator on L2(M, µ), Friedrichs extension of the
Dirichlet integral

Q(φ) =

∫
M
‖dφ‖2

g∗ dµ φ ∈ C∞c (M)

(
g∗(ξ, ξ) = max

v∈Dq\{0}

〈ξ, v〉2

gq (v, v)
cometric associated with g

)

4φ = divµ (∇sRφ) where:

divµ defined by LX dµ = divµ(X) dµ ∀X vector field on M

∇sR horizontal gradient defined by gq(∇sRφ(q), v) = dφ(q).v ∀v ∈ Dq

note that ‖dφ‖g∗ = ‖∇sRφ‖g



Hörmander operators

More generally:

X0 smooth vector field on M, c smooth function on M, bounded above

4 =
m∑

i=1

X 2
i + X0 + c id

→ operator on L2(M, µ)

Remark: 4 symmetric ⇔ X0 =
∑m

i=1 divµ(Xi )Xi



Hörmander operators

More generally:

X0 smooth vector field on M, c smooth function on M, bounded above

4 =
m∑

i=1

X 2
i + X0 + c id

Under Hörmander’s assumptiona

Lie(D) = Lie(X1, . . . ,Xm) = Span(Xi , [Xi ,Xj ], [Xi , [Xj ,Xk ]], . . .) = TM

the operator −4 is locally subelliptic:

‖u‖H2/r 6 C(‖4u‖L2 + ‖u‖L2 ) (local subellipticity estimate)

i.e., gain of Sobolev regularity (r = 2 for 3D contact and Grushin, r = 3 for Martinet).

a
The weakest condition Lie(X0, X1, . . . , Xm) = TM is enough for subellipticity.



Hörmander operators

More generally:

X0 smooth vector field on M, c smooth function on M, bounded above

4 =
m∑

i=1

X 2
i + X0 + c id

Here, r(q) = degree of nonholonomy at q, defined by:

D0 = {0}, D1 = D = Span(X1, . . . ,Xm)

Dk+1 = Dk + [D,Dk ] for k > 1 (sequence of sub-sheafs Dk ⊂ TM)

sR flag at q: {0} = D0
q ⊂ Dq = D1

q ⊂ D2
q ⊂ . . . ⊂ Dr(q)−1

q ( Dr(q)
q = TqM

Example: 3D contact

X1 = ∂x , X2 = ∂y + x∂z

[X1, X2] = ∂z

→ r = 2

Example: Martinet

X1 = ∂x , X2 = ∂y + x2
2 ∂z

[X1, X2] = x∂z , [X1, [X1, X2]] = ∂z

→ r =

{
3 along x = 0
2 outside (contact)

Example: Baouendi-Grushin

X1 = ∂x , X2 = x∂y

[X1, X2] = ∂y

→ r =

{
2 along x = 0
1 outside (Riemannian)



sR flag

sR flag at q: {0} = D0
q ⊂ Dq = D1

q ⊂ D2
q ⊂ . . . ⊂ Dr(q)−1

q ( Dr(q)
q = TqM

r(q): degree of nonholonomy at q

ni (q) = dim Di
q Q(q) =

r∑
i=1

i(ni (q)− ni−1(q)) =
n∑

i=1

wi (q) “homogeneous dimension” at q

= Hausdorff dimension around q if q regular

q is regular if all dim Di are locally constant. The sR structure is equiregular if all points are regular.

SR weights at q:

w1(q) = · · · = wn1 (q) = 1
wn1+1(q) = · · · = wn2 (q) = 2

.

.

.
wnr−1+1(q) = · · · = wnr (q) = r

Example: 3D contact case

X1 = ∂x X2 = ∂y + x∂z

[X1, X2] = ∂z

→ equiregular

w1 = w2 = 1, w3 = 2

Q = 4

Example: 3D Martinet case

X1 = ∂x X2 = ∂y + x2
2 ∂z

[X1, X2] = x∂z [X1, [X1, X2]] = ∂z

→ singular at x = 0 (and contact outside)

w1 = w2 = 1, w3 =

{
3 on x = 0
2 outside

Q =

{
5 on x = 0
4 outside



Heat kernel

Heat kernel e = e4,µ : (0,+∞)×M ×M → (0,+∞)

(density of the Schwartz kernel of et4 w.r.t. µ)



Heat kernel

Heat kernel e = e4,µ : (0,+∞)×M ×M → (0,+∞)

(density of the Schwartz kernel of et4 w.r.t. µ)

Lower and upper exponential estimates are known (on any compact):

C1(q)

tQ(q)/2
e−dsR(q,q′)2/(4−ε)t 6 e(t , q, q′) 6

C2(q)

tQ(q)/2
e−dsR(q,q′)2/(4+ε)t

(Varopoulos, Kusuoka Stroock, Jerison Sanchez-Calle, Cheeger Gromov Taylor, Saloff-Coste, Coulhon Sikora, Grigor’yan)

First objective

Establish small-time expansions for the heat kernel near the diagonal.



Spectral properties of sR Laplacians
In the selfadjoint case:

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

On M compact, under Hörmander’s assumption, −4 has a discrete spectrum

0 = λ0 < λ1 6 · · · 6 λj 6 · · · → +∞

Let (φj )j∈IN be an orthonormal eigenbasis of L2(M, µ).

Second objective

Derive (micro-)local Weyl laws, i.e., compute an expansion for t > 0 small of

Tr(f et4) =

∫
M

f (q) e(t , q, q) dµ(q) =
+∞∑
j=0

e−λj t
∫

M
fφ2

j dµ

(or, in microlocal version, replace f with Op(a))

and infer the asymptotics of the spectral counting function N(λ) = #{j | λj 6 λ}



Spectral properties of sR Laplacians
In the selfadjoint case:

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

On M compact, under Hörmander’s assumption, −4 has a discrete spectrum

0 = λ0 < λ1 6 · · · 6 λj 6 · · · → +∞

Let (φj )j∈IN be an orthonormal eigenbasis of L2(M, µ).

Note that (Fefferman Phong 1981)

C1

∫
M
λQ(q) dµ(q) 6 N(λ) 6 C2

∫
M
λQ(q) dµ(q)

hence in the equiregular case C1λ
Q 6 N(λ) 6 C2λ

Q. Actually by Métivier 1976, N(λ) ∼ CstλQ.



Spectral properties of sR Laplacians
In the selfadjoint case:

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

On M compact, under Hörmander’s assumption, −4 has a discrete spectrum

0 = λ0 < λ1 6 · · · 6 λj 6 · · · → +∞

Let (φj )j∈IN be an orthonormal eigenbasis of L2(M, µ).

Second objective

Derive (micro-)local Weyl laws.

Establish Quantum Ergodicity (QE) properties, i.e., behavior of µj = |φj |2 dµ for
highfrequencies.



Nilpotentization

Nilpotentization of the sR structure (M,D, g) at q ∈ M :

(M̂q , D̂q , ĝq) = Gromov-Hausdorff tangent space

→ this is the good notion of tangent space in sR geometry.

Thanks to a chart of privileged coordinates at q (exponential coordinates):

M̂q is identified with IRn endowed with dilations

δε(x) =
(
εw1(q)x1, . . . , ε

wn(q)xn

)
D̂q = Span(X̂ q

1 , . . . , X̂
q
m) with

X̂ q
i = lim

ε→0
εδ∗εXi

(“nonholonomic first-order approximation”)

µ̂q = lim
ε→0

1
εQ(q)

δ∗εµ = Cst(q) dx



Nilpotentization

Nilpotentization of the sR structure (M,D, g) at q ∈ M :

(M̂q , D̂q , ĝq) = Gromov-Hausdorff tangent space

→ this is the good notion of tangent space in sR geometry.

Nilpotentized sR Laplacian: 4̂q =
m∑

i=1

(
X̂ q

i

)2

→ heat kernel: êq = e4̂q ,µ̂q : (0,+∞)× M̂q × M̂q → IR

Remark: Homogeneity

êq(t , x , x ′) = εQ(q) êq(ε2t , δε(x), δε(x ′)) ∀ε ∈ IR



Heat kernel asymptotics

Theorem (Colin de Verdière Hillairet Trélat, Ann. H. Leb. 2021)

In local privileged coordinates at q ∈ M arbitrary, for every N ∈ IN∗:

tQ(q)/2 e
(

t , δ√t (x), δ√t (x ′)
)

= êq(1, x , x ′) +
N∑

i=1

ai (x , x ′)t i/2 + o(tN )

as t → 0+, in C∞(M ×M) topology, with aj smooth and a2j−1(0, 0) = 0.

q need not be regular.

If q is regular then the asymptotic expansion is locally uniform wrt q.

Still valid for4 =
m∑

i=1
X 2

i + X0 + c id, provided that:

either X0 smooth section of D;

or X0 smooth section of D2, and then replace 4̂q with 4̂q + X̂ q
0 .



Heat kernel asymptotics

Theorem (Colin de Verdière Hillairet Trélat, Ann. H. Leb. 2021)

In local privileged coordinates at q ∈ M arbitrary, for every N ∈ IN∗:

tQ(q)/2 e
(

t , δ√t (x), δ√t (x ′)
)

= êq(1, x , x ′) +
N∑

i=1

ai (x , x ′)t i/2 + o(tN )

as t → 0+, in C∞(M ×M) topology, with aj smooth and a2j−1(0, 0) = 0.

x = x ′ = 0⇒ expansion of the kernel along the diagonal, and

e(t , q, q) ∼
êq(1, 0, 0)

tQ(q)/2
= êq(t , 0, 0)

→ useful to derive the local Weyl law.
Generalization of results by Métivier (1976), Ben Arous (1989).

estimations near the diagonal→ microlocal Weyl law and singular sR structures.



Heat kernel asymptotics

Idea of the proof: (in a chart) Xεi = εδ∗εXi → X̂ q
i

4ε = ε2δ∗ε4(δε)∗ = −
m∑

i=1

(Xεi )∗Xεi = 4̂q + εA1 + ε2A2 + · · ·

⇒ et4ε → et4̂q
pointwise (Trotter-Kato)

⇒ eε −→
ε→0+

eq in C−∞([t0, t1]× K × K )

Note that eε(s, x , x ′) = εQ(q)e(ε2s, δε(x), δε(x ′)).

By uniform local subelliptic estimates: et4ε is locally uniformly smoothing for
t ∈ [t0, t1] (t0 > 0), i.e., it maps any local Sobolev space to any local Sobolev
space, uniformly wrt ε.

Then (eε)ε∈(0,ε0) is bounded in C∞((0,+∞)× IRn × IRn)

⇒ eε −→
ε→0+

eq in C∞((0,+∞)× IRn × IRn) (Montel space)

Hypoelliptic version of the Kac principle: asymptotics of heat kernels is purely
local (“not feeling the boundary”)



Heat kernel asymptotics

Asymptotic expansion in ε: as in [Barilari, JMS 2013]

et4ε = et4̂q
+

∫ t

0
e(t−s)4ε (4ε − 4̂q)es4̂q

ds

= et4̂q
+ et4ε ?

(
(4ε − 4̂q)et4̂q)

= et4̂q
+ ε et4̂q

?A1et4̂q︸ ︷︷ ︸
C1(t)

+ε2 et4̂q
?
(
A2et4̂q

+A1C1(t)
)

︸ ︷︷ ︸
C2(t)

+ · · ·

= et4̂q
+

N∑
i=1

εiCi (t) + o(εN )

and then take Schwartz kernels.

Main difficulty here: proving that Ci (t) is smoothing requires to establish global
smoothing properties of et4̂q

in Sobolev spaces with polynomial weights, and global
continuous embeddings. → difficult, long and technical

An important tool is the Kannai transform: Cheeger Gromov Taylor, Coulhon Sikora. Cf also Eckmann Hairer.



(Micro-)local Weyl measure

M compact

Local Weyl measure = probability measure w4 on M defined (if the limit exists) by

∫
M

f dw4 = lim
t→0+

Tr
(
f et4)

Tr
(
et4

) = lim
t→0+

∫
M e(t , q, q)f (q) dµ(q)∫

M e(t , q, q) dµ(q)
∀f ∈ C0(M)

i.e.,
w4 = weak lim

t→0+

e(t , q, q)∫
M e(t , q′, q′) dµ(q′)

µ

Microlocal Weyl measure = probability measure W4 on S?M defined (if the limit exists) by

∫
S?M

a dW4 = lim
t→0+

Tr
(

Op(a)et4
)

Tr
(
et4) ∀a ∈ S0(S?M)



(Micro-)local Weyl measure

Equivalent definition (by the Karamata tauberian theorem):

−4φj = λjφj , (φj )j∈IN∗ orthonormal eigenbasis of L2(M, µ), 0 = λ0 < λ1 6 · · · 6 λj 6 · · · → +∞

Spectral counting function: N(λ) = #{k | λj 6 λ}

Local Weyl measure = probability measure w4 on M defined (if the limit exists) by∫
M

f dw4 = lim
λ→+∞

1
N(λ)

∑
λj6λ

∫
M

f |φj |2 dµ ∀f ∈ C0(M)

i.e., w4 = weak lim
λ→+∞

1
N(λ)

∑
λj6λ

|φj |2 µ (Cesàro mean)

Microlocal Weyl measure = probability measure W4 on S?M defined (if the limit exists) by

∫
S?M

a dW4 = lim
λ→+∞

1

N(λ)

∑
λj6λ

〈
Op(a)φj , φj

〉
L2(M,µ)

∀a ∈ S0(S?M)



Local Weyl law in the equiregular case

Theorem

In the equiregular case, the local Weyl measure w4 exists, is smooth, and

dw4
dµ

(q) =
êq(1, 0, 0)∫

M êq′ (1, 0, 0) dµ(q′)

Proof: Along the diagonal, tQ/2e(t , q, q) −→ êq(1, 0, 0) as t → 0+.

Remark: Since w4 is smooth, it differs in general from HS (which is not smooth
in general for n > 5, see [Agrachev Barilari Boscain 2012])

Consequence: N(λ) ∼
∫

M êq(1, 0, 0) dµ(q)

Γ(Q/2 + 1)
λQ/2 as λ→ +∞ (Q: Hausdorff dim)

This asymptotics was already known by Métivier 1976. Example: 3D contact case, N(λ) ∼ 1
32λ

2.

Microlocal Weyl law: we can compute it explicitly.



Singular sR structures

The singular set is the closed subset of M defined by

S = {q ∈ M | Q(q) > inf
q′∈M

Q(q′)}.

In addition to the sR flag {0} = D0
q ⊂ Dq = D1

q ⊂ D2
q ⊂ . . . ⊂ Dr(q)−1

q ( Dr(q)
q = TqM,

we now also consider the sR flag restricted to S :

{0} ⊂
(

D1(q) ∩ TqS
)
⊂ · · · ⊂

(
Dr(q)−1(q) ∩ TqS

)
⊂
(

Dr(q)(q) ∩ TqS
)

= TqS

Definition (following Gromov): S is an equisingular smooth submanifold of M if all integers
ni (q) = dim Di

q and nS
i (q) = dim

(
Di

q ∩ TqS
)

are constant as q ∈ S . In particular:

QS =
r∑

i=1

i(nS
i − nS

i−1)

is the Hausdorff dimension of S . (Ghezzi Jean, 2015)



Two simple singular sR structures

Baouendi-Grushin case (with no tangency points):

Local model: X = ∂x , Y = x∂y , S = {x = 0}.

QS = QM\S = 2

Regular Martinet case:

Local model: X = ∂x , Y = ∂y + x2

2 ∂z , S = {x = 0}.

QS = QM\S = 2

In both cases, there is a smooth measure ν on S , canonically inferred from µ.



Two simple singular sR structures

Small-time expansion of the local Weyl law at any order:

Baouendi-Grushin:

Tr(f et4) =

∫
M

f (q) e(t, q, q) dµ(q) =
ln 1

t

t
F1(t) +

1
t

F0(
√

t) ∀t > 0

=

(
1

4π

∫
S

f dν
)

ln 1
t

t
+

1
4π

(
p.f.
∫

M\S
f dP + (γ + 4 ln 2)

∫
S

f dν

)
1
t

+ o
(

1
t

)

(intrinsic two-terms expansion)

Martinet:

Tr(f et4) =
ln 1

t

t2
F1(t) +

1
t2

F0(
√

t) =

(
1
16

∫
S

f dν
)

ln 1
t

t2
+ o

(
ln 1

t

t2

)

Consequence: w4 = ν
ν(S)

and Weyl law:

Baouendi-Grushin : N(λ) ∼
ν(S)

4π
λ lnλ Martinet : N(λ) ∼

ν(S)

32
λ2 lnλ

⇒ spectral concentration on the singular manifold S

In the Baouendi-Grushin case the asymptotics of the Weyl law was known by Menikoff Sjöstrand 1978.



Generalization (equisingular case)

Theorem:

If S is an equisingular smooth submanifold of M and if the horizontal distribution D is
S -nilpotentizable (i.e., D ∼ D̂q for every q ∈ S ) then

Tr(f et4) =
1

tQM\S /2
F0(t)︸ ︷︷ ︸

“equiregular part”

+
1

tQS /2
F1(
√

t) +
ln 1

t

tmin(QM\S ,QS )/2
F2(
√

t) ∀t > 0

IfQS > QM\S then dominating term in 1

tQS /2
, smooth Weyl measure supported on S ,

of density a “transverse trace” of et4̂q
, and N(λ) ∼ CstλQ

S /2 with an explicit Cst.

IfQS = QM\S then dominating term in
ln 1

t

tQS /2
, smooth Weyl measure supported on S ,

of density given in terms of a “double nilpotentization” of the heat kernel (one nilp. in S , one

nilp. in M \S ), and N(λ) ∼ CstλQ
S /2 lnλ with an explicit Cst.

IfQS < QM\S then dominating term in 1

tQ
M\S /2

: the equiregular part dominates,

smooth Weyl measure not concentrated, and N(λ) ∼ CstλQ
M\S /2 with an explicit Cst.



Strategy of proof:

“(J + K )-decomposition” of I(t) = Tr(f et4) =
∫

M f (t , q) e(t , q, q) dq:

Write I(t) = J(t) + K (t) with

J(t) =

∫
B(S ,

√
t)

f (q′) e(t , q′, q′) dq′ K (t) =

∫
M\B(S ,

√
t)

f (q′) e(t , q′, q′) dq′

Setting q′ = δS√
t
(y),

J(t) =
1

tQS /2

∫
S×Bn−k

f
(
δ

S√
t (y)
)

(
√

t)Q
M (S ) e

(
t, δS√

t (y), δS√
t (y)
)

︸ ︷︷ ︸
=êq (1,y,y)+··· by the fundamental lemma

dy =
FJ (
√

t)

tQS /2

Expanding K (t) is much more difficult and requires to perform a “double
nilpotentization” of e: one on S and the other outside of S .
Nilpotentizability ensures that the double limit is well defined.



Generalization (equisingular stratified case)

Theorem

If S is Whitney stratifiable, with strata Si that are equisingular smooth submanifolds of
M and if D is S -nilpotentizable then

Tr(f et4) =
1

tQM\S /2
F0(t)︸ ︷︷ ︸

“equiregular part”

+
s∑

p=0

lnp 1
t

tQp/2
Fp(
√

t) ∀t > 0

whereQ0 < · · · < Qs are the Hausdorff dimensions of the stratification (including M \S ), and

Tr(f et4) =

(∫
M

f dν
)

ln`−1 1
t

tQs/2
+ o

(
ln`−1 1

t

tQs/2

)
and N(λ) ∼ λQ

s
ln`−1

λ

where ` is the number of Hausdorff dimensionsQSi equal to the maximumQs .

The measure ν is supported on S1 ∪ · · · ∪Si ifQSi = Qs > max(QS1 , . . . ,QSi−1 ) = Qs−1.
Its density is expressed in terms of ”multiple nilpotentizations” of the heat kernel.



Consequence: Quantum Ergodicity (QE) properties

If Qs > QM\S then “almost all” (density-one) probability measures µj = |φj |2 dµ
concentrate on S for highfrequencies (i.e., their “essential” weak limits are supported
on S ).

QE property in the Baouendi-Grushin case

In the Baouendi-Grushin case, if S is connected with at most one tangency point,
there is only one “essential” weak limit, which is the Weyl measure.

→ First example in sR geometry of a QE result with a limit measure that is singular.

→ In the 3D contact, we had already established the QE property, under the assumption that
the Reeb flow be ergodic (cf Colin de Verdière Hillairet Trélat, Duke 2018).



When nilpotentizability fails

Ongoing work: when S is Whitney stratifiable with polynomial singularities
but D fails to be S -nilpotentizable,

Tr(f et4) ∼
t→0+

Cst
lnk 1

t

t r
and N(λ) ∼

λ→+∞
λr lnk λ

for some k ∈ {0, 1, . . . , n} and r ∈ Q s.t. r > Q
M\S

2 .

But the geometric characterization of r remains to be found as well as the measure
concentration rule.



Some examples of singular sR structures

name definition asymptotics concentration on N

k -Grushin X1 = ∂1, X2 = xk
1 ∂2 (k > 1)

ln 1
t

t if k = 1
1

tk+1 if k > 2
N = S = {x1 = 0}

Sing. k -Grushin
X1 = ∂1, X2 = (xk

1 − x2)∂2

(k > 2)

ln 1
t

t ∀k > 2 N = S = {x2 = xk
1 }

X1 = ∂1, X2 = (x2p
1 + x1yk

1 )∂2

p, k ∈ IN∗

ln2 1
t

t if k = 1
1

t
p+ 1

2−
2p−1

2k
if k > 2

N = {(0, 0)}
⊂ S = {x2p

1 + x1yk
1 = 0}

X1 = ∂1, X2 = (x2
1 − x3

2 )∂2
1

t7/6 N = {(0, 0)} ( S = {x2
1 = x3

2}

Martinet X1 = ∂1, X2 = ∂2 + x2
1∂3

ln 1
t

t2
N = S = {x1 = 0}

Nilp. tang. hyp. X1 = ∂1, X2 = ∂2 + x2
1 x2∂3

ln2 1
t

t2
N = {x1 = x2 = 0}

( S = {x1x2 = 0}

Ghezzi Jean

X1 = ∂1

X2 = ∂2 + x1∂3 + x2
1∂5

X3 = ∂4 + (xk
1 + xk

2 )∂5 (k > 2)

1
t7/2 if k = 2

ln 1
t

t7/2 if k = 3

1

t
2+ k

2
if k > 4

N = IR5 ) S = {x1 = x2 = 0}

N = S = {x1 = x2 = 0}

N = S = {x1 = x2 = 0}



Even more exotic Weyl laws
Consider the local model

X = ∂x Y =
(

x2 + g(y)
)
∂y

with g smooth, g(0) = 0 and g(y) > 0 if y 6= 0. We compute

Tr(f et4) ∼
Cst

t3/2
g−1(t) +

Cst

t

∫ 1

t

du
√

ug′(g−1(u))
+

Cst
√

t

∫ 1

t

du

ug′(g−1(u))

We obtain interesting examples by taking g flat at 0
→ kind of flat perturbation of the 2-Grushin case.

g(y) Tr(f et4) ∼ Cst × N(λ) ∼ Cst ×

1
e1/|y|α , α > 0

1

t3/2
(

ln 1
t

)1/α

λ3/2

(lnλ)1/α

1

eβe1/|y|α , α, β > 0
1

t3/2
(

ln ln 1
t1/β

)1/α

λ3/2√(
ln lnλ1/β

)1/α

1
exp[k ] |y |

=
1

ee...e
1/|y|

1

t3/2 ln[k ] 1
t

λ3/2

ln[k ] λ
=

λ3/2

ln · · · lnλ

e−
ln2 y

y
ln2 ln 1

t

t3/2 ln 1
t

λ3/2 ln2 lnλ

lnλ



Even more exotic Weyl laws

Consider the local model

X1 = ∂1 X2 = ∂2 + x1∂3 + x2
1∂5 X3 = ∂4 + e−1/(x2

1 +x2
2 )∂5

We compute

Tr(f et4) ∼ Cst
e1/t

t
N(λ) ∼ Cst

e2
√
λ

λ1/4

Non-standard Weyl law.



Perspectives: spectral issues in sR geometry

Can we find a sR case whose Weyl law has an “arbitrary” asymptotics? (inverse problem)

Does there exist an intrinsic interpretation of the coefficients of the local Weyl law, in terms
of curvatures, like in the Riemannian case?

Find spectral invariants in sR geometry (Reeb periods in the 3D contact case).

Quantum Ergodicity properties for more general sR cases?

Application to controllability, observability:
Subelliptic wave equations are never observable (Letrouit, 2021).

Subelliptic heat/Schrödinger equations can be observable, with a minimal time
(Beauchard, Cannarsa 2014 ; Duprez Koenig 2020 ; Burq Sun 2020),
but still no geometric picture.

Trace formulas in sR geometry (Melrose 1984, Savale 2020, Letrouit ongoing)


