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Smooth measures

Definition
A measure µ on Rd is smooth if µ is abs cts with respect to
Lebesgue measure and the RN derivative is strictly positive and
smooth – that is,

µ = ρ dm, for some ρ ∈ C∞(Rd , (0,∞)).



Hypoellipticity

In the theory of diffusions, hypoellipticity of the generator is a
sufficient (and nearly necessary) condition to ensure smoothness.

Theorem (Hörmander)

Given vector fields X0,X1, . . . ,Xk : Rd → Rd , a second order
differential operator

L =
k∑

i=1

X 2
i + X0

is hypoelliptic if

span{Xi1(x), [Xi1 ,Xi2 ](x), [[Xi1 ,Xi2 ],Xi3 ](x), . . . :

i` ∈ {0, 1, . . . , k}} = Rd

for all x ∈ Rd .

If {Xt}t≥0 is a diffusion on Rd with hypoelliptic generator L, then
µt = Law(Xt) is smooth.



Kolmogorov diffusion
Let {Bt}t≥0 be BM on Rd . The Kolmogorov diffusion on Rd ×Rd

Xt :=

(
Bt ,

∫ t

0
Bs ds

)
has generator

(Lf ) (p, ξ) :=
1

2

d∑
j=1

∂2f

∂p2
j

(p, ξ) +
d∑

j=1

pj
∂f

∂ξj
(p, ξ)

=
1

2
(∆pf )(p, ξ) + p · (∇ξf )(p, ξ).

The operator L is hypoelliptic, and thus Law(Xt) is smooth.

For example, for d = 1, dLaw(Xt)(p, ξ) = pt(p, ξ) dp dξ where

pt(p, ξ) =

√
3

πt2
exp

(
−2p2

t
+

6pξ

t2
− 6ξ2

t3

)
.



Smooth measures

Definition
A measure µ on Rd is smooth if µ is abs cts with respect to
Lebesgue measure and the RN derivative is strictly positive and
smooth – that is,

µ = ρ dm, for some ρ ∈ C∞(Rd , (0,∞)).

(*) for any multi-index α, there exists a function
gα ∈ C∞(Rd) ∩ L∞−(µ) such that∫

Rd

(−D)αf dµ =

∫
Rd

fgα dµ, for all f ∈ C∞c (Rn).

smoothness ⇐⇒ (*)



A first step to smoothness: Quasi-invariance

Definition
A measure µ on Ω is quasi-invariant under a transformation
T : Ω→ Ω if µ and µ ◦ T−1 are mutually absolutely continuous.

In particular, we’re interested in quasi-invariance under
transformations of the type

T = Th = translation (in some sense) by some h ∈ Ω0 ⊂ Ω,

where typically Ω0 is some distinguished subset of Ω.



Quasi-invariance
The canonical ∞-dim example

The Wiener space construction is a triple

I W =W(Rk) = {w : [0, 1]→ Rk : w is cts and w(0) = 0}
equipped with the sup norm,

I µ = Law(B·) = Wiener measure on W, and

I H = H(Rk) = Cameron-Martin space, that is,

H =

{
h ∈ W : h is abs cts and

∫ 1

0
|ḣ(t)|2 dt <∞

}
equipped with the inner product

〈h, k〉H :=

∫ 1

0
ḣ(t) · k̇(t) dt.



Quasi-invariance
The canonical ∞-dim example

I W is a Banach space

I µ is a Gaussian measure

I The mapping h ∈ H 7→ ḣ ∈ L2([0, 1],Rk) is an isometric
isomorphism and H is a separable Hilbert space.

I H is dense in W and µ(H) = 0



Canonical Wiener space

Theorem (Cameron-Martin-Maruyama)

The Wiener measure µ is qi under translation by elts of H.
That is, for h ∈ H and dµh := dµ(· − h),

µh � µ and µh � µ.

More particularly,

dµh(x) = Jh(x) dµ(x) := e−|h|
2
H/2+“〈x ,h〉” dµ(x).

Moreover, if h /∈ H, then µh ⊥ µ.

Theorem (Integration by parts)

For all h ∈ H,∫
W

(∂hf )(x) dµ(x) =

∫
W

f (x)“〈x , h〉” dµ(x).



Gross’ abstract Wiener space

An abstract Wiener space is a triple (W ,H, µ) where

I W is a Banach space

I µ is a Gaussian measure on W

I H is a Hilbert space densely embedded in W and (when
dim(H) =∞) µ(H) = 0

The Cameron-Martin-Maruyama QI Theorem and IBP hold on any
abstract Wiener space.

other QI and IBP references:
Shigekawa (1984), Driver (1992), Hsu (1995,2002),
Enchev-Stroock (1995), Albeverio-Daletskii-Kondratiev (1997),
Kondratiev-Silva-Streit (1998),
Albeverio-Kondratiev-Röckner-Tsikalenko (2000), Kuna-Silva
(2004), Airault-Malliavin (2006), Driver-Gordina (2008),
Hsu-Ouyang (2010),. . .



One approach to QI
Driver–Gordina (2008), Gordina (2017)

Let M be an inf dim manifold with measure µ and T : M → M.

I Suppose Mn are submanifolds approximating M such that
T : Mn → Mn, and µn are measures on Mn approximating µ.

I Suppose that for each n, µn is qi under T ; that is, ∃
JnT : Mn → (0,∞) so that for any f ∈ Cb(M)∫

Mn

|f (x)| d(µn ◦ T−1)(x) =

∫
Mn

|f (x)|JnT (x) dµn(x)

≤ ‖f ‖Lp(Mn,µn)‖JnT‖Lq(Mn,µn).

I Finally, suppose that for all n

‖JnT‖Lq(Mn,µn) ≤ CT <∞ (IH)



One approach to QI
Driver–Gordina (2008), Gordina (2017)

Then taking the limit in the first inequality gives∫
M
|f (x)| d(µ ◦ T−1)(x) ≤ CT‖f ‖Lp(M,µ),

which implies that the linear functional

ϕT (f ) :=

∫
M
f (x)d(µ ◦ T−1)(x)

is bounded on Lp(M, µ). Thus there exists JT ∈ Lq(M, µ) such
that

ϕT (f ) =

∫
M
f (x)JT (x) dµ(x)

and ‖JT‖Lq(M,µ) ≤ CT .



Integrated Harnack inequalities

In the case of diffusions where µ = µt = Law(Xt), one often has
fin dim approx X n

t with µnt = Law(X n
t ) where

dµnt (x) = pnt (x) dx .

Thus, when T = Th = “translation” by h

JnTh
(x) =

pnt (h, x)

pnt (x)
,

and these estimates look like∫
Mn

(
pnt (h, x)

pnt (x)

)p

pnt (x) dx ≤ Cp.



Integrated Harnack inequalities

I via lower bounds on Ricci curvature (Wang 2004,
Driver–Gordina 2008) — not available in the hypoelliptic
setting

I via modified Bakry-Émery + “transverse symmetry”
(Baudoin–Bonnefont–Garofalo 2010, Baudoin–Garofalo 2011)
=⇒ reverse log Sobolev =⇒ Wang-type Harnack ⇐⇒ (IH)



Other inf dim hypoelliptic results

I via modified Bakry-Émery: inf dim hypoelliptic Heisenberg
groups (Baudoin–Gordina–M 2013)

I via other techniques:
I stronger smoothness results for inf dim Heisenberg groups in

elliptic (Dobbs–M 2013) and hypoelliptic (Driver–Eldredge–M
2016) settings

I qi and ibp for path space measure of hypoelliptic BM on
foliated compact manifolds (Baudoin–Gordina–Feng 2019)

I qi and ibp for measures on path space of subRiemannian
manifolds (Cheng–Grong–Thalmaier, 2021)

I nothing previously for diffusions under “weak” Hörmander
condition



Generalized Kolmogorov diffusion

Let (W ,H, µ) be an abstract Wiener space, and let {Bt}t≥0

denote Brownian motion on W . Let V be a vector space. Fix a cts
F : W → V and define the diffusion on W × V

Yt :=

(
Bt ,

∫ t

0
F (Bs) ds

)
.

We’re interested in when the law ν
(h,k)
t of

Y
(h,k)
t :=

(
Bt + h,

∫ t

0
F (Bs + h) ds + k

)
is mutually abs cts wrt νt := ν0

t := Law(Yt).

Note that in the case V = W and F = I , this is a natural notion
of an inf dim Kolmogorov diffusion.



The fin dim approximations

For simplicity, consider first V = R, in which case {Yt} has
generator

L = ∆p + F (p)
∂

∂ξ
.

We can approximate Yt by

Y d
t :=

(
Bd
t ,

∫ t

0
(F ◦ id)(Bd

s ) ds

)
where {Bd

t }t≥0 is BM on Rd , with analogous generator Ld .



The fin dim estimates

For now, just write L = Ld .

For each α, β ≥ 0, define

Γα,β(f , g) :=
d∑

i=1

(
∂f

∂pi
− α∂f

∂ξ

)(
∂g

∂pi
− α∂g

∂ξ

)
+β

(
∂f

∂ξ

)(
∂g

∂ξ

)
.

and

Γα,β2 (f ) :=
1

2
LΓα,β(f )− Γα,β(f , Lf ).



The fin dim estimates

Assumption A There exist m,M > 0 such that for every
i = 1, . . . , d and p ∈ Rd

m ≤ ∂F

∂pi
(p) ≤ M.

Proposition (Bakry-Émery type)

Suppose that F satisfies Assumption A. Then for every α, β ≥ 0
and f ∈ C∞

(
Rd × R

)
,

Γα,β2 (f ) ≥ −M −m

4α
Γ(f ) + m

d∑
i=1

(
α

(
∂f

∂ξ

)2

− ∂f

∂ξ

∂f

∂pi

)
.



The fin dim estimates

Let pt(·, ·) denote the RN derivative of µt = µdt wrt Lebesgue
measure on Rd × R.

Proposition (Integrated Harnack inequality)

For any t > 0, (p, ξ) ∈ Rd × R, and q ∈ (1,∞),(∫
Rd×R

[
pt((p, ξ), (p′, ξ′))

pt(p′, ξ′)

]q
pt(p

′, ξ′) dp′ dξ′
)1/q

≤ Aq(p, ξ)

where

Aq(p, ξ) := exp

3(1 + q)M

m3t3

(
mt

2

d∑
i=1

pi + ξ

)2


exp

(
(1 + q)M

4mt
‖p‖2

)
.



A qi result for generalized Kolmogorov diffusions

Assumption A′ Suppose F : W → R is in the domain of ∇, and
assume that there exist a “good”onb {ej}∞j=1 of H and m,M > 0
so that for all w ∈W

m ≤ 〈∇F (w), ej〉 ≤ M.



A qi result for generalized Kolmogorov diffusions

Theorem
Suppose F satisfies Assumption A′. Fix h ∈ H, k ∈ R. If
∀q ∈ (1,∞)

Aq(h, k) := exp

3(1 + q)M

m3t3

(
mt

2

∞∑
i=1

〈h, ei 〉+ k

)2


× exp

(
(1 + q)M

4mt
‖h‖2

)
<∞

then ν
(h,k)
t is mutually abs cts wrt νt := ν0

t∥∥∥∥∥dν(h,k)
t

dνt

∥∥∥∥∥
Lq(W×R,νt)

≤ Aq(h, k).



A better starting assumption

Assumption B For F = (F1, . . . ,Fr ) : Rd → Rr , there exist
non-empty disjoint I1, . . . , Ir ⊂ {1, · · · , d} and
m1,M1, . . . ,mr ,Mr > 0 such that for each j = 1, . . . , r

mj 6
∂Fj
∂pi

(p) 6 Mj , ∀i ∈ Ij

and, for every i /∈ Ij ,
∂Fj

∂pi
(p) = 0.

In this case, the generator may be written as

L =
r∑

j=1

LIj +
∑
i /∈∪Ij

∂2

∂p2
i

=
r∑

j=1

∑
i∈Ij

∂2

∂p2
i

+ Fj(p)
∂

∂ξj

+
∑
i /∈∪Ij

∂2

∂p2
i

.



The fin dim estimates for the better assumption

Proposition (Integrated Harnack inequality II)

Suppose F : Rd → Rr satisfies Assumption B. Then for any t > 0,
(p, ξ) ∈ Rd × Rr , and q ∈ (1,∞),

(∫
Rd×Rr

[
pt((p, ξ), (p′, ξ′))

pt(p′, ξ′)

]q
pt(p

′, ξ′) dp′ dξ′
)1/q

6

 r∏
j=1

Aj
q(p, ξ)

 exp

(
1 + q

4t
‖p‖2

I c

)

where I c := (∪rj=1Ij)
c and

Aj
q(p, ξ) := Aj

q(pIj , ξj)

:= exp

3(1 + q)Mj

m3
j t

3

mj t

2

∑
i∈Ij

pi + ξj

2 exp

(
(1 + q)Mj

4mj t
‖p‖2

Ij

)
.



A (better) qi result for generalized Kolmogorov

Assumption B′ Suppose F = (F1, . . . ,Fr ) : W → Rr such that
each Fj is H-differentiable, and assume that there exist a “good”
onb {ei}∞i=1 of H, non-empty disjoint I1, . . . , Ir ⊂ N, and
m1,M1, . . . ,mr ,Mr > 0 such that for each j = 1, . . . , r

mj 6 〈∇Fj(w), ei 〉 6 Mj , for all i ∈ Ij

and
〈∇Fj(w), ei 〉 = 0, for all i /∈ Ij .



A (better) qi result for generalized Kolmogorov

Theorem (Baudoin–Gordina–M, 2021)

Suppose that Assumption B′ holds for F : W → Rr . Fix h ∈ H
and k ∈ Rr . If for each j = 1, . . . , r ,∑

i∈Ij

|〈h, ei 〉| <∞,

then ν
(h,k)
t is mutually abs cts wrt νt := ν0

t and ∀q ∈ (1,∞)∥∥∥∥∥dν(h,k)
t

dνt

∥∥∥∥∥
Lq(W×Rr ,νt)

6

 r∏
j=1

Aj
q(h, k)

 exp

(
1 + q

4t
‖h‖2

I c

)
.



A (better) qi result for generalized Kolmogorov

Here I c := (∪ri=1Ij)
c and

Aj
q(h, k)

:= exp

3(1 + q)Mj

m3
j t

3

mj t

2

∑
i∈Ij

〈h, ei 〉+ kj

2 exp

(
(1 + q)Mj

4mj t
‖h‖2

Ij

)

with {ei}∞i=1 is the onb, Ij ⊂ N, and mj and Mj are the bounds
introduced in Assumption B′.

So, for example, we have qi when F = (F1, . . . ,Fr ) is
component-wise cylinder-functions with Fi (B) ⊥ Fj(B) for i 6= j ,
satisfying the requisite derivative bounds.



For F : W → W

Proposition

Suppose that F : W →W is cts and there exists a “good” onb
{hj}∞j=1 such that

d∑
j=1

〈F (Bd
t ), hj〉hj → F (Bt)

a.s. in W . Let {Qd}∞d=1 denote the sequence of projections
associated to {hj}j=1 and consider

Ỹd(t) :=

(
Bd
t ,

∫ t

0
QdF (Bd

s ) ds

)
.

Then
lim

d→∞
max

06t6T
‖Y (t)− Ỹd(t)‖W×W = 0 a.s.



For F : W → W

Assumption B′′ Suppose F : W →W is cts and there exists a
“good” onb {hj}∞j=1 such that

d∑
j=1

〈F (Bd
t ), hj〉hj → F (Bt) a.s. in W .

Additionally, assume that Fj := 〈F , hj〉 is H-differentiable for all j
and that there exists a “good” onb {ei}∞i=1 of H, non-empty
disjoint Ij ⊂ N and mj ,Mj > 0 such that, for each j

mj 6 〈∇Fj(w), ei 〉 6 Mj , for all i ∈ Ij

and
〈∇Fj(w), ei 〉 = 0, for all i /∈ Ij .



For F : W → W

Theorem (Baudoin–Gordina–M, 2021)

Suppose that Assumption B′′ holds for F : W →W. Fix h, k ∈ H.
For q ∈ (1,∞) and each j ∈ N, let

Aj
q(h, k) := exp

3(1 + q)Mj

m3
j t

3

mj t

2

∑
i∈Ij

〈h, ei 〉+ 〈k, hj〉

2
× exp

(
(1 + q)Mj

4mj t
‖h‖2

Ij

)
.

If
∏∞

j=1 A
j
q(h, k) <∞, then ν

(h,k)
t � νt and νt � ν

(h,k)
t and∥∥∥∥∥dν(h,k)

t

dνt

∥∥∥∥∥
Lq(W×W ,νt)

6

 ∞∏
j=1

Aj
q(h, k)

 exp

(
1 + q

4t
‖h‖2

I c

)
.



The “standard” inf dim Kolmogorov diffusion

In the case that F = I , we are back in the setting of a “standard”
inf-dim Kolmogorov diffusion

Xt =

(
Bt ,

∫ t

0
Bs ds

)
.

This is a Gaussian process and qi follows from the
Cameron-Martin-Maruyama theorem.

Alternatively, we can see qi as an application of the
Cameron-Martin-Maruyama theorem on path space

Wt :=Wt(W ) := {w : [0, t]→W : w is cts and w(0) = 0}.



The “standard” inf dim Kolmogorov diffusion

Fix h, k ∈ H. CMM on Wt =⇒ for any γ ∈ Ht , the translation
B 7→ B + γ gives

E[f (X
(h,k)
t )] = E

[
f

(
Bt + h,

∫ t

0
(Bs + h) ds + k

)]
= E

[
f

(
Bt + γ(t) + h,

∫ t

0
(Bs + γ(s) + h) ds + k

)
Jγt (B)

]
,

where

Jγt (w) = exp
(
“〈γ,w〉Ht ” + ‖γ‖2

Ht

)
= exp

(∫ t

0
〈γ̇(s), dw(s)〉 − 1

2

∫ t

0
‖γ̇(s)‖2

H ds

)
.



The “standard” inf dim Kolmogorov diffusion

So, for example, taking the path γ(s) = sa + s2b with

a = −4

t
h − 6

t2
k and b =

3

t2
h +

6

t3
k,

we have

E[f (X
(h,k)
t )] = E

[
f

(
Bt ,

∫ t

0
Bs ds

)
Jγt (B)

]
.



The “standard” inf dim Kolmogorov diffusion

We can compute exactly

E [Jγt (B)q] = E
[

exp

(
q

∫ t

0
〈γ̇(s), dBs〉

)]
exp

(
−q

2

∫ t

0
‖γ̇(s)‖2

H ds

)
= exp

(
q2 − q

2
‖γ‖2

Ht

)
.

and

‖γ‖2
Ht

=
4

t
‖h‖2

H +
12

t2
〈h, k〉H +

12

t3
‖k‖2

H

and thus∥∥∥∥∥dνh,kt

dνt

∥∥∥∥∥
Lq(W×W ,νt)

≤ ‖Jγt (B)‖Lq(Wt
= E[(Jγt (B))q]1/q

= exp

(
2(q − 1)

(
‖h‖2

H

t
+

3〈h, k〉H
t2

+
3‖k‖2

H

t3

))
.



The “standard” inf dim Kolmogorov diffusion

To prove qi instead as an application of our main theorem, we can
take hj = ej , and we have Ij = {j} and mj = Mj = 1 for all j ,
which gives the bound∥∥∥∥dν(h,k)

t

dνt

∥∥∥∥
Lq(W×W ,νt)

6 exp

3(1 + q)

t3

∑
j

( t
2
〈h, ej〉+ 〈k , ej〉

)2

 exp

(
1 + q

4t
‖h‖2

H

)

= exp

(
(1 + q)

(
‖h‖2

H

t
+

3〈h, k〉
t2

+
3‖k‖2

H

t3

))
.


