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Part I

The Lagrangian approach
to fluid mechanics



I. Fluid mechanics

Fix a (finite dimensional) closed Riemannian manifold M of
dimension d , and call µ its measure.
Consider D some space of maps M → M, and Dµ ⊂ D some space
of volume-preserving diffeomorphisms.

We think of points in D as fluid configurations, of curves in D as
fluid motions. The objective is to define Brownian fluids (and more
general stochastic fluids).



I. Fluid mechanics

I Point in D ↔ map
I Curve in D ↔ flow
I Tangent vector at id ∈ D ↔ vector field
I Tangent vector at φ ∈ D ↔ vector field rooted at φ.



I. Fluid mechanics

I Point in D ↔ map
I Curve in D ↔ flow
I Tangent vector at id ∈ D ↔ vector field
I Tangent vector at φ ∈ D ↔ vector field rooted at φ.



I. Fluid mechanics

For some Riemannian metric on D, the geodesics follow the
inviscid Burgers equation: every fluid particle goes straight ahead
(we may have immediate collision).

∇φ̇φ̇ = 0, ∇φ̇(x)
(
φ̇(x)

)
= 0 for all x ∈ M.



I. Fluid mechanics

For the same Riemannian metric restricted to Dµ, the geodesics
follow the incompressible inviscid Euler equations: the fluid
particles cannot collide (they have an associated volume) but try
to go straight ahead as much as possible.

∇φ̇φ̇ = −∇p.



I. Fluid mechanics

Objective: define a common framework for classical fluids,
Brownian fluids, stochastic perturbations of classical fluids, and
possibly more.
Solution: the Cartan development



Part II

Stochastic processes
on manifolds



II. Stochastic processes on manifolds

Brownian motion is the process with generator 1
2∆M .

Locally, up to order 1, ∆M is a sum of squares: if
(X1(x), . . . ,Xd (x)) is an orthonormal basis at each point,

∆M f = X1 · (X1 · f ) + · · ·+ Xd · (Xd · f ) + X0 · f ,

for some vector field X0. It means the Brownian motion x satisfies

dxt = X1(xt) ◦ dW 1
t + · · ·+ Xd (xt) ◦ dW d

t + X0(xt)dt.



II. Stochastic processes on manifolds

Somewhat unsatisfactory for a few reasons.
I Arbitrary choice for the basis; we break the symmetry.
I X0 depends on the choice of basis.
I Patching the local SDEs requires a higher-dimensional noise.

? ?



II. Stochastic processes on manifolds

Idea of Eells, Elworthy and Malliavin: enlarge the space to the
orthonormal frame bundle OM.
u = (x , u) is a point x on the manifold together with some
orthonormal basis

(
u(εi )

)
i at x (u : Rd → TxM is an isometry).

Informal equation:

dxt = ut(ε1) ◦ dW 1
t + · · ·+ ut(εd ) ◦ dW d

t , ∇dxtut = 0.
= ut( ◦ dWt)

Actual equation:

d(xt , ut) = H(xt , ut)︸ ︷︷ ︸
horizontal lift

◦ dWt .



II. Stochastic processes on manifolds

In fact, we can do much more than just Brownian motion: Cartan
development.

dut = H(ut)dzt

Geodesics:

zt = z0 + ż0t



II. Stochastic processes on manifolds

In fact, we can do much more than just Brownian motion: Cartan
development.

dut = H(ut)dzt

Brownian motion:

zt = Wt



II. Stochastic processes on manifolds

In fact, we can do much more than just Brownian motion: Cartan
development.

dut = H(ut)dzt

Kinetic Brownian motion:

ż = Brownian motion on the sphere



II. Stochastic processes on manifolds

The plan: Define infinite-dimensional versions O(µ) of the
orthonormal frame bundle, with smooth horizontal lifts

H(µ) : O × E︸︷︷︸
flat space

→ TO.

Then, for any flat motion z of your choosing, we can try to solve
the smooth controlled equation

dut = H(µ)(ut) ◦ dzt .



Part III

The infinite-dimensional
orthonormal bundle



III. Infinite-dimensional geometry

1. Topology
Recall M is a (finite-dimensional) closed Riemannian manifold of
dimension d , and fix s > d/2.
There is a way to define sections of regularity Hs for every given
bundle F over M, and they comes with a natural manifold
structure. For instance:

I the Hs vector fields over M are the Hs sections of TM;
I the Hs maps φ : M → M are the Hs sections of M ×M;
I the Hs “unrooted” vector fields are the Hs sections of

TM ×M.
We write Hs(F ) for the manifold of Hs -regular sections of F .



III. Infinite-dimensional geometry

1. Topology

Lemma (Omega lemma)
Pointwise operations are smooth.

Example:
For M an oriented surface, the operation R that sends

I a collection of vectors v(x) (a vector field v ∈ Hs(TM))
I and a collection of angles θ(x) (a function θ ∈ Hs(R×M))
I to the collection of vectors Rθ(x)(v(x)) rotated clockwise

(a vector field R(θ, v) ∈ Hs(TM))
is pointwise. By the Omega lemma, it is smooth.



III. Infinite-dimensional geometry

1. Topology
Recall s > d/2. Define

D :=
{
φ : M Hs

−→ M
}
,

Dµ :=
{
φ : M Hs+1

−−−→ M volume-preserving diffeomorphism
}
.

(Not obvious but true: Dµ is a submanifold of Ds+1.)
The tangent space at φ ∈ D is the space of Hs vector fields rooted
at φ, so the total tangent space is Hs(TM).
The tangent space at φ ∈ Dµ is the space of divergence-free Hs+1

vector fields rooted at φ.



III. Infinite-dimensional orthonormal bundle

2. Geometry
Metric = total kinetic energy.
For v ∈ TφD (vector field rooted at φ),

1
2 |v |

2
L2 = 1

2

∫
M
|v(x)|2dx .

Weak Riemannian structure: need not admit geodesics, a
connection, etc. However, in D(µ), it does!
In D, everything is easy because it works pointwise:

I t 7→ φt geodesic means t 7→ φt(x) geodesic for all x ;
I for t 7→ vt a vector field along t 7→ φt ,(

∇φ̇v
)
(x) = ∇φ̇(x)v(x).



III. Infinite-dimensional orthonormal bundle

2. Geometry

In Dµ, everything is also nice because the orthogonal projections
Pφ : TφD → TφD on the space of divergence-free vector fields
rooted at φ ∈ Dµ patch into a smooth P : TD|Dµ

→ TD.

Important difference: the geodesics are only defined locally.



Part IV

The infinite-dimensional
Cartan development



IV. Infinite-dimensional Cartan development

Pairs (φ, u), where φ : TidD(µ) → TφD(µ) is an isometry.
I Pointwise (easy) isometries: choose an isometry

e(x) : TxM → Tφ(x)M for each x , and compose at the target.
We write u = [e].

I Non-local (subtle) isometries: anything else.
For instance, move the energy across the Fourier modes.

There is an easy way to construct the pointwise orthonormal frame
bundle and the pointwise Cartan development. It turns out that
they are enough to construct the Cartan development in D, but
not in Dµ.



IV. Infinite-dimensional Cartan development
Because of the non-local character, it is not obvious that the set of
pairs (φ, u) should admit a manifold structure.

Trick: pull back the non-local issues to a fixed Banach space. For
any isometry u : TidD → TφD and collection e of isometries
e(x) : TxM → Tφ(x)M,

u = [e] ◦ ([e]−1 ◦ u)︸ ︷︷ ︸
=: u0

.

The space of triples (φ, e, u0) is a product

Hs(F )× Isom(TidD)

for F well-chosen, and Isom(TidD) inside to a fixed Banach space.

This is big enough to be used as a O(µ), and the horizontal lift H
over O is easily defined.



IV. Infinite-dimensional Cartan development

What about Dµ?
Rough idea: u = [e] ◦ u0 with

I e parallel transported with no constraint,
I u0 continuously adjusting to preserve the volume.

u

=

[e]

◦

u0

Actual construction technical but not clever; same as parallel
transport in finite-dimensional submanifolds.
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