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Smooth measures

Definition
A measure ;i on RY s smooth if i is abs cts with respect to
Lebesgue measure and the RN derivative is strictly positive and

smooth — that is,

1= pdm, for some p € C*®(R, (0, 0)).



Hypoellipticity
In the theory of diffusions, hypoellipticity of the generator is a

sufficient (and nearly necessary) condition to ensure smoothness.

Theorem (Hormander)

Given vector fields Xo, X1, ..., X : R — R9, a second order
differential operator

k
L=> X7 +X
i=1
is hypoelliptic if

span{X,-l(x), [Xf17 Xiz](X)7 [[Xi17Xi2]7 XI'3](X)7 S
ipe{0,1,...,k}} =R?

for all x € RY.

If {X;}e>0 is a diffusion on R? with hypoelliptic generator L, then
pe = Law(X:) is smooth.



Kolmogorov diffusion
Let {B;}+>0 be BM on R?. The Kolmogorov diffusion on R? x R9

t
Xt = <Bt,/ BS d5>
0

has generator

d f I of
(LF) (p,€) : Z a2 ( §)+ijaf£j(p,€)
j=1 j=1

J

= S (B)(p.E) + p- (Ver(p. ).

The operator L is hypoelliptic, and thus Law(X;) is smooth.
For example, for d = 1, dLaw(X:)(p, &) = pt(p, &) dp d€ where

V3 <2p2 6p¢ 6€2>
= Xp .

t t2 t3



Smooth measures

Definition

A measure ;1 on RY is smooth if ju is abs cts with respect to
Lebesgue measure and the RN derivative is strictly positive and
smooth — that is,

1= pdm, for some p € C*°(R?, (0, 0)).

(*) for any multi-index «, there exists a function
8o € C®(RY) N L (p) such that

/ (=D)*fdu = / fgo dp,  forall f e CZ(RM).
R4 JRd

smoothness <= (*)



A first step to smoothness: Quasi-invariance

Definition
A measure p on § is quasi-invariant under a transformation
T:Q— Qifpand po T~ are mutually absolutely continuous.

In particular, we're interested in quasi-invariance under
transformations of the type

T = Tp, = translation (in some sense) by some h € Qg C Q,

where typically Qg is some distinguished subset of 2.



Quasi-invariance

The canonical co-dim example

The Wiener space construction is a triple
> W =WRK) ={w:[0,1] = R¥: wis cts and w(0) = 0}
equipped with the sup norm,
» ;= Law(B.) = Wiener measure on W, and
> H = H(Rk) = Cameron-Martin space, that is,

-1

H = {h €W : his abs cts and / |h(t)[? dt < x}
J0

equipped with the inner product

1
(h, k)2, ;:/0 h(t) - k(t) dt.



Quasi-invariance

The canonical co-dim example

> W is a Banach space
» 1 is a Gaussian measure

> The mapping h € H +— h € L2([0,1], R¥) is an isometric
isomorphism and 7 is a separable Hilbert space.

» 7 is dense in W and p(H) =0



Canonical Wiener space

Theorem (Cameron-Martin-Maruyama)

The Wiener measure p is qi under translation by elts of H.
That is, for h € H and du" = du(- — h),

uh<<u and ,uh>>,u.

More particularly,

”

dpl(x) = J(x) dpu(x) = e A/ 2+ ") dpu(x).
Moreover, if h ¢ H, then p L .

Theorem (Integration by parts)
For all h € H,

/ (W) () du(x) = / F(x) “(x, B ().
JW

Jw



Gross' abstract Wiener space

An abstract Wiener space is a triple (W, H, 1) where
> W is a Banach space
» i is a Gaussian measure on W

» H is a Hilbert space densely embedded in W and (when
dim(H) = o0) p(H) =0
The Cameron-Martin-Maruyama QI Theorem and IBP hold on any
abstract Wiener space.

other QI and IBP references:

Shigekawa (1984), Driver (1992), Hsu (1995,2002),
Enchev-Stroock (1995), Albeverio-Daletskii-Kondratiev (1997),
Kondratiev-Silva-Streit (1998),
Albeverio-Kondratiev-Rockner-Tsikalenko (2000), Kuna-Silva
(2004), Airault-Malliavin (2006), Driver-Gordina (2008),
Hsu-Ouyang (2010),. . .



One approach to QI
Driver—Gordina (2008), Gordina (2017)

Let M be an inf dim manifold with measure g and T : M — M.

» Suppose M, are submanifolds approximating M such that
T : M, — M,, and p, are measures on M, approximating p.

» Suppose that for each n, u, is qi under T; that is, 3
J7 M, — (0,00) so that for any f € C,(M)

[ 1761 dlne T 100 = /M £ 2(x) dpn(x)

<N (Mo pim) [T L9 (M0

» Finally, suppose that for all n

17l a (M) < CT < 00 (1H)



One approach to QI
Driver—Gordina (2008), Gordina (2017)

Then taking the limit in the first inequality gives

/M 60 d( o T1)(x) < CrllFll o -

which implies that the linear functional

or(f)i= [ Fx)duo T

is bounded on LP(M, ). Thus there exists J1 € L9(M, p) such
that

or(f) = /M F(x)7(x) du(x)

and [|J7|lLamp) < Cr-



Integrated Harnack inequalities

In the case of diffusions where p = u; = Law(X;), one often has
fin dim approx X{" with puf = Law(X]") where

duf(x) = pl(x) dx.
Thus, when T = T, = “translation” by h

n ooy PE(hX)
7,00 = pr(x)

and these estimates look like

/n (piéi(,:)()ypf(X) dx < CP.




Integrated Harnack inequalities

» via lower bounds on Ricci curvature (Wang 2004,
Driver—Gordina 2008) — not available in the hypoelliptic
setting

» via modified Bakry—Emery + “transverse symmetry”
(Baudoin—Bonnefont—Garofalo 2010, Baudoin—Garofalo 2011)
— reverse log Sobolev = Wang-type Harnack <= (IH)



Other inf dim hypoelliptic results

» via modified Bakry—Emery: inf dim hypoelliptic Heisenberg
groups (Baudoin—-Gordina—M 2013)

» via other techniques:

» stronger smoothness results for inf dim Heisenberg groups in
elliptic (Dobbs—M 2013) and hypoelliptic (Driver-Eldredge-M
2016) settings

» qi and ibp for path space measure of hypoelliptic BM on
foliated compact manifolds (Baudoin—Gordina—Feng 2019)

» qi and ibp for measures on path space of subRiemannian
manifolds (Cheng—Grong—Thalmaier, 2021)

» nothing previously for diffusions under “weak” Hormander
condition



Generalized Kolmogorov diffusion

Let (W, H, 1) be an abstract Wiener space, and let {B;}+>0
denote Brownian motion on W. Let V be a vector space. Fix a cts
F : W — V and define the diffusion on W x V

Y, = <Bt,/0t F(B;) ds> .

We're interested in when the law ugh’k) of

t
y{M) = <Bt + h,/ F(Bs+ h)ds + k>
0

is mutually abs cts wrt v; := 10 := Law(Y;).

Note that in the case V = W and F =/, this is a natural notion
of an inf dim Kolmogorov diffusion.



The fin dim approximations

For simplicity, consider first V =R, in which case {Y;} has
generator

L=NA,+ F(p)gg.

We can approximate Y; by
t
ye = (Bf,/ (Foid)(Bsd)ds)
0

where {B¢} ;>0 is BM on RY, with analogous generator L.



The fin dim estimates

For now, just write L = L.

For each «, 8 > 0, define

d

o5 8
r (f’g)"Z(ap; o) \om e )77\ 5 ) \ae )

i=1

and )
ry 7 (F) = S LrP(F) = T7(F, LF).



The fin dim estimates

Assumption A There exist m, M > 0 such that for every
i=1,...,dand peRY

m < oF
~ Op;

(p) < M.

Proposition (Bakry—Emery type)
Suppose that F satisfies Assumption A. Then for every a;, 3 > 0
and f € C* (Rd X ]R),

d 2
o8 M—m of of Of
reo(f) = —= - F(f)+mz<oz<a£> _agap,->‘

i=1




The fin dim estimates

Let p¢(-,-) denote the RN derivative of u; = u¢ wrt Lebesgue
measure on RY x R.

Proposition (Integrated Harnack inequality)
For any t >0, (p,&) € RY x R, and q € (1, 00),

(L PG5 oo e " e

where



A qi result for generalized Kolmogorov diffusions

Assumption A’ Suppose F : W — R is in the domain of V, and
assume that there exist a “good”onb {€;}?2; of H and m, M > 0
so that for all w € W

m < (VF(w),e) < M.



A qi result for generalized Kolmogorov diffusions

Theorem
Suppose F satisfies Assumption A'. Fix h€ H, k e R. If
Vg € (1, 00)

o 2
Ag(h, k) :=exp s +q)M (mt Z(h, ej) + k>

m3t3 2 4
i=1

1+ qM
X exp <(+q)||h||2) <

dmt

then ugh’k) is mutually abs cts wrt v; = 1/?
o < Aq(h. k).
dl/t
LI(W xR,v¢)




A better starting assumption

Assumption B For F = (Fy,...,F,) : R? = R’, there exist
non-empty disjoint /1, ...,/, C {1,--- ,d} and

my, My, ..., m,; M, > 0 such that foreach j=1,....r
OF;
m; < <M, Viel;
mj ap; ’(p) j e

and, for every i ¢ 1}, 6p,( ) =0.

In this case, the generator may be written as

L—ZLJ+Z

I§ZUI ’

0 19}
_Z Z p2 J'(p)@?j +237

=1 \iel T i¢ul;



The fin dim estimates for the better assumption

Proposition (Integrated Harnack inequality I1)

Suppose F : R? — R’ satisfies Assumption B. Then for any t > 0,
(p,&§) e RY X R", and q € (1,00),

</1Rde' [pt((p’ .65 5’))} q pe(p', <) dpf d§/> N

pe(p', &)
r ) 1
j=1

where 1€ := (Ui_; ;)¢ and

Aip.€) = APy )

2
3(14+ q)M; | mjt 1+ q)M;
= o (W ,(2, Zp,-+sj) )exp (4mjt b 1012
J

iel;



A (better) qi result for generalized Kolmogorov

Assumption B’ Suppose F = (Fy,...,F,): W — R" such that
each F; is H-differentiable, and assume that there exist a “good”
onb {ej}?°, of H, non-empty disjoint /1,...,/, C N, and

my, My, ..., m,; M, > 0 such that foreach j=1,...,r

m; < (VFj(w),e) < M;, foralliel

and
(VFj(w),ei) =0, forallidl.



A (better) qi result for generalized Kolmogorov

Theorem (Baudoin—Gordina—M, 2021)

Suppose that Assumption B holds for F : W — R". Fix he H
and k e R". If foreachj=1,...,r,

S l(h e < o,

iel;

then I/,Sh’k) is mutually abs cts wrt vy := 19 and Vq € (1, 0)

r . 1+q
< [ ITA0 | e (%1017
LI(W xR ,1%) '

dugh’k)

th

J=1



A (better) qi result for generalized Kolmogorov

Here /€ := (U/_, ;) and
Ay(h, k)
2

. 31+ g)M; [ mjt I+aM, 0o
‘= exp W 72<haei>+kj exp Tjtllhllg

icl;
with {€;}%2, is the onb, /; C N, and m; and M; are the bounds
introduced in Assumption B’.

So, for example, we have qi when F = (Fy,...,F,) is
component-wise cylinder-functions with F;(B) L F;j(B) for i # j,
satisfying the requisite derivative bounds.



For F: W — W

Proposition
Suppose that F : W — W is cts and there exists a “good” onb
{hj}?2, such that

d
> (F(Bf), hj)h; — F(By)

j=1

a.s. in W. Let {Qq}52, denote the sequence of projections
associated to {h;}j—1 and consider

Ya(t) = <B;’,/Ot Qq4F(BY) ds) .

Then

! Y(t) = Yalt ~0as
dl—>m00021tagx7'|| (t) = Ya(O)llwxw a.s



For F: W — W

Assumption B” Suppose F : W — W is cts and there exists a
“good” onb {h;}2; such that

d
> (F( iYhi — F(B:) as.in W.
j=1

Additionally, assume that F; := (F, h;) is H-differentiable for all j
and that there exists a “good” onb {e;}?°; of H, non-empty
disjoint /; C N and m;, M; > 0 such that, for each j

m; < (VFj(w),e) < M;, foralliecl

and
(VFj(w),e}) =0, foralli¢l



For F: W — W

Theorem (Baudoin—Gordina-M, 2021)

Suppose that Assumption B” holds for F : W — W. Fix h, k € H.
For g € (1,00) and each j € N, let

A{](h7 k) := exp (W <m2jt Z(’H ej) + (k, hj)) )

icl;

(1+q)M;
< exp (fuhu’f; .

4mjt

I 1323 Al(h, k) < oo, then V) e and ve < A9 and

< (H Al (h, k)) exp <4tuhyﬁc) .
) =l

dugh’k)
dl/t

LI(Wx W, vy



The “standard” inf dim Kolmogorov diffusion

In the case that F =/, we are back in the setting of a “standard”
inf-dim Kolmogorov diffusion

t
Xt = <Bt7/ BS ds) .
0

This is a Gaussian process and qi follows from the
Cameron-Martin-Maruyama theorem.

Alternatively, we can see gi as an application of the
Cameron-Martin-Maruyama theorem on path space

Wy =W (W) :={w:[0,t] = W : wis cts and w(0) = 0}.



The “standard” inf dim Kolmogorov diffusion

Fix h,k € H. CMM on W; = for any v € H;, the translation
B +— B + ~ gives

E[f(x{"))] = E {f <Bt + h, /Ot(Bs + h)ds + k)]
=E [f (Bt +v(t) + h, /ot(Bs +v(s) + h) ds + k> J,_?(B)] )
where

J(w) = exp ({7, )" + [V5,)

— oo ([ tits).awto) - 3 [ 1IRs).



The “standard” inf dim Kolmogorov diffusion

So, for example, taking the path (s) = sa 4 s?b with

a= 2% ad  b=2n+ 2
t3

k
t t2 t ’

we have

E[f(X{"))] = E [f (Bt, /Ot B; ds) J;’(B)} .



The “standard” inf dim Kolmogorov diffusion

We can compute exactly

BLR(E)7) ~ & [op (0 [ (051,08 ) | exw (= [ (o)1 o5
_ @ —q,
— oo (T2,

1715, = ||h||H+ (h k)H + 3||kHH

and

and thus

h,k
dv;

th

< [I97(B)llaw, = EI(J7(B))]9
LI(Wx W ,vy)

hl|?,  3(h, k 3(1k|2




The “standard” inf dim Kolmogorov diffusion

To prove gi instead as an application of our main theorem, we can
take h; = e, and we have /; = {j} and m; = M; =1 for all j,
which gives the bound

o
dvy LI(Wx W, )
3(1+gq t 2 1+q
<o | 0TS (Sine+ te) | e (001

J

oo ((ra) (18R 308 S0RY),

t t2 t3




