Regularity properties of some infinite-dimensional hypoelliptic diffusions

Tai Melcher
University of Virginia

joint with Fabrice Baudoin and Masha Gordina

Stochastic Differential Geometry and Mathematical Physics
Henri Lebesgue Center
07 Jun 2021

Smooth measures

Definition

A measure μ on \mathbb{R}^{d} is smooth if μ is abs cts with respect to Lebesgue measure and the RN derivative is strictly positive and smooth - that is,

$$
\mu=\rho d m, \text { for some } \rho \in C^{\infty}\left(\mathbb{R}^{d},(0, \infty)\right)
$$

Hypoellipticity

In the theory of diffusions, hypoellipticity of the generator is a sufficient (and nearly necessary) condition to ensure smoothness.
Theorem (Hörmander)
Given vector fields $X_{0}, X_{1}, \ldots, X_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, a second order differential operator

$$
L=\sum_{i=1}^{k} X_{i}^{2}+X_{0}
$$

is hypoelliptic if

$$
\begin{aligned}
& \operatorname{span}\left\{X_{i_{1}}(x),\left[X_{i_{1}}, X_{i_{2}}\right](x),\left[\left[X_{i_{1}}, X_{i_{2}}\right], X_{i_{3}}\right](x), \ldots:\right. \\
& \left.i_{\ell} \in\{0,1, \ldots, k\}\right\}=\mathbb{R}^{d}
\end{aligned}
$$

for all $x \in \mathbb{R}^{d}$.
If $\left\{X_{t}\right\}_{t \geq 0}$ is a diffusion on \mathbb{R}^{d} with hypoelliptic generator L, then $\mu_{t}=\operatorname{Law}\left(X_{t}\right)$ is smooth.

Kolmogorov diffusion

Let $\left\{B_{t}\right\}_{t \geq 0}$ be BM on \mathbb{R}^{d}. The Kolmogorov diffusion on $\mathbb{R}^{d} \times \mathbb{R}^{d}$

$$
X_{t}:=\left(B_{t}, \int_{0}^{t} B_{s} d s\right)
$$

has generator

$$
\begin{aligned}
(L f)(p, \xi) & :=\frac{1}{2} \sum_{j=1}^{d} \frac{\partial^{2} f}{\partial p_{j}^{2}}(p, \xi)+\sum_{j=1}^{d} p_{j} \frac{\partial f}{\partial \xi_{j}}(p, \xi) \\
& =\frac{1}{2}\left(\Delta_{p} f\right)(p, \xi)+p \cdot\left(\nabla_{\xi} f\right)(p, \xi) .
\end{aligned}
$$

The operator L is hypoelliptic, and thus $\operatorname{Law}\left(X_{t}\right)$ is smooth.
For example, for $d=1, d \operatorname{Law}\left(X_{t}\right)(p, \xi)=p_{t}(p, \xi) d p d \xi$ where

$$
p_{t}(p, \xi)=\frac{\sqrt{3}}{\pi t^{2}} \exp \left(-\frac{2 p^{2}}{t}+\frac{6 p \xi}{t^{2}}-\frac{6 \xi^{2}}{t^{3}}\right) .
$$

Smooth measures

Definition

A measure μ on \mathbb{R}^{d} is smooth if μ is abs cts with respect to Lebesgue measure and the RN derivative is strictly positive and smooth - that is,

$$
\mu=\rho d m, \text { for some } \rho \in C^{\infty}\left(\mathbb{R}^{d},(0, \infty)\right)
$$

${ }^{*}$) for any multi-index α, there exists a function $g_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right) \cap L^{\infty-}(\mu)$ such that

$$
\int_{\mathbb{R}^{d}}(-D)^{\alpha} f d \mu=\int_{\mathbb{R}^{d}} f g_{\alpha} d \mu, \quad \text { for all } f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

smoothness $\Longleftrightarrow\left({ }^{*}\right)$

A first step to smoothness: Quasi-invariance

Definition

A measure μ on Ω is quasi-invariant under a transformation $T: \Omega \rightarrow \Omega$ if μ and $\mu \circ T^{-1}$ are mutually absolutely continuous.

In particular, we're interested in quasi-invariance under transformations of the type

$$
T=T_{h}=\text { translation (in some sense) by some } h \in \Omega_{0} \subset \Omega,
$$

where typically Ω_{0} is some distinguished subset of Ω.

Quasi-invariance

The canonical ∞-dim example

The Wiener space construction is a triple

- $\mathcal{W}=\mathcal{W}\left(\mathbb{R}^{k}\right)=\left\{w:[0,1] \rightarrow \mathbb{R}^{k}: w\right.$ is cts and $\left.w(0)=0\right\}$ equipped with the sup norm,
- $\mu=\operatorname{Law}(B)=$. Wiener measure on \mathcal{W}, and
- $\mathcal{H}=\mathcal{H}\left(\mathbb{R}^{k}\right)=$ Cameron-Martin space, that is,

$$
\mathcal{H}=\left\{h \in \mathcal{W}: h \text { is abs cts and } \int_{0}^{1}|\dot{h}(t)|^{2} d t<\infty\right\}
$$

equipped with the inner product

$$
\langle h, k\rangle_{\mathcal{H}}:=\int_{0}^{1} \dot{h}(t) \cdot \dot{k}(t) d t
$$

Quasi-invariance

The canonical ∞-dim example

- \mathcal{W} is a Banach space
- μ is a Gaussian measure
- The mapping $h \in \mathcal{H} \mapsto \dot{h} \in L^{2}\left([0,1], \mathbb{R}^{k}\right)$ is an isometric isomorphism and \mathcal{H} is a separable Hilbert space.
- \mathcal{H} is dense in \mathcal{W} and $\mu(\mathcal{H})=0$

Canonical Wiener space

Theorem (Cameron-Martin-Maruyama)
The Wiener measure μ is qi under translation by elts of \mathcal{H}.
That is, for $h \in \mathcal{H}$ and $d \mu^{h}:=d \mu(\cdot-h)$,

$$
\mu^{h} \ll \mu \quad \text { and } \quad \mu^{h} \gg \mu .
$$

More particularly,

$$
d \mu^{h}(x)=J^{h}(x) d \mu(x):=e^{-|h|_{H}^{2} / 2+"\langle x, h\rangle "} d \mu(x)
$$

Moreover, if $h \notin \mathcal{H}$, then $\mu^{h} \perp \mu$.
Theorem (Integration by parts)
For all $h \in \mathcal{H}$,

$$
\int_{\mathcal{W}}\left(\partial_{h} f\right)(x) d \mu(x)=\int_{\mathcal{W}} f(x)^{\prime "}\langle x, h\rangle^{\prime \prime} d \mu(x) .
$$

Gross' abstract Wiener space

An abstract Wiener space is a triple (W, H, μ) where

- W is a Banach space
- μ is a Gaussian measure on W
- H is a Hilbert space densely embedded in W and (when $\operatorname{dim}(H)=\infty) \mu(H)=0$
The Cameron-Martin-Maruyama QI Theorem and IBP hold on any abstract Wiener space.
other QI and IBP references:
Shigekawa (1984), Driver (1992), Hsu $(1995,2002)$,
Enchev-Stroock (1995), Albeverio-Daletskii-Kondratiev (1997), Kondratiev-Silva-Streit (1998),
Albeverio-Kondratiev-Röckner-Tsikalenko (2000), Kuna-Silva (2004), Airault-Malliavin (2006), Driver-Gordina (2008), Hsu-Ouyang (2010),...

One approach to QI

Driver-Gordina (2008), Gordina (2017)
Let M be an inf dim manifold with measure μ and $T: M \rightarrow M$.

- Suppose M_{n} are submanifolds approximating M such that $T: M_{n} \rightarrow M_{n}$, and μ_{n} are measures on M_{n} approximating μ.
- Suppose that for each n, μ_{n} is qi under T; that is, \exists $J_{T}^{n}: M_{n} \rightarrow(0, \infty)$ so that for any $f \in C_{b}(M)$

$$
\begin{aligned}
\int_{M_{n}}|f(x)| d\left(\mu_{n} \circ T^{-1}\right)(x) & =\int_{M_{n}}|f(x)| J_{T}^{n}(x) d \mu_{n}(x) \\
& \leq\|f\|_{L^{p}\left(M_{n}, \mu_{n}\right)}\left\|J_{T}^{n}\right\|_{L^{q}\left(M_{n}, \mu_{n}\right)}
\end{aligned}
$$

- Finally, suppose that for all n

$$
\begin{equation*}
\left\|J_{T}^{n}\right\|_{L^{q}\left(M_{n}, \mu_{n}\right)} \leq C_{T}<\infty \tag{IH}
\end{equation*}
$$

One approach to QI

Driver-Gordina (2008), Gordina (2017)

Then taking the limit in the first inequality gives

$$
\int_{M}|f(x)| d\left(\mu \circ T^{-1}\right)(x) \leq C_{T}\|f\|_{L^{p}(M, \mu)}
$$

which implies that the linear functional

$$
\varphi_{T}(f):=\int_{M} f(x) d\left(\mu \circ T^{-1}\right)(x)
$$

is bounded on $L^{p}(M, \mu)$. Thus there exists $J_{T} \in L^{q}(M, \mu)$ such that

$$
\varphi_{T}(f)=\int_{M} f(x) J_{T}(x) d \mu(x)
$$

and $\left\|J_{T}\right\|_{L^{q}(M, \mu)} \leq C_{T}$.

Integrated Harnack inequalities

In the case of diffusions where $\mu=\mu_{t}=\operatorname{Law}\left(X_{t}\right)$, one often has fin dim approx X_{t}^{n} with $\mu_{t}^{n}=\operatorname{Law}\left(X_{t}^{n}\right)$ where

$$
d \mu_{t}^{n}(x)=p_{t}^{n}(x) d x
$$

Thus, when $T=T_{h}=$ "translation" by h

$$
J_{T_{h}}^{n}(x)=\frac{p_{t}^{n}(h, x)}{p_{t}^{n}(x)}
$$

and these estimates look like

$$
\int_{M_{n}}\left(\frac{p_{t}^{n}(h, x)}{p_{t}^{n}(x)}\right)^{p} p_{t}^{n}(x) d x \leq C^{p}
$$

Integrated Harnack inequalities

- via lower bounds on Ricci curvature (Wang 2004, Driver-Gordina 2008) - not available in the hypoelliptic setting
- via modified Bakry-Émery + "transverse symmetry" (Baudoin-Bonnefont-Garofalo 2010, Baudoin-Garofalo 2011) \Longrightarrow reverse log Sobolev \Longrightarrow Wang-type Harnack \Longleftrightarrow (IH)

Other inf dim hypoelliptic results

- via modified Bakry-Émery: inf dim hypoelliptic Heisenberg groups (Baudoin-Gordina-M 2013)
- via other techniques:
- stronger smoothness results for inf dim Heisenberg groups in elliptic (Dobbs-M 2013) and hypoelliptic (Driver-Eldredge-M 2016) settings
- qi and ibp for path space measure of hypoelliptic BM on foliated compact manifolds (Baudoin-Gordina-Feng 2019)
- qi and ibp for measures on path space of subRiemannian manifolds (Cheng-Grong-Thalmaier, 2021)
- nothing previously for diffusions under "weak" Hörmander condition

Generalized Kolmogorov diffusion

Let (W, H, μ) be an abstract Wiener space, and let $\left\{B_{t}\right\}_{t \geq 0}$ denote Brownian motion on W. Let V be a vector space. Fix a cts $F: W \rightarrow V$ and define the diffusion on $W \times V$

$$
Y_{t}:=\left(B_{t}, \int_{0}^{t} F\left(B_{s}\right) d s\right)
$$

We're interested in when the law $\nu_{t}^{(h, k)}$ of

$$
Y_{t}^{(h, k)}:=\left(B_{t}+h, \int_{0}^{t} F\left(B_{s}+h\right) d s+k\right)
$$

is mutually abs cts wrt $\nu_{t}:=\nu_{t}^{0}:=\operatorname{Law}\left(Y_{t}\right)$.
Note that in the case $V=W$ and $F=I$, this is a natural notion of an inf dim Kolmogorov diffusion.

The fin dim approximations

For simplicity, consider first $V=\mathbb{R}$, in which case $\left\{Y_{t}\right\}$ has generator

$$
\mathcal{L}=\Delta_{p}+F(p) \frac{\partial}{\partial \xi}
$$

We can approximate Y_{t} by

$$
Y_{t}^{d}:=\left(B_{t}^{d}, \int_{0}^{t}\left(F \circ i_{d}\right)\left(B_{s}^{d}\right) d s\right)
$$

where $\left\{B_{t}^{d}\right\}_{t \geq 0}$ is BM on \mathbb{R}^{d}, with analogous generator L^{d}.

The fin dim estimates

For now, just write $L=L^{d}$.
For each $\alpha, \beta \geq 0$, define
$\Gamma^{\alpha, \beta}(f, g):=\sum_{i=1}^{d}\left(\frac{\partial f}{\partial p_{i}}-\alpha \frac{\partial f}{\partial \xi}\right)\left(\frac{\partial g}{\partial p_{i}}-\alpha \frac{\partial g}{\partial \xi}\right)+\beta\left(\frac{\partial f}{\partial \xi}\right)\left(\frac{\partial g}{\partial \xi}\right)$.
and

$$
\Gamma_{2}^{\alpha, \beta}(f):=\frac{1}{2} L \Gamma^{\alpha, \beta}(f)-\Gamma^{\alpha, \beta}(f, L f) .
$$

The fin dim estimates

Assumption A There exist $m, M>0$ such that for every $i=1, \ldots, d$ and $p \in \mathbb{R}^{d}$

$$
m \leq \frac{\partial F}{\partial p_{i}}(p) \leq M
$$

Proposition (Bakry-Émery type)

Suppose that F satisfies Assumption A. Then for every $\alpha, \beta \geq 0$ and $f \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}\right)$,

$$
\Gamma_{2}^{\alpha, \beta}(f) \geq-\frac{M-m}{4 \alpha} \Gamma(f)+m \sum_{i=1}^{d}\left(\alpha\left(\frac{\partial f}{\partial \xi}\right)^{2}-\frac{\partial f}{\partial \xi} \frac{\partial f}{\partial p_{i}}\right) .
$$

The fin dim estimates

Let $p_{t}(\cdot, \cdot)$ denote the RN derivative of $\mu_{t}=\mu_{t}^{d}$ wrt Lebesgue measure on $\mathbb{R}^{d} \times \mathbb{R}$.

Proposition (Integrated Harnack inequality)

For any $t>0,(p, \xi) \in \mathbb{R}^{d} \times \mathbb{R}$, and $q \in(1, \infty)$,

$$
\left(\int_{\mathbb{R}^{d} \times \mathbb{R}}\left[\frac{p_{t}\left((p, \xi),\left(p^{\prime}, \xi^{\prime}\right)\right)}{p_{t}\left(p^{\prime}, \xi^{\prime}\right)}\right]^{q} p_{t}\left(p^{\prime}, \xi^{\prime}\right) d p^{\prime} d \xi^{\prime}\right)^{1 / q} \leq A_{q}(p, \xi)
$$

where

$$
\begin{array}{r}
A_{q}(p, \xi):=\exp \left(\frac{3(1+q) M}{m^{3} t^{3}}\left(\frac{m t}{2} \sum_{i=1}^{d} p_{i}+\xi\right)^{2}\right) \\
\quad \exp \left(\frac{(1+q) M}{4 m t}\|p\|^{2}\right) .
\end{array}
$$

A qi result for generalized Kolmogorov diffusions

Assumption \mathbf{A}^{\prime} Suppose $F: W \rightarrow \mathbb{R}$ is in the domain of ∇, and assume that there exist a "good" onb $\left\{e_{j}\right\}_{j=1}^{\infty}$ of H and $m, M>0$ so that for all $w \in W$

$$
m \leq\left\langle\nabla F(w), e_{j}\right\rangle \leq M
$$

A qi result for generalized Kolmogorov diffusions

Theorem
Suppose F satisfies Assumption A^{\prime}. Fix $h \in H, k \in \mathbb{R}$. If $\forall q \in(1, \infty)$

$$
\begin{aligned}
& A_{q}(h, k):=\exp \left(\frac{3(1+q) M}{m^{3} t^{3}}\left(\frac{m t}{2} \sum_{i=1}^{\infty}\left\langle h, e_{i}\right\rangle+k\right)^{2}\right) \\
& \times \exp \left(\frac{(1+q) M}{4 m t}\|h\|^{2}\right)<\infty
\end{aligned}
$$

then $\nu_{t}^{(h, k)}$ is mutually abs cts wrt $\nu_{t}:=\nu_{t}^{0}$

$$
\left\|\frac{d \nu_{t}^{(h, k)}}{d \nu_{t}}\right\|_{L^{q}\left(W \times \mathbb{R}, \nu_{t}\right)} \leq A_{q}(h, k) .
$$

A better starting assumption

Assumption B For $F=\left(F_{1}, \ldots, F_{r}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$, there exist non-empty disjoint $I_{1}, \ldots, I_{r} \subset\{1, \cdots, d\}$ and $m_{1}, M_{1}, \ldots, m_{r}, M_{r}>0$ such that for each $j=1, \ldots, r$

$$
m_{j} \leqslant \frac{\partial F_{j}}{\partial p_{i}}(p) \leqslant M_{j}, \quad \forall i \in I_{j}
$$

and, for every $i \notin I_{j}, \frac{\partial F_{j}}{\partial p_{i}}(p)=0$.
In this case, the generator may be written as

$$
\begin{aligned}
L & =\sum_{j=1}^{r} L^{I_{j}}+\sum_{i \notin \cup I_{j}} \frac{\partial^{2}}{\partial p_{i}^{2}} \\
& =\sum_{j=1}^{r}\left(\sum_{i \in I_{j}} \frac{\partial^{2}}{\partial p_{i}^{2}}+F_{j}(p) \frac{\partial}{\partial \xi_{j}}\right)+\sum_{i \notin \cup J_{j}} \frac{\partial^{2}}{\partial p_{i}^{2}} .
\end{aligned}
$$

The fin dim estimates for the better assumption

Proposition (Integrated Harnack inequality II)

Suppose $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ satisfies Assumption B. Then for any $t>0$, $(p, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{r}$, and $q \in(1, \infty)$,

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{r}}\left[\frac{p_{t}\left((p, \xi),\left(p^{\prime}, \xi^{\prime}\right)\right)}{p_{t}\left(p^{\prime}, \xi^{\prime}\right)}\right]^{q} p_{t}\left(p^{\prime}, \xi^{\prime}\right) d p^{\prime} d \xi^{\prime}\right)^{1 / q} \\
& \leqslant\left(\prod_{j=1}^{r} A_{q}^{j}(p, \xi)\right) \exp \left(\frac{1+q}{4 t}\|p\|_{l^{c}}^{2}\right)
\end{aligned}
$$

where $I^{c}:=\left(\cup_{j=1}^{r} I_{j}\right)^{c}$ and

$$
\begin{aligned}
& A_{q}^{j}(p, \xi):=A_{q}^{j}\left(p_{l_{j}}, \xi_{j}\right) \\
: & \exp \left(\frac{3(1+q) M_{j}}{m_{j}^{3} t^{3}}\left(\frac{m_{j} t}{2} \sum_{i \in I_{j}} p_{i}+\xi_{j}\right)^{2}\right) \exp \left(\frac{(1+q) M_{j}}{4 m_{j} t}\|p\|_{l_{j}}^{2}\right) .
\end{aligned}
$$

A (better) qi result for generalized Kolmogorov

Assumption \mathbf{B}^{\prime} Suppose $F=\left(F_{1}, \ldots, F_{r}\right): W \rightarrow \mathbb{R}^{r}$ such that each F_{j} is H-differentiable, and assume that there exist a "good" onb $\left\{e_{i}\right\}_{i=1}^{\infty}$ of H, non-empty disjoint $I_{1}, \ldots, I_{r} \subset \mathbb{N}$, and $m_{1}, M_{1}, \ldots, m_{r}, M_{r}>0$ such that for each $j=1, \ldots, r$

$$
m_{j} \leqslant\left\langle\nabla F_{j}(w), e_{i}\right\rangle \leqslant M_{j}, \quad \text { for all } i \in I_{j}
$$

and

$$
\left\langle\nabla F_{j}(w), e_{i}\right\rangle=0, \quad \text { for all } i \notin l_{j} .
$$

A (better) qi result for generalized Kolmogorov

Theorem (Baudoin-Gordina-M, 2021)
Suppose that Assumption B^{\prime} holds for $F: W \rightarrow \mathbb{R}^{r}$. Fix $h \in H$ and $k \in \mathbb{R}^{r}$. If for each $j=1, \ldots, r$,

$$
\sum_{i \in I_{j}}\left|\left\langle h, e_{i}\right\rangle\right|<\infty,
$$

then $\nu_{t}^{(h, k)}$ is mutually abs cts wrt $\nu_{t}:=\nu_{t}^{0}$ and $\forall q \in(1, \infty)$

$$
\left\|\frac{d \nu_{t}^{(h, k)}}{d \nu_{t}}\right\|_{L^{q}\left(W \times \mathbb{R}^{r}, \nu_{t}\right)} \leqslant\left(\prod_{j=1}^{r} A_{q}^{j}(h, k)\right) \exp \left(\frac{1+q}{4 t}\|h\|_{\rho^{c}}^{2}\right) .
$$

A (better) qi result for generalized Kolmogorov

Here $I^{c}:=\left(\cup_{i=1}^{r} I_{j}\right)^{c}$ and

$$
\begin{aligned}
& A_{q}^{j}(h, k) \\
: & \exp \left(\frac{3(1+q) M_{j}}{m_{j}^{3} t^{3}}\left(\frac{m_{j} t}{2} \sum_{i \in I_{j}}\left\langle h, e_{i}\right\rangle+k_{j}\right)^{2}\right) \exp \left(\frac{(1+q) M_{j}}{4 m_{j} t}\|h\|_{I_{j}}^{2}\right)
\end{aligned}
$$

with $\left\{e_{i}\right\}_{i=1}^{\infty}$ is the onb, $l_{j} \subset \mathbb{N}$, and m_{j} and M_{j} are the bounds introduced in Assumption B^{\prime}.

So, for example, we have qi when $F=\left(F_{1}, \ldots, F_{r}\right)$ is component-wise cylinder-functions with $F_{i}(B) \perp F_{j}(B)$ for $i \neq j$, satisfying the requisite derivative bounds.

For $F: W \rightarrow W$

Proposition

Suppose that $F: W \rightarrow W$ is cts and there exists a "good" onb $\left\{h_{j}\right\}_{j=1}^{\infty}$ such that

$$
\sum_{j=1}^{d}\left\langle F\left(B_{t}^{d}\right), h_{j}\right\rangle h_{j} \rightarrow F\left(B_{t}\right)
$$

a.s. in W. Let $\left\{Q_{d}\right\}_{d=1}^{\infty}$ denote the sequence of projections associated to $\left\{h_{j}\right\}_{j=1}$ and consider

$$
\tilde{Y}_{d}(t):=\left(B_{t}^{d}, \int_{0}^{t} Q_{d} F\left(B_{s}^{d}\right) d s\right) .
$$

Then

$$
\lim _{d \rightarrow \infty} \max _{0 \leqslant t \leqslant T}\left\|Y(t)-\tilde{Y}_{d}(t)\right\| w \times w=0 \text { a.s. }
$$

For $F: W \rightarrow W$

Assumption $\mathbf{B}^{\prime \prime}$ Suppose $F: W \rightarrow W$ is cts and there exists a "good" onb $\left\{h_{j}\right\}_{j=1}^{\infty}$ such that

$$
\sum_{j=1}^{d}\left\langle F\left(B_{t}^{d}\right), h_{j}\right\rangle h_{j} \rightarrow F\left(B_{t}\right) \quad \text { a.s. in } W .
$$

Additionally, assume that $F_{j}:=\left\langle F, h_{j}\right\rangle$ is H-differentiable for all j and that there exists a "good" onb $\left\{e_{i}\right\}_{i=1}^{\infty}$ of H, non-empty disjoint $I_{j} \subset \mathbb{N}$ and $m_{j}, M_{j}>0$ such that, for each j

$$
m_{j} \leqslant\left\langle\nabla F_{j}(w), e_{i}\right\rangle \leqslant M_{j}, \quad \text { for all } i \in I_{j}
$$

and

$$
\left\langle\nabla F_{j}(w), e_{i}\right\rangle=0, \quad \text { for all } i \notin I_{j} .
$$

For $F: W \rightarrow W$

Theorem (Baudoin-Gordina-M, 2021)
Suppose that Assumption $B^{\prime \prime}$ holds for $F: W \rightarrow W$. Fix $h, k \in H$. For $q \in(1, \infty)$ and each $j \in \mathbb{N}$, let

$$
\begin{array}{r}
A_{q}^{j}(h, k):=\exp \left(\frac{3(1+q) M_{j}}{m_{j}^{3} t^{3}}\left(\frac{m_{j} t}{2} \sum_{i \in I_{j}}\left\langle h, e_{i}\right\rangle+\left\langle k, h_{j}\right\rangle\right)^{2}\right) \\
\times \exp \left(\frac{(1+q) M_{j}}{4 m_{j} t}\|h\|_{I_{j}}^{2}\right) .
\end{array}
$$

If $\prod_{j=1}^{\infty} A_{q}^{j}(h, k)<\infty$, then $\nu_{t}^{(h, k)} \ll \nu_{t}$ and $\nu_{t} \ll \nu_{t}^{(h, k)}$ and

$$
\left\|\frac{d \nu_{t}^{(h, k)}}{d \nu_{t}}\right\|_{L^{q}\left(W \times W, \nu_{t}\right)} \leqslant\left(\prod_{j=1}^{\infty} A_{q}^{j}(h, k)\right) \exp \left(\frac{1+q}{4 t}\|h\|_{I^{c}}^{2}\right)
$$

The "standard" inf dim Kolmogorov diffusion

In the case that $F=I$, we are back in the setting of a "standard" inf-dim Kolmogorov diffusion

$$
X_{t}=\left(B_{t}, \int_{0}^{t} B_{s} d s\right)
$$

This is a Gaussian process and qi follows from the Cameron-Martin-Maruyama theorem.

Alternatively, we can see qi as an application of the Cameron-Martin-Maruyama theorem on path space

$$
\mathcal{W}_{t}:=\mathcal{W}_{t}(W):=\{w:[0, t] \rightarrow W: w \text { is cts and } w(0)=0\}
$$

The "standard" inf dim Kolmogorov diffusion

Fix $h, k \in H$. CMM on $\mathcal{W}_{t} \Longrightarrow$ for any $\gamma \in \mathcal{H}_{t}$, the translation $B \mapsto B+\gamma$ gives

$$
\begin{aligned}
& \mathbb{E}\left[f\left(X_{t}^{(h, k)}\right)\right]=\mathbb{E}\left[f\left(B_{t}+h, \int_{0}^{t}\left(B_{s}+h\right) d s+k\right)\right] \\
& \quad=\mathbb{E}\left[f\left(B_{t}+\gamma(t)+h, \int_{0}^{t}\left(B_{s}+\gamma(s)+h\right) d s+k\right) J_{t}^{\gamma}(B)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
J_{t}^{\gamma}(w) & =\exp \left("\langle\gamma, w\rangle_{\mathcal{H}_{t}}{ }^{"}+\|\gamma\|_{\mathcal{H}_{t}}^{2}\right) \\
& =\exp \left(\int_{0}^{t}\langle\dot{\gamma}(s), d w(s)\rangle-\frac{1}{2} \int_{0}^{t}\|\dot{\gamma}(s)\|_{H}^{2} d s\right) .
\end{aligned}
$$

The "standard" inf dim Kolmogorov diffusion

So, for example, taking the path $\gamma(s)=s a+s^{2} b$ with

$$
a=-\frac{4}{t} h-\frac{6}{t^{2}} k \quad \text { and } \quad b=\frac{3}{t^{2}} h+\frac{6}{t^{3}} k
$$

we have

$$
\mathbb{E}\left[f\left(X_{t}^{(h, k)}\right)\right]=\mathbb{E}\left[f\left(B_{t}, \int_{0}^{t} B_{s} d s\right) J_{t}^{\gamma}(B)\right]
$$

The "standard" inf dim Kolmogorov diffusion
We can compute exactly

$$
\begin{aligned}
\mathbb{E}\left[J_{t}^{\gamma}(B)^{q}\right] & =\mathbb{E}\left[\exp \left(q \int_{0}^{t}\left\langle\dot{\gamma}(s), d B_{s}\right\rangle\right)\right] \exp \left(-\frac{q}{2} \int_{0}^{t}\|\dot{\gamma}(s)\|_{H}^{2} d s\right) \\
& =\exp \left(\frac{q^{2}-q}{2}\|\gamma\|_{\mathcal{H}_{t}}^{2}\right)
\end{aligned}
$$

and

$$
\|\gamma\|_{\mathcal{H}_{t}}^{2}=\frac{4}{t}\|h\|_{H}^{2}+\frac{12}{t^{2}}\langle h, k\rangle_{H}+\frac{12}{t^{3}}\|k\|_{H}^{2}
$$

and thus

$$
\begin{aligned}
& \left\|\frac{d \nu_{t}^{h, k}}{d \nu_{t}}\right\|_{L^{q}\left(W \times W, \nu_{t}\right)} \leq\left\|J_{t}^{\gamma}(B)\right\|_{L^{q}\left(\mathcal{W}_{t}\right.}=\mathbb{E}\left[\left(J_{t}^{\gamma}(B)\right)^{q}\right]^{1 / q} \\
& \quad=\exp \left(2(q-1)\left(\frac{\|h\|_{H}^{2}}{t}+\frac{3\langle h, k\rangle_{H}}{t^{2}}+\frac{3\|k\|_{H}^{2}}{t^{3}}\right)\right) .
\end{aligned}
$$

The "standard" inf dim Kolmogorov diffusion

To prove qi instead as an application of our main theorem, we can take $h_{j}=e_{j}$, and we have $I_{j}=\{j\}$ and $m_{j}=M_{j}=1$ for all j, which gives the bound

$$
\begin{aligned}
& \left\|\frac{d \nu_{t}^{(h, k)}}{d \nu_{t}}\right\|_{L^{q}\left(W \times W, \nu_{t}\right)} \\
& \leqslant \exp \left(\frac{3(1+q)}{t^{3}} \sum_{j}\left(\frac{t}{2}\left\langle h, e_{j}\right\rangle+\left\langle k, e_{j}\right\rangle\right)^{2}\right) \exp \left(\frac{1+q}{4 t}\|h\|_{H}^{2}\right) \\
& \quad=\exp \left((1+q)\left(\frac{\|h\|_{H}^{2}}{t}+\frac{3\langle h, k\rangle}{t^{2}}+\frac{3\|k\|_{H}^{2}}{t^{3}}\right)\right) .
\end{aligned}
$$

