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The heat kernel

∂

∂t
ut =

1

2
∆ut,

u0 = f

If a heat source is placed at x, the spike decays quickly
and flats out. The heat is moved around but not lost. A
fundamental solution at x satisfies limt→0 p(t, x, y) = δx(y).
The heat kernel is the minimal positive fundamental
solution which can be obtained from the integral L2 kernel:

ut(x) =

∫
M

f(y)p(t, x, y)dy.

Through Chapman-Kolmogorov equation, p(t, x, y) can be
defined for all x, y and any t > 0.



Global Estimates

Gradient estimates for solutions non-compact spaces are
relevant for simply just justify the conservation law:

d

dt

∫
D

ut dvol =

∫
D

1

2
∆ut dvol =

1

2

∫
∂D

∇ut · ~n dS.

They involve the geometry globally. If D is compact, need
conditions so |∇u| decays sufficiently fast, in x, for it to be
integrable.
Global estimates: [3,5]



Small time estimates

When the time is small, the heat kernel should behaves
like an Euclidean kernel. Hence we expect Gaussian
upper lower bounds, and similar bounds for ∇ log p(t, x, y)
and ∇2 log p(t, x, y).
However, a Brownian motion makes large deviations, e.g.
positive fundamental solution may not be unique for some
manifolds.
In any case, all results are obtained so far are subjet to
some conditions: Manifold is compact, bounds on the
Ricci curvature, or bounded geometry.

Conquest. Obtain small time estimates without any
curvature restrictions.



Sample estimates we are after

x, y ∈ K compact, t ∈ (0, 1].

|∇x log p(t, x, y)|TxM ≤ C(K)

(
1√
t

+
d(x, y)

t

)
(1)

∣∣∇2
x log p(t, x, y)

∣∣
TxM⊗TxM

≤ C(K)

(
d2(x, y)

t2
+

1

t

)
(2)

limt↓0 supx∈K̃

∣∣∣t∇x log p(t, x, y) +∇x

(
d2(x,y)

2

)∣∣∣
TxM

= 0, (3)

limt↓0 supx∈K̃

∣∣∣t∇2
x log p(t, x, y) +∇2

x

(
d2(x,y)

2

)∣∣∣
TxM⊗TxM

= 0.(4)

K̃ ⊂M \ Cut(y) is a compact set.
These estimates are known under restrictions or on
compact, e.g. Sheu91, Hamilton93, Malliavin-Stroock 96,
Hsu99, Aida04, Li-Yau86, extended reference in [1].
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The caveat of passing from compact space to
a non-compact space

Estimates were obtained under curvature restriction. To
get over this we must find an vantage point of that
compact manifolds. One can try to localise the problem
Two standard methods of localisation do not work well.
I Exit time of the Brownian motion from a relatively

compact open set with smooth boundary is not
continuous with respect to its initial condition.

I the explosion problem is not local
I Geodesic balls may not have smooth boundaries.
I Modify the Riemannian metric with a function f

blowing up on the boundary of a relatively compact
set with smooth boundary? The resulting manifold D
is complete, not compact. Higher order derivatives of
the function f cannot be easily controlled.



Second order stochastic variations

Our techniques relies on construct compact embeddings,
and bootstrap by obtaining quantitative estimates for the
difference of the heat kernel and its logarithmic derivatives
on the exhaustion with that on the whole manifold.
One needs to be careful, as Brownian paths can shoot
out quickly.
We need a formula for ∇2 log p(t, x, y) in which the cut off
processes appear in a suitable format.
For this we introduce a second oder stochastic variation
on the orthonormal frame bundle, which allows us to
prescribe the second order derivatives of the variation.



Varadhan Estimates and large deviation

For any x, y ∈M ,

lim
t↓0

t log p(t, x, y) = −d(x, y)2

2
. (5)

Azencott, Molchanov
Connected bounded open set D ⊇ K with smooth
boundary,

lim
t↓0

t logPx(τD < t) = −d(x, ∂D)2

2
, ∀ x ∈ K. (6)

τD := inf{t > 0;Xt /∈ D}and d(x, ∂D) := infz∈∂D d(x, z).



Compact approximations

The following is joint work with Chen and Wu, [1].
We being by constructing a family of bounded connected
open sets {Dm}∞m=1 with quantitative cut-off properties.

One construct a compact Riemannian manifold M̃m such
that Dm is isometrically embedded into M̃m as an open
set.

Lemma 1. Suppose that K is a compact subset of M and
L > 1 is a positive number. Then for sufficiently large m,
there exists a positive number t0 = t0(K,L,m) such that
for every t ∈ (0, t0],

sup
x,y∈K

∣∣p(t, x, y)− pM̃m
(t, x, y)

∣∣ ≤ e−
L
t . (7)



Quantitative comparison theorems

[Chen, L , Wu 21]
0 < s ≤ t

2
and 0 < t ≤ t0, we have

sup
x,y∈K

sup
z∈Dm0

∣∣∣∣p(t− s, x, z)

p(t, x, y)
−
pM̃m

(t− s, x, z)

pM̃m
(t, x, y)

∣∣∣∣ ≤ 2e−
4L
t . (8)

sup
x,y∈K

∣∣∇x log p(t, x, y)−∇x log pM̃m
(t, x, y)

∣∣
TxM
≤ C(m)e−

L
t

(9)
At this stage we use a suitable second order derivative
formula to obtain Hessian estimates ∇2 log pt.

sup
x,y∈K

∣∣t∇2
x log p(t, x, y)− t∇2

x log pM̃m
(t, x, y)

∣∣
TxM⊗TxM

≤ C(m)e−
L
t



Motivation

I Study probability measure on loop subspace of
C([0, 1];M). The classical problems are: do they
exists, how do they behave at infinity?

I The decay problem can be solved by Poincare
inequalities.

I Define a Ornstein-Uhlenbeck like process on the loop
space.

I Even Talagrand’s conjecture can be sometimes
solved with such estimates. The conjecture is:

sup
‖f‖L1=1

γn({Tsf ≥ t}) ≤ Cs
1

t
√

log t
.

Ball, Barthe, Bednorz, Oleszkiewicz, and Woff.



Hypo-elliptic Case

To make connection with the community on
Sub-Riemannian geometry, let

L =
1

2

∑
i

(Xi)
2 +X0

be a hypo-elliptic operator. Then there exists a smooth
kernel p(t, x, y) such that

Ptf(x) =

∫
M

f(y)p(t, x, y)dy.

To condition the Markov process from x0 to y0 in time 1, it
is reasonable to assume there exists a controllable path
between them. So it is natural to assume the strong
Hörmander’s condition on L. In this case

p(t, x, y) > 0.



The hypo-elliptic bridge

Assume the strong Hörmander’s condition. The
L-diffusion xt conditioned process has generator

L+∇ log p(1− t, x, y), t < 1.

It is the pinned process solving:

dyt = Xi(yt) ◦ dBi
t +∇ log p(1− t, x, yt)dt.

lim
t→1

yt = 1, almost surely?

If so, this is a (successful) hypo-elliptic bridge.
The finite dimensional distribution then determine a
probability measure on the loop (pinned path space).



Strong Hörmander’s condition

Theorem (ECP 2016). Suppose that the L is conservative
and satisfies the strong Hömander’s condition, L∗µ = 0
has a solution. Let L̂ be the adjoint w.r.t. µ, suppose it is
conservative. (1) Then yt is a hypo-elliptic bridge.
(2) Furthermore, if L satisfies a two step Hörmandr’s
condition and M is compact, then∫ 1

0

√
E|∇ log p(1− s, ys, z)|2ds <∞

and yt, t ≤ 1 is a semi-martingale.
The problem is open for the general case.
Te proof of part (2) , under the two step Hörmander
condition, uses a gradient estimate of Cao-Yau 92:∑

i〈|∇ log u,Xi〉|2 ≤ δ ∂
∂t

log u+ C
t

+ C.



Canonical Brownian motion

Consider a family of horizontal vector fields Hi on the
orthonormal frame bundle OM .

dut =
n∑
i=1

Hi(ut) ◦ dBi
t, π(u0) = x0.

Eells-Elworthy, Malliavin, π(ut) is a Brownian motion.
c.f. Talk by Fang and Perruchaud.

The other construction is given by isometric embeddings,
the resulting process is extrinsic, has extra noise, unless
the manifold is parallelable. This is the gradient Brownian
motion.



Stochastic Variation à la Bismut

Let h ∈ L2,1(Rn) be a Cameron-Martin vector and

B̂ε
t =

∫ t

0

e−εΓsdBs + ε

∫ t

0

(h′(s) +
1

2
ricUsh(s))ds.

dut =
n∑
i=1

Hi(ut) ◦ dBi,ε
t , π(u0) = x0.

Then we expect that variation of the initial condition of the
solution is the same as that given by the variation in noise.

Γht =

∫ t

0

R(◦dBs, h(s).

This leads to Bismut’s formula for ∇ log p(t, x, y): with right
hand side involving the Brownian bridge which depends
also on ∇ log p ( so it is apparent how to use it for
obtaining estimates for ∇ log p(t, x, y))



Integration by part

Crucially,
∂

∂ε
|ε=0π(U ε

t ) = Uth(t).

With this method, Driver, c.f. Bismut, obtained an
integration by part formula:

EdF (U·h) = EF
∫ t

0

〈h′(s) +
1

2
ricUsh(s), dBs〉.

If F depends only on one time, F (σ) = f(σt), one has

Edf(Utht) = EF (xt)

∫ t

0

〈h′(s) +
1

2
ricUsh(s), dBs〉.



A formula equivalent to Integration by parts

A differentiation formula is given in [Li92], which was
shown [Elworthy-L.96] to be equivalent to Integration by
parts formula on compact. We employ the methods in
[Li92] to prove an intrinsic version:

dut = H(ut) ◦ dBt, π(ut) = xt,

dxt = ut ◦ dBt Tπ(ute) = ute

f(xT ) = Ptf(x0) +

∫ T

0

dPT−sf(Tπ ◦H(us)dBs

= Ptf(x0) +

∫ T

0

dPT−sf(us ◦ dBs).

Note: dPtf(v) = Edf(Wt(v)), as noted in Airault, c.f.
Maliiavin, Elworthy,

1

T
Ef(xT )

∫ T

0

〈usdBs,Ws(v)〉 =
1

T
E
∫ T

0

EdPT−sf(Ws(v))ds

= dPTf(v).



Second order derivatives

In Bismut’s approach, the key is ∂
∂ε
|ε=0π(U ε

t ) = Uth(t).
However ∂2

∂ε2
|ε=0π(U ε

t ) 6= 0 as long as h(t) 6≡ 0. and is not
controllable. For the first order variation, one does not
need to work on TOM . We introduce a new method with
prescribed derivative. The method we discuss next can
be adapted to solve a number of other problems.
On the tangent space of the orthonormal frame bundle,
any vector splits into a horizontal part and a vertical part.
The vertical and horizontal part interact through the
curvatures.

$ε
t := $

(
∂

∂ε
U ε
t

)
, θεt := θ

(
∂

∂ε
U ε
t

)
.

We want
ηs :=

∂θεs
∂ε

∣∣∣
ε=0

= 0.



Intrinsic Connection on OM

At this stage we must choose a connection on the
orthonormal frame bundle. One can use the connection
associated with the Horizontal frames.



Second order variation [Chen-Li-Wu 2021]

We make a variation of the initial point of the Brownian
motion plus a variation of the noise of the second order:

Bε,h
t : = Bt + ε

∫ t

0

h′(s)ds+
ε2

2

∫ t

0

Γht h
′(t) ds,

dB̃ε,h
t = Gε,h

t ◦ dB
ε,h
t

Gε,h
t := exp

(
−εΓht .−

ε2

2
Γ

(2),h
t

)
,

Γ
(2),h
t :=

∫ t

0

U−1
s ∇Rπ(Us)

(
Ush(s), Us ◦ dBs, Ush(s)

)
−
∫ t

0

ΓhsRUs(◦dBs, h(s))

+

∫ t

0

RUs(h
′(s), h(s))ds+

∫ t

0

RUs

(
◦dBs,Γ

h
sh(s)

)
.



Let ξ(ε), ε ∈ (−1, 1), be a geodesic with ξ(0) = x. Now all
wishes come true, in addition:

D

∂ε

∣∣∣
ε=0

(
∂Xε

t

∂ε

)
= UtΓth(t).

Let M ε
t be the exponential martingale, ξ(ε) the geodesic

variation.

M ε
t := exp

(
−
∫ t

0

〈
εΘs +

ε2

2
Λs, dBs

〉
−
∫ t

0

(
ε2

2

∣∣∣Θs +
ε

2
Λs

∣∣∣2)ds
)
.

Differentiate

Ptf(ξ(ε)) = E
[
f(X

ξ(ε)
t )

]
= E

[
f(X

ε,ξ(ε)
t )M ε

t

]
, (10)

to obtain the required formula.



Hessian Formula

Proposition (Chen-Li-Wu-2021). Let x ∈M and
v ∈ TxM . Then for any f ∈ Cb(M) and h ∈ L2,1(Ω;Rn)
satisfying that h(0) = U−1

0 v and h(t) = 0 a.s., we have

〈
∇Ptf(x), v

〉
TxM

= −E
[
f(Xx

t )

∫ t

0

〈Θh
s , dBs〉

]
, (11)

where Θh
t := h′(t) + 1

2
ricUt(h(t)). Furthermore,〈

∇2Ptf(x), v ⊗ v
〉
TxM⊗TxM

= E

[
f(Xx

t )

((∫ t

0

〈
Θh
s , dBs

〉)2

−
∫ t

0

〈
Λh
s , dBs

〉
−
∫ t

0

∣∣Θh
s

∣∣2ds

)]
.

(12)



Γht : =

∫ t

0

RUs(◦dBs, h(s)),

Θh
t : = h′(t) +

1

2
ricUt(h(t)),

Λh
t : = Γht h

′(t) +
1

2
U−1
t ∇Ric]Xt

(
Uth(t), Uth(t)

)
− 1

2
Γht ricUt(h(t)) +

1

2
ricUt

(
Γht h(t)

)
.

This allow to extend to any complete Riemannian
manifolds by choosing a suitable h vanishing on s > t

2
.〈

∇2Ptf(x), v ⊗ v
〉
TxM⊗TxM

= Ex
[((∫ t

0

〈Θh
s , dBs〉

)2 −
∫ t

0

〈Λh
s , dBs〉 −

∫ t

0

∣∣Θh
s

∣∣2ds
)

f(Xx
t )1{t<ζ(x)}

]
.



To compare

Extrinsic formula from Elworthy- L. [2(1)], using SDE

HessPtf(x0)(v1, v2) =
4

t2
E

{
f(xt)

∫ t

t
2

〈Y (xs)us, dBs〉
∫ t

2

0

〈Y (xs)vs, dBs〉

}

+
2

t
E

{
f(xt)

∫ t
2

0

〈DY (xs)(us)(vs), dBs〉

}

+
2

t
E

{
f(xt)

∫ t
2

0

〈Y (xs)∇TFs(v1, v2), dBs〉

}
.

Intrinsic version of above is obtained in Aranudon, Planck,
Thalmaier Also from Li’16 [3] : Hybrid formula is obtained :

Hess(P h
t f)(v2, v1) = E[∇df(Wt(v2),Wt(v1))]+E

[
df(W

(2)
t (v1, v2))

]
,



Hybrid fromula

From [3]

HessP h
t f(v1, v2) =

4

t2
E

[
f(xt)

∫ t

t/2

〈d{xs},Ws(v1)〉
∫ t/2

0

〈d{xs},Ws(v2)〉

]

+
2

t
E

[
f(xt)

∫ t/2

0

〈d{xs},W (2)
s 〉

]
,

This is good for obtaining global estimates. It does not
work well for our purpose.

DW
(2)
t (v1, v2) =

(
−1

2
Ric] + (∇2h)]

)(
W

(2)
t (v1, v2)

)
dt

+
1

2
Θh(Wt(v2))(Wt(v1))dt

+R(d{xt},Wt(v2))Wt(v1).



The Θh in the last formula is: For v1, v2, v3 ∈ Tx0M ,

〈Θ(v2)v1, v3〉 =
(
∇v3Ric]

)
(v1, v2)−(

∇v1Ric]
)
(v3, v2)−

(
∇v2Ric]

)
(v1, v3),

Θh(v2, v1) =
1

2
Θ(v2)(v1) +∇2(∇h)(v2, v1) +R(∇h, v2)(v1).

(13)



Looking forward

I Analysis on loop space, with Chen and Wu.
I Sub-elliptic and ...
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