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Abstract. Let (X,B, ν) be a probability space and let Γ be a countable group
of ν-preserving invertible maps of X into itself. To a probability measure µ on
Γ corresponds a random walk on X with Markov operator P given by Pψ(x) =P

a
ψ(ax)µ(a). We consider various examples of ergodic Γ-actions and random

walks and their extensions by a vector space: groups of automorphisms or affine
transformations on compact nilmanifolds, random walks in random scenery on
non amenable groups, translations on homogeneous spaces of simple Lie groups,
random walks on motion groups. A powerful tool in this study is the spectral
gap property for the operator P when it holds. We use it to obtain limit

theorems, recurrence/transience property and ergodicity for random walks on
non compact extensions of the corresponding dynamical systems.
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Introduction. Let (X,B, ν) be a metric space endowed with its Borel σ-algebra
B and a probability measure ν, and let Γ be a countable group of Borel invertible
maps of X into itself which preserve ν.

Let µ be a probability measure on Γ such that the group generated by A :=
supp(µ) is Γ. We consider the random walk on X defined by µ, with Markov
operator P given by

Pψ(x) =
∑

a∈A

ψ(ax)µ(a), x ∈ X. (1)

These data, i.e., the probability space (X, ν), the group Γ acting on (X, ν) and
the probability measure µ on Γ, will be denoted by (X, ν,Γ, µ).

The operator P is a contraction of Lp(X, ν), ∀p ≥ 1, and it preserves the subspace
L2

0(X, ν) of functions ϕ in L2(X, ν) such that ν(ϕ) = 0. P is said to be ergodic if
the constant functions are the only P -invariant functions in L2(X, ν).

Ergodicity of P is equivalent to ergodicity of the action of Γ on the measure space
(X,B, ν). Indeed, any Γ-invariant function is obviously P -invariant. Conversely, if ϕ
in L2(ν) is P -invariant, then, by strict convexity of L2(X, ν), we have ϕ(ax) = ϕ(x),
ν-a.e. for every a ∈ supp(µ). Therefore ϕ is Γ-invariant, hence ν-a.e. constant if Γ
acts ergodically on (X, ν).

Our aim is to consider some examples of ergodic actions and extensions of these
actions by a vector space. We will use a strong reinforcement of the ergodicity, the
spectral gap property for the operator P when it holds and we will develop some of
its consequences. Let us recall its definition and related notions.

Definition 0.1. We denote by Π0 the restriction of P defined by (1) to L2
0(X, ν) and

by r(Π0) := limn ‖Πn
0‖

1

n its spectral radius. If r(Π0) < 1, we say that (X, ν,Γ, µ)
satisfies the spectral gap property (we will use the shorthand “property (SG)”).

We recall that a unitary representation ρ of a group Γ in a Hilbert space H is
said to contain weakly the identity representation if there exists a sequence (xn) in
H with ‖xn‖ = 1 such that, for every γ ∈ Γ, limn ‖ρ(γ)xn − xn‖ = 0. See [3] for
this notion.

Recall also that Γ is said to have property (T) if, when the identity representation
is weakly contained in a unitary representation ρ of Γ, then it is contained in ρ.

The natural action of Γ on L2
0(X) defines a unitary representation ρ0 of Γ in

L2
0(X). Property (SG) implies that the identity representation of Γ is not weakly

contained in ρ0. The converse is true if (supp(µ))k generates Γ for every k ≥ 1 (see
below Corollary 3.12). Property (SG) depends only on the support of µ.

For a countable group Γ acting measurably on a probability measure space (X, ν)
where ν is Γ-invariant, according to [11] the Γ-action on (X, ν) is said to be strongly
ergodic if ν is the unique Γ-invariant continuous positive normalized functional on
L∞(X, ν). Property (SG) implies strong ergodicity, hence ergodicity of the action
of Γ on (X, ν).

Our framework will be essentially algebraic. As examples, we study the action
of groups of automorphisms or affine transformations on tori and compact nilman-
ifolds, and translations on homogeneous spaces of simple Lie groups. In Section 1
we show for nilmanifolds that the ergodicity of P follows from the ergodicity of its
restriction to the maximal torus factor. In Section 2, we recall property (SG) for
subgroups of SL(d,Z) acting on Td, as well as recent results on property (SG) for
nilmanifolds. In Section 3 we consider random walks on non compact extensions of
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dynamical systems and apply property (SG) to recurrence and ergodicity. The last
section is devoted to examples.

1. Ergodicity of groups of affine transformations on nilmanifolds. In this
section, we consider a group of affine transformations Γ on a compact nilmanifold
X . In order to obtain ergodicity of Markov operators on X , as described in the
introduction, we study the question of ergodicity of the action of Γ.

Let N be a connected, simply connected, nilpotent Lie group and D a lattice
in N , i.e., a discrete subgroup D such that the quotient X = N/D is compact. If
L1, L2 are two subgroups of N , we denote by [L1, L2] the closed subgroup generated
by the elements {n1 n2 n

−1
1 n−1

2 , n1 ∈ L1, n2 ∈ L2}, L′ := [L,L] the derived group
of L, e the neutral element of N . The descending series of N is defined by

N ⊃ N1 ⊃ ... ⊃ Nk−1 ⊃ Nk ⊃ {e},
where N ℓ+1 := [N ℓ, N ], for ℓ ≥ 0, with N0 = N .

The elements g ∈ N act on N/D by left translation: nD ∈ N/D → gnD. We
say that τ is an automorphism of the nilmanifold N/D if τ is an automorphism of
the group N such that τD = D. The group of automorphisms of N/D is denoted
by Aut(N/D). The action of τ ∈ Aut(N/D) on N/D is nD → τ(n)D. An affine
transformation γ of N/D is a map of the form:

nD → γ(n)D = αγ τγ(n)D, (2)

with αγ ∈ N and τγ ∈ Aut(N/D).
Let Γ be a group of affine transformations of the nilmanifold. The measure m

on N/D deduced from a Haar measure on N is Γ invariant. The group Γ acts on
the factor torus T := N/N1.D. When Γ is a group of automorphisms, ergodicity of
the action on the torus is equivalent to the fact that every non trivial character has
an infinite Γ-orbit.

When Γ is generated by a single automorphism (or more generally by an affine
transformation), W. Parry has proved ([28], [29]) that the ergodicity of the action
on the maximal torus factor T implies the ergodicity of the action on the nilman-
ifold. We will show (Theorem 1.4) the analogous statement for a group of affine
transformations.
Notations: For a given group Γ of affine transformations of N/D, Γ̃ denotes the
subgroup of Aut(N/D) generated by {τγ , γ ∈ Γ}, where τγ is the automorphism
associated with γ as in (2). We denote by N ℓ

e the Lie algebra of N ℓ and by dτe the
linear map tangent at e to an automorphism τ of N .

We will use the following lemmas.

Lemma 1.1. (cf. CoGu74) If Γ is a subgroup of GL(Rd) such that the eigenvalues
of each element of Γ has modulus 1, then there is a Γ-invariant subspace W 6= {0}
of Rd such that the action of Γ on W is relatively compact. If Γ is a subgroup of
GL(Zd), the action of Γ on W is that of a finite group of rotations and reduces to
the identity for γ in a subgroup Γ0 of finite index in Γ.

Proof. We extend the action of Γ to Cd. Let W̃ be a subspace of Cd which is
different from {0} and invariant by Γ on which the action of Γ is irreducible. Let

(ei) be a basis of W̃ , and let Eij be the maps defined by Eij(ek) = δkjei, ∀k. We

denote by τ̃ the endomorphism corresponding to the action of τ ∈ Γ on W̃ .
There is a constant C such that the trace of each automorphism τ̃ , for τ ∈ Γ,

satisfies: trace(τ̃ ) ≤ C dim(W̃ ).
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The action of Γ on W̃ being irreducible, by Burnside’s theorem, for each Eji there
are constants bk and elements τk ∈ Γ such that Eji =

∑
k bk τ̃k. The coefficients of

the transformations τ̃ satisfy then:

|aij(τ̃ )| = |trace(τ̃Eji)| ≤
∑

k

|bk||trace(τ̃ τ̃k)| ≤ C dim(W̃ )
∑

k

|bk|.

Therefore supτ∈Γ |aij(τ̃ )| <∞, which implies the relative compactness of the action

of Γ on W̃ , as well on the Γ-invariant subspace W of Rd generated by {ℜe v, v ∈ W̃}.
Now assume that Γ is a subgroup of GL(Zd). The symmetric functions of the

eigenvalues of γ ∈ Γ take values in Z and remain bounded when γ runs through
Γ. This implies that the set of the characteristic polynomials of the elements γ is
finite. If λ is an eigenvalue of γ, the set (λn)n∈Z is finite and therefore λ is a root
of the unity. The order of these roots remains bounded on Γ. This implies the last
assertion.

Lemma 1.2. If a group Γ of affine transformations on Td has an invariant square
integrable non a.e. constant function f , then it has an invariant function which is
a non identically constant trigonometric polynomial. If the action of Γ is ergodic,
every eigenfunction is a trigonometric polynomial.

Proof. Let f ∈ L2(Td) be a Γ-eigenfunction, f ◦ γ = β(γ)f, ∀γ ∈ Γ. By invariance
of the measure we have |β(γ)| = 1 and for every γ ∈ Γ

f =
∑

p∈Zd

f̂(p)e2πi<p,.> = β(γ)
∑

p∈Zd

f̂(p)e2πi<p,αγ>e2πi<tτγp,.>; (3)

hence: |f̂(p)| = |f̂(tτγp)|, ∀p ∈ Zd.

Let R := {p ∈ Zd : |f̂(p)| 6= 0}. For two automorphisms τ, τ ′ of the torus

and p ∈ Zd such that tτp 6= tτ ′p, the characters e2πi<tτp,.> and e2πi<tτ ′p,.> are
orthogonal. Therefore the orbit {tτγp, γ ∈ Γ} of every element p of R is finite. The
set R decomposes into finite disjoint subsets Rk, with each Rk permuted by the
automorphisms τγ ∈ Γ̃.

The subspacesWk of L2 generated by e2πi<p,.>, for p ∈ Rk, have finite dimension,
are pairwise orthogonal and are invariant by each γ ∈ Γ. The orthogonal projections
of f on these subspaces give Γ-eigenfunctions with the same eigenvalue as for f .
This shows the existence of a non constant eigenfunction (invariant if f is invariant)
which is a trigonometric polynomial. If the group Γ acts ergodically, only one of
these projections is non null. Hence f is a trigonometric polynomial.

Lemma 1.3. If a group of affine transformations Γ of a torus Td is ergodic, then
every subgroup Γ0 of Γ with finite index is also ergodic on Td.

Proof. Let Γ0 be a subgroup of Γ with finite index. As the action of Γ is ergodic, the
σ-algebra of the Γ0-invariant subsets is an atomic finite σ-algebra whose elements
are permuted by γ ∈ Γ. From Lemma 1.2, if Γ0 is not ergodic, there exists a
non constant trigonometric polynomial which is invariant by Γ0. This polynomial
should be measurable with respect to the σ-algebra of the Γ0-invariant subsets
which is atomic. The connectedness of the torus implies that it is constant; hence
a contradiction.
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Ergodicity of a group of affine transformations

Theorem 1.4. Let Γ be a group of affine transformations on N/D. If its action
on the torus factor N/N1.D is ergodic, then every eigenfunction for the action of Γ
on N/D factorizes into an eigenfunction on N/N1.D. In particular, the action of
Γ is ergodic on N/D if and only if its action on the maximal torus factor N/N1.D
is ergodic.

Proof. We follow essentially the method of W. Parry ([28]). We make an induction
on the length k of the descending central series of N . The property stated in the
theorem is clearly satisfied if k = 0.

The induction assumption is that, for every group of affine transformations of
N/D, ergodicity of the action on N/N1.D implies ergodicity of the action on
N/Nk.D and every eigenfunction for the action on N/Nk.D factorizes through
N/N1.D. (The quotient (N/Nk)/(N/Nk)′ can be identified with the quotient
N/N1.)

Remark that, for every subgroup Γ0 with finite index in a group Γ of affine
transformations on N/D, the action of Γ0 on N/N1.D is ergodic if the action of Γ
on N/N1.D is also ergodic (Lemma 1.3). The induction assumption implies then
that Γ0 acts ergodically on N/Nk.D and that every eigenfunction for the action of
Γ0 on N/Nk.D factorizes through N/N1.D.

Let f ∈ L2(N/D) be a Γ-eigenfunction, i.e., such that for complex numbers β(γ)
of modulus 1,

f(γ(n)D) = f(αγ τγ(n)D) = β(γ)f(nD), ∀γ ∈ Γ. (4)

We are going to show that f factorizes into an eigenfunction on the quotient
N/Nk.D and therefore, by the induction hypothesis, into an eigenfunction on
N/N1.D.

The proof is given in several steps.
a) We denote by Z the center of N . We have Nk ⊂ Z ∩ Nk−1. The torus

H := Z ∩ Nk−1/Z ∩ Nk−1 ∩ D acts by left translation on N/D and its action
commutes with the translation by elements of N . Let Θ be the group of characters
ofH . The space L2(N/D) decomposes into pairwise orthogonal subspaces Vη, where
η belongs to Θ and Vη stands for the subspace of functions transformed according
to the character η under the action of H :

Vη = {ϕ ∈ L2(N/D) : ϕ(hnD) = η(h) ϕ(nD), ∀h ∈ H}.
If τ is an automorphism of N/D, h ∈ H → η(τ(h)) defines a character on H

denoted by τη. We have ϕ ∈ Vη ⇔ ϕ ◦ γ ∈ Vτγη, for γ ∈ Γ.
By (4) we have the orthogonal decomposition of f into components in Vη:

f =
∑

η∈Θ

fη = β(γ)
∑

η∈Θ

fη ◦ γ, ∀γ ∈ Γ, (5)

with fη ∈ Vη, fη ◦ γ ∈ Vτγη. We will show that the components fη, hence also f ,

are invariant by translation by the elements of Nk.
Let us fix θ ∈ Θ such that ‖fθ‖2 6= 0. Let Γ0 := {γ ∈ Γ : τγθ = θ}. For two

automorphisms τ, τ ′ of N/D, if τθ 6= τ ′θ, the subspaces Vτθ and Vτ ′θ are orthogonal.
Equality of the norms ‖fθ ◦γ‖2 = ‖fθ‖2, ∀γ ∈ Γ, and Equation (5) imply that there
are only a finite number of distinct images in the orbit {τγθ, γ ∈ Γ}. Hence the
group Γ0 has a finite index in Γ. As remarked above, its action on N/Nk.D, like
the action of Γ, is ergodic.
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¿From now on we consider Γ0 and the component fθ (denoted f for simplicity).
¿From what precedes, we have an ergodic action of a group of affine transforma-

tions Γ0, a character θ ∈ Θ such that τγθ = θ, ∀γ ∈ Γ0, and a function x → f(x)
on N/D satisfying

f(αγτγ(x)) = β(γ)f(x), f(h.x) = θ(h)f(x), ∀h ∈ Z ∩Nk−1.

We can assume that θ is non trivial on Nk. By replacing N/D by N/H0.D,
where H0 is the connected component of the neutral element of Ker θ, we can also
assume that Nk/Nk ∩D has dimension 1.

The previous equations imply that |f | is γ-invariant for every γ ∈ Γ0 and Nk-
invariant. Therefore the function |f | is a.e. equal to a constant that we can assume
to be 1.

b) For g ∈ N , let θ(g) :=
∫
f(gx)f(x) dx. Remark that the restriction of θ to

Z ∩ Nk−1 coincides with the character θ previously defined on Z ∩ Nk−1. The
function θ is continuous and θ(e) = 1; therefore θ(g) 6= 0 on a neighborhood of e.
The invariance of the measure implies:

θ(g−1) = θ(g). (6)

Denote by G the subgroup of Nk−1 defined by

G := {g ∈ Nk−1 : f(gx) = θ(g)f(x)} = {g ∈ Nk−1 : |θ(g)| = 1}, (7)

(the equality in (7) follows from the equality in Cauchy-Schwarz inequality), and
by G0 the connected component of the neutral element in G.

For g in Nk−1 and h in N , we have: θ(hgh−1) = θ(hgh−1g−1)θ(g); hence

|θ(hgh−1)| = |θ(g)|, ∀g ∈ Nk−1, h ∈ N. (8)

For g in G and h in N , the relation f(gx) = θ(g)f(x) implies θ(gh) = θ(g) θ(h).
Therefore we have by applying (6) to gh :

g ∈ G, h ∈ N ⇒ θ(gh) = θ(hg) = θ(g) θ(h). (9)

Equation (8) implies: |θ(hgh−1)| = 1, ∀g ∈ G, h ∈ N . The group G (and
therefore G0) is a closed normal subgroup of N .

¿From the equation of eigenfunction (4), we have:

f(αγτγ(g) τγ(x))f(αγτγ(x)) = f(γ(gx))f(γ(x))

= β(γ)β(γ)f(gx)f(x) = f(gx)f(x) (10)

and therefore, by invariance of the measure:
∫
f(αγτγ(g)α−1

γ x)f(x) dx =

∫
f(αγτγ(g)τγ(x))f(αγτγ(x)) dx =

∫
f(gx)f(x) dx,

which implies: θ(αγτγ(g)α−1
γ ) = θ(g); hence, from (8) :

|θ(τγg)| = |θ(g)|, ∀γ ∈ Γ0. (11)

We define two subsets expW1 and expW2 containing respectively the stable and
unstable subgroups of the automorphisms τ in Γ̃0 acting on Nk−1/Nk by setting

W1 = {v ∈ Nk−1
e : ∃τ ∈ Γ̃0 : lim

n→+∞
dτn

e v mod Nk
e = 0},

W2 = {v ∈ Nk−1
e : ∃τ ∈ Γ̃0 : lim

n→−∞
dτn

e v mod Nk
e = 0}.



ERGODICITY OF GROUP ACTIONS AND SPECTRAL GAP, APPLICATIONS 7

Let us show that exp Wi ⊂ G0, i = 1, 2. Let g ∈ expW1. It belongs to a one
parameter subgroup (gt) such that, for every t, there exists a sequence (gn) of
elements of Nk such that limn τ

n(gt) gn = e. Using (11), (7) and (9), this implies:

|θ(gt)| = |θ(τn(gt)| = |θ(τn(gt)| |θ(gn)| = |θ(τn(gt) gn)| → |θ(e)| = 1.

Therefore gt is in G, for every t, hence g ∈ G0. The analysis is the same for W2.

c) Now we prove: [N,G0] = Nk.
As we are reduced to the case where Nk is of dimension 1, the other possibility

is that [N,G0] = {e}. Let us assume that [N,G0] = {e}. The subgroup G0 is then
in the center of N and contained in Z ∩Nk−1.

Consider the quotient Nk−1/Z ∩Nk−1. As G0 contains exp W1 and exp W2, the

differentials of the automorphisms τ ∈ Γ̃0 have only eigenvalues of modulus 1 for
their action on Nk−1

e /Ze ∩Nk−1
e .

By Lemma 1.1, there exists then in Nk−1
e /Ze ∩ Nk−1

e a subspace W3 on which
the action of the transformations which are linear tangent to the automorphisms
∈ Γ̃0 is compact. As the automorphisms τ preserve a lattice, the subgroup Γ̃1 which
leaves fixed the elements of W3 has a finite index in Γ̃0. Let Γ1 denote the subgroup
of elements γ ∈ Γ0 such that τγ ∈ Γ̃1.

Let g be an element of Nk−1 in exp W3. For every τγ ∈ Γ̃1, there exists g0 ∈
Z ∩Nk−1 such that τγg = g0g. Equation (10) reads

f(αγ g0g τγ(x))f(αγτγ(x)) = f(g0αγgα
−1
γ g−1 g αγ τγ(x))f(αγτγ(x))

= θ(g0) θ(αγgα
−1
γ g−1)f(g γ(x))f(γ(x)) = f(gx)f(x).

Therefore f(g.) f(.) is an eigenfunction for every γ ∈ Γ1. Moreover it is invariant by
h ∈ Nk. It factorizes into an eigenfunction for Γ1 on N/Nk.D. Either its integral
is 0 (if for γ ∈ Γ1 the corresponding eigenvalue is 6= 1) or it is invariant by Γ1. In
the latter case, as ergodicity holds for the action of Γ1 on N/Nk.D by the induction

hypothesis, f(g.) f(.) is equal to a constant with modulus 1 (since |f | = 1).
We have therefore |θ(g)| = 0 or 1. By a continuity argument |θ(g)| = 1, which

implies that g ∈ G. Using as above a one parameter subgroup, we obtain that
g ∈ G0. This gives a contradiction, since G0 ⊂ Z ∩Nk−1.

d) Let (ht) be a one parameter subgroup of N . For g in G0 we have by (9):

θ(ht) θ(g) = θ(htg) = θ(htgh
−1
t g−1ght)

= θ(htgh
−1
t g−1)θ(ght) = θ(htgh

−1
t g−1)θ(g) θ(ht).

By continuity, θ(ht) is different from zero in a neighborhood of t = 0. The previous
relation implies θ(htgh

−1
t g−1) = 1 in a neighborhood of t = 0 and, G0 being con-

nected, is equal to 1 everywhere. As [N,G0] = Nk, this shows that the character θ
is identically equal to 1 on Nk and therefore the announced factorization property
is satisfied.

Remark. There are compact nilmanifolds N/Γ for which the group Aut(N/Γ) is
non ergodic (cf. [10]). This contrasts with the case of Heisenberg nilmanifolds, for
which there is a large group of automorphisms.

An example. Now we give an example of nilmanifold with an ergodic group Γ of
automorphisms such that each automorphism in Γ is non ergodic.
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Construction on the torus
Examples of groups of matrices such that each of them has an eigenvalue equal

to 1 can be constructed by action on the space of quadratic forms. We explicit the
example in dimension 2. For similar examples see [30].

Let A :=

(
a b
c d

)
∈ GL(2,R), with eigenvalues λ1, λ2. The action of A on the

vector space of symmetric 2 × 2 matrices given by M → AMAt is represented by
the matrix

q(A) =



a2 2ab b2

ac ad+ bc bd
c2 2cd d2


 , (12)

whose eigenvalues are detA, λ2
1, λ

2
2. The vector (2b, d − a,−2c)t is an eigenvector

for q(A) with eigenvalue detA and is invariant by q(A) if detA = 1. When A has
integer coefficients, q(A) is an integral matrix and the eigenvector (2b, d− a,−2c)t

belongs to Z3.
The restriction to SL(2,Z) of the map A → q(A) defines an isomorphism onto

a discrete subgroup Λ0 of automorphisms of SL(3,Z) whose each element is non
ergodic (each element q(A) leaves fixed a non trivial character of the torus T3), but
which acts ergodically on T3, since the orbits of the transposed action on Z3 \ {0}
are infinite.

Extension to a nilmanifold
Now we extend the action of Λ0 to a nilmanifold. Let us consider the real

Heisenberg group H2d+1 of dimension 2d + 1, d ≥ 1, identified with the group of
matrices (d+ 2) × (d+ 2) of the form:




1 x z
0 Id y
0 0 1


 ,

where x and y are respectively line and column vectors of dimension d, z a scalar,
Id the identity matrix of dimension d. The composition in H2d+1 can be defined
by:

(x, y, z).(x′, y′, z′) = (x+ x′, y + y′, z + z′ + 〈x, y′〉 − 〈x′, y〉).
The map (x, y, z) → (Dx, tD−1y, z), for D ∈ SL(d,R), defines a group of automor-
phisms of H2d+1. If the matrices are in SL(d,Z), these automorphisms preserve the
subgroup D2d+1 of elements of H2d+1 with integral coefficients.

The group {q(A), A ∈ SL(2,Z)} defined by (12) extends to a group Γ = {τA, A ∈
SL(2,Z)} of automorphisms of the nilmanifold N/D = H7/D7, where τA(x, y, z) =
(q(A)x, tq(A)−1y, z). Since the orbits of the action of Γ on Z3 × Z3 \ {0} are
infinite, the group Γ acts ergodically on the torus factor N/N ′D = T3 × T3, hence
on N/D by Theorem 1.4. But each automorphism (x, y) → (q(A)x, tq(A)−1y) is
non ergodic on T3 × T3.

2. Spectral gap property. We will now describe some classes of examples where
property (SG) is satisfied.

Tori
As a basic example where property (SG) is valid, let us consider as in [11] (See

also [15]) the d-dimensional torus X = Td endowed with the Lebesgue measure, and
the action of SL(d,Z) on Td by automorphisms. The Lebesgue measure is preserved.



ERGODICITY OF GROUP ACTIONS AND SPECTRAL GAP, APPLICATIONS 9

Every γ ∈ SL(d,Z) acts by duality on Zd by γt. We denote by µt the push-forward
of a probability measure µ on SL(d,Z) by the map γ → γt.

Proposition 2.1. Let µ be a probability measure on SL(d,Z) such that supp(µt) has
no invariant measure on the projective space Pd−1. Let P be the Markov operator
on Td defined by

Pϕ(x) =
∑

γ

ϕ(γx)µ(γ).

Then the corresponding contraction Π0 on L2
0(X) satisfies r(Π0) < 1.

Proof. The Plancherel formula gives an isometry I between L2
0(T

d) and ℓ2(Zd\{0}).
For γ ∈ SL(d,Z) we have I ◦γ = γt◦I. Hence if L denotes the convolution operator
on ℓ2(Zd \ {0}) defined by µt we have r(Π0) = r(L).

Suppose r(L) = r(Π0) = 1 and let eiθ be a spectral value. Then two cases
can occur. Either there exists a sequence (fn) ∈ ℓ2(Zd \ {0}) with ‖fn‖2 = 1 and
limn ‖Lfn − eiθfn‖2 = 0, or, for some f ∈ ℓ2(Zd \ {0}) with ‖f‖2 = 1, L∗f = e−iθf .

Since eiθL∗ is a contraction on ℓ2(Zd \ {0}), its fixed points are also fixed points
of its adjoint e−iθL, hence Lf = eiθf . It follows that it suffices to consider the first
case. The condition limn ‖Lfn−eiθfn‖2 = 0 implies limn ‖Lfn‖2 = limn ‖eiθfn‖2 =
1 and

lim
n

[‖Lfn‖2
2 + ‖fn‖2

2 − 2ℜe〈Lfn, e
iθfn〉] = 0;

hence, using the inequality |〈Lfn, e
iθfn〉| ≤ ‖Lfn‖ ‖fn‖ ≤ 1,

lim
n
〈Lfn, e

iθfn〉 = 1.

Since 〈Lfn, e
iθfn〉 =

∑
γ µ(γ)〈fn ◦γt, eiθfn〉 and |〈fn ◦γt, eiθfn〉| ≤ ‖fn ◦γt‖2‖fn‖2,

we get that, for every γ ∈ supp(µ),

lim
n
〈fn ◦ γt, eiθfn〉 = 1.

Since |〈fn ◦ γt, eiθfn〉| ≤ 〈|fn| ◦ γt, |fn|〉, we have also limn〈|fn| ◦ γt, |fn|〉 = 1, hence

lim
n

‖|fn| ◦ γt − |fn|‖2 = 0.

The inequality

‖|fn|2 ◦ γt − |fn|2‖1 ≤ ‖|fn| ◦ γt − |fn|‖2 ‖|fn| ◦ γt + |fn|‖2

implies limn ‖|fn|2 ◦ γt − |fn|2‖1 = 0.
In other words, if νn denotes the probability measure on ℓ2(Zd\{0}) with density

|fn|2, we have in variational norm:

lim
n

‖(γt)−1νn − νn‖ = 0. (13)

Let νn be the projection of νn on Pd−1 and ν a weak limit of νn. By (13), we have
(γt)−1ν = ν, hence γtν = ν, ∀γt ∈ supp(µt), which contradicts the hypothesis.

Remarks. 1) The hypothesis on the support of µt is satisfied if the group generated
by supp(µ) has no irreducible subgroup of finite index. This is a consequence of the
following fact observed by H. Furstenberg: if a linear group has an invariant measure
on Pd−1, then either it is bounded or it has a reducible finite index subgroup (See
[39], p. 39, for a proof).

2) The above corresponds to a special case in the characterization of property
(SG) given in [5], Theorem 5, for affine maps of Td. In particular if µ̂ is a probability
measure on the group Aut(Td) ⋉ Td and µ is its projection in Aut(Td), property
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(SG) for µ̂ acting on Td is valid if the group generated by supp(µ) is non virtually
abelian and its action on Rd is Q-irreducible.

Nilmanifolds
As in Section 1, let N be a simply connected nilpotent group, D a lattice in N ,

X = N/D the corresponding nilmanifold and T the maximal torus factor. Let µ be
a probability measure on Aut(X) ⋉N , µ its projection on Aut(T ) ⋉ T . It is shown
in [5], Thm. 1, that if the convolution operator on L2

0(T ) associated with µ satisfies
property (SG), then the same is true for the operator on X associated with µ.

In view of the torus situation described above, this gives various examples of
measures µ where property (SG) is valid. If N is a Heisenberg group, more precise
results are available, which will be recalled in Section 4.

Simple Lie groups
Let us consider a non compact simple Lie group G and let ∆ be a lattice in G,

i.e. a discrete subgroup such that X = G/∆ has finite volume for the Haar measure
v. Let µ be a probability measure on G. It follows from Theorem 6.10 in [11] that,
if µ is not supported on a coset of a closed amenable subgroup of G, then property
(SG) is valid for the action of µ on X .

Compact Lie groups
We take X = SU(d), ν the Haar measure on X . It is known (See [12], [2]) that

for d ≥ 3, if Γ ⊂ SU(d) is a countable dense subgroup with the coefficients of every
element of Γ algebraic over Q and if µ generates Γ, then the natural representation
of Γ in L2

0(X) does not contain weakly IdΓ (cf. Definitions 0.1).
In particular there are dense free subgroups of SU(d) as above. Also, if X =

SO(d) and d ≥ 5, there are countable dense subgroups of SO(d) which have property

(T ). For example, if Γ is the group of d×d matrices with coefficients in Z[
√

2] which

preserve the quadratic form q(x) =
∑d−2

i=1 x
2
i +

√
2 (x2

d−1 + x2
d), Γ has property (T )

(see [27], p. 136, for similar examples).
Let A be a finite set of generators for Γ and µ a probability with supp(µ) = A.

Then property (SG) is valid for the convolution action of µ on X , since Γ is ergodic
on (X, ν), a consequence of the density of Γ.

3. Applications of the spectral gap property.

3.1. Extensions of group actions and random walks. As in the introduction,
let X be a metric space, Γ a countable group of invertible Borel maps of X into
itself which preserve a probability measure ν on X , and µ a probability measure on
Γ with finite support such that A := supp(µ) generates Γ as a group. We assume
that the action of Γ on (X, ν) is ergodic. We will use both notations:

∑
a f(ax)µ(a)

or
∫
f(ax) dµ(a).

Let us consider the product space Ω = AN
∗

, with N∗ = N \ {0}, the shift σ on Ω
and the product measure P = µ⊗N

∗

on Ω. For ω ∈ Ω we write ω = (a1(ω), a2(ω), ...).
The extended shift σ1 is defined on Y = Ω×X by σ1(ω, x) = (σω, a1(ω)x). Clearly
σ1 preserves the measure P1 = P ⊗ ν.

We consider also the bilateral shift on Ω̂ := AZ still denoted by σ. It preserves

the product measure P̂ = µ⊗Z.
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Lemma 3.1. The system (Y,P1, σ1) is ergodic.

Proof. The dual operator of the composition by σ1 on L2(P1) is

Rg(ω, x) =
∑

b∈A

g(bω, b−1x)µ(b).

On functions of the form (f ⊗ ϕ)(ω, x) = f(ω)ϕ(x), the iterates of R reads

Rn(f ⊗ ϕ)(x) =
∑

b1,...,bn∈An

f(b1...bn ω)ϕ(b−1
1 ...b−1

n x)µ(b1)...µ(bn).

To prove the ergodicity of σ1, it suffices to test the convergence of the means

lim
N

1

N

N−1∑

k=0

Rkg =

∫ ∫
g dPdν,

when g is of the form g(ω, x) = f(ω)ϕ(x), where ϕ is in L∞(X) and f on Ω depends
only on the first p coordinates, for some p ≥ 0. Setting

Ff,ϕ(x) =
∑

b1,...,bp∈Ap

f(b1...bp)ϕ(b−1
1 ...b−1

p x)µ(b1)...µ(bp),

we have, for k ≥ p, Rk(f ⊗ ϕ)(ω, x) = P̌ k−pFf,ϕ(x), where P̌ is defined by

P̌ψ(x) =
∑

b∈A

ψ(b−1x)µ(b).

Ergodicity of P , hence of P̌ , implies the convergence of the means 1
N

∑N−1
k=0 Rk(f ⊗

ϕ)(ω, x) to the constant
∫
Ff,ϕ ν(x) = (

∫
f dP(ω)) (

∫
ϕdν(x)).

Displacement
Let V = Rd be the d-dimensional Euclidean space (d ≥ 1) and let be given, for

each a ∈ A, a bounded Borel map x → ca(x) = c(a, x) from X to V . We will call
(ca(x), a ∈ A) a “displacement”.

The centering condition of the displacement is assumed, i.e.
∫

(
∑

a

ca(x)µ(a)) dν(x) = 0. (14)

For a ∈ A and (x, v) ∈ X ×V , we write ã(x, v) = (ax, v+ ca(x)). Then ã defines

an invertible map from X × V into itself with (ã)
−1

(x, v) = (a−1x, v − ca(a−1x)).

We denote by Γ̃ the group of Borel maps of X × V generated by Ã = {ã, a ∈ A}.
The action of Γ̃ preserves the fibering of X×V over X , and the projection of X×V
on X is equivariant with respect to the action of Γ on X . We have a homomorphism
γ̃ → γ from Γ̃ to Γ which maps ã to a, for every a ∈ A.

In other words, using the displacement (ca(x), a ∈ A), we can extend the action

of the group Γ on X to the action of the group Γ̃ generated by the maps ã, a ∈ A,
on X × V . Clearly the maps γ̃ ∈ Γ̃ commute with the translations on the second
coordinate on X × V by elements of V and therefore are of the form γ̃(x, v) =

(γx, v+ c(γ̃, x)), where c(γ̃, x) is a map from Γ̃×X to V which satisfies the relation

c(γ̃γ̃′, x) = c(γ̃, γ̃′x) + c(γ̃′, x), ∀γ̃, γ̃′ ∈ Γ̃.

For γ̃ = ãr...ã1, r ∈ N∗, we have γ̃(x, v) = (ar...a1x, v + c(γ̃, x)), with

c(γ̃, x) = c(a1, x) + c(a2, a1x) + ...+ c(ar, ar−1...a2a1x). (15)
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The displacement satisfies the cocycle property (for Γ) if the value of the sum in
(15) depends only on the value of the product γ = ar...a1 in Γ.

It should be noticed that this cocycle property in general is not satisfied, since
the value of the sum in (15) depends in the general case on the “path” (a1, ..., ar).

This is the case in particular if there is a with a, a−1 ∈ A and ã−1 6= ã−1.
A special case is when (ca(x), a ∈ A) is a coboundary, i.e. when there exists d(x)

measurable such that ca(x) = d(ax) − d(x), ∀a ∈ A. The cocycle property then
trivially holds in Γ. This is also the case if ca(x) is a limit of coboundaries.

Extension of the random walk
We consider the random walk on the product space X × V defined by the prob-

ability measure µ and the maps ã. Its Markov operator P̃ extends the Markov
operator P of the random walk on X given by (1) and is defined by

(P̃ψ)(x, v) =
∑

a∈A

ψ(ã(x, v))µ(a) =
∑

a∈A

ψ(ax, v + ca(x))µ(a). (16)

Such Markov chains have been considered in the literature under various names:
random walk with internal degree of freedom if X is finite ([25]), covering Markov
chain ([20]), Markov additive process ([36]), etc. Intuitively the random walker
moves on V with possible jumps ca(x), a ∈ A, where x represents the memory of
the random walker. Here the steps are chosen according to the probability µ(a)
which depends on a only. A more general scheme would be to choose the steps
ca(x) according to a weight depending on (x, a). Under spectral gap conditions on
certain functional spaces, it is possible to develop a detailed study of the iteration
P̃n of P̃ (See for example [15] when the functional spaces are Hölder spaces). In
the framework of the present paper, no regularity is assumed. We supposed only
that the displacement consists in bounded Borel maps.

Recall that Y = Ω ×X . Writing y = (ω, x), we define the extension σ̃ of σ1 on
Y × V by σ̃(y, v) = (σ1y, v + c(a1(ω), x)). It preserves the measure P1 ⊗ ℓ, where ℓ
denotes the Lebesgue measure on V .

The set Y (resp. Y × V ) can be identified with the space of trajectories of the

Markov chain defined by P (resp. P̃ ). With the notation of (15) we have

Sn(y) = Sn(ω, x) =

n∑

k=1

c(ak(ω), ak−1(ω)...a1(ω)x).

Hence, Sn(y) appears as a Birkhoff sum over (Y, σ1). The iterates of σ̃ on Y ×V
read:

σ̃n(y, v) = (σn
1 y, v + Sn(y)), ∀n ≥ 1.

Also if we denote by µ̃ the push-forward of µ by the map a→ ã, we can express
the iterate P̃n of P̃ as

P̃nψ(x, v) =

∫
ψ(γ̃(x, v)) dµ̃n(γ̃),

where µ̃n is the n-fold convolution product of µ̃ by itself.
Here we are interested in the asymptotic properties of σ̃n and (Sn(y)) with respect

to the measures P1 ⊗ ℓ and P1 under the condition that P has “nice” spectral
properties on X (see below). The L2-spectral gap condition can be compared to
the so-called Doeblin condition for the Markov operator P .
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The natural invertible extension of (Ω×X×V, σ̃,P1⊗ ℓ) is (Ω̂×X×V, σ̃, P̂1⊗ ℓ),
with as above σ̃(ω, x, v) = (σω, a1(ω)x, v + c(a1(ω), x)), and where σ is now acting

on the bilateral space Ω̂.

We will need to analyze P̃n using methods of Fourier analysis. Hence we are led
to introduce a family of operators Pλ on L2(X), λ ∈ V , defined by

Pλϕ(x) =
∑

a∈A

ei〈λ, ca(x)〉 ϕ(ax)µ(a). (17)

We observe that, since supa∈A ‖ca‖∞ = c < ∞, the above formula still makes

sense if λ ∈ Rd is replaced by z ∈ Cd, and we obtain an operator valued holomorphic
function z → Pz satisfying, for any ϕ, ψ ∈ L2(X),

|〈Pzϕ, ψ〉| ≤ ecℜez〈P |ϕ|, |ψ|〉 ≤ ecℜez‖ϕ‖2‖ψ‖2.

This will allow us to use perturbation theory (See [16] for an analogous situation).
The V -valued function w(x) :=

∑
a∈A ca(x)µ(a) is square integrable and its

integral is 0 in view of the centering condition (14).
Since r(Π0) < 1, the restriction of P − I to L2

0(X) is invertible, hence we can
solve the equation (P − I)u = w, with u ∈ L2

0(X). The modified displacement
c′(a, x) defined, for a ∈ Γ, by

c′(a, x) := c(a, x) − (u(ax) − u(x))

satisfies ν-a.e. ∑

a∈A

c′(a, x)µ(a) = 0. (18)

A basic tool for the study of P̃n will be the analysis of the Fourier operators Pλ,
and in fact their spectral gap properties. Their family satisfies (as in [16], Lemmas
1 and 2):

Lemma 3.2. For any ϕ ∈ L2(X), we have

Pλϕ(x) = Pϕ(x)+i

∫
〈λ, ca(x)〉ϕ(ax) dµ(a)− 1

2

∫
〈λ, ca(x)〉2 ϕ(ax) dµ(a)+|λ|2o(λ).

For λ small, Pλ has a dominant eigenvalue k(λ) given by

k(λ) = 1 − 1

2
Σ(λ) + |λ|2o(λ),

where

Σ(λ) :=

∫ ∫
〈λ, c′a(x)〉2 dµ(a)dν(x).

In order to analyze more closely the operators Pλ, we introduce some definitions
related to the aperiodicity of the displacement.

Definition 3.3. We say that the displacement (ca, a ∈ A) satisfies

- (NR) (non reducibility): if there does not exist λ ∈ V , λ 6= 0, and d ∈ L2(X,Rd)
such that ν-a.e.

〈λ, c(a, x)〉 = 〈λ, d(ax) − d(x)〉, ∀a ∈ A;

- (AP) (aperiodicity): if there does not exist (λ, θ) ∈ V × R, λ 6= 0, and d(x)
measurable, with |d(x)| = 1 such that ν-a.e.

ei〈λ,c(a,x)〉 = eiθd(ax)/d(x), ∀a ∈ A.
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We observe that the formula ã(x, z) = (ax, z ei(〈λ, c(a,x)〉−θ)) defines an action of

Γ̃ on X × T and that ergodicity of these actions for every λ 6= 0 implies condition
(AP). Clearly (AP) implies (NR).

There are special cases (corresponding to functional of Markov chains) where the
previous conditions can be easily verified.

Lemma 3.4. Assume that ca(x) = c(x) does not depend on a ∈ A, and that the Rd-
valued function c is bounded and satisfies the centering condition

∫
c(x) dν(x) = 0.

Assume that A has a symmetric subset B such that B2 acts ergodically on (X, ν).
1) If the measure c(ν) is not supported on a hyperplane of Rd, then (NR) is

satisfied.
2) If the measure c(ν) is not supported on a coset of a proper closed subgroup of Rd,
then (AP) is satisfied.

Proof. 1) If there exists λ 6= 0 and a Rd-valued functions d(x) such that ν-a.e.
〈λ, c(x)〉 = 〈λ, d(ax) − d(x)〉, for any a ∈ A, then, for any a, a′ ∈ A, 〈λ, d(ax)〉 =
〈λ, d(a′x)〉, i.e. 〈λ, d(γx) = 〈λ, d(x)〉 for any γ ∈ AA−1. Since the subgroup gen-
erated by AA−1 is ergodic on (X, ν) we get that, for some c0 ∈ R, 〈λ, d(x)〉 = c0,
hence 〈λ, c(x)〉 = 0, ν-a.e. contrary to the non degeneracy condition on c(ν).

2) If (AP) does not hold, there exist λ 6= 0 in Rd, θλ ∈ R and a cocycle σλ(γ, x)
on Γ ×X with values in the group of complex of modulus 1, such that for ν-a.e. x

σλ(a, x) = ei(〈λ,c(x)〉−θλ), ∀a ∈ A.

In particular, taking a, a−1 ∈ B, we have

1 = σλ(a−1, ax)σλ(a, x) = ei(〈λ,c(x)+c(ax)〉−2θλ);

hence, for any a, a′ ∈ B, ei〈λ,c(ax)〉 = ei〈λ,c(a′x)〉, ν-a.e.
Since B2 acts ergodically on (X, ν) we get, for λ 6= 0 and some cλ of modulus

1, ei(〈λ,c(x)〉 = cλ. This means that c(x) belongs to the coset of the proper closed
subgroup of Rd defined by ei(〈λ,v〉 = cλ, which contradicts the hypothesis.

3.2. Ergodicity, recurrence/transience. In this section, we study ergodicity, re-
currence and transience of the extended dynamical systems considered above. First
we recall briefly the notion of recurrence in the framework of dynamical systems
(cf. [31], [1]).

Let (Y, λ, τ) be a dynamical system with Y a metric space, λ a probability
measure on Y and τ an invertible Borel map of Y into itself which preserves λ.
We suppose the system ergodic. If ϕ is a Borel map from Y to Rd, the ergodic

sums Snϕ(y) =
∑n−1

k=0 ϕ(τky) define a “random walk in Rd over the dynamical
system” (Y, λ, τ). The corresponding skew product is the dynamical system defined
on (Y × Rd, λ× ℓ) by the transformation τϕ : (y, v) → (τy, v + ϕ(y)).

We say that y ∈ Y is recurrent if, for every neighborhood U of 0 in Rd,
∑

n≥0

1U (Snϕ(y)) = +∞.

We say that y is transient if, for every neighborhood U of 0 in Rd this sum is finite.
The cocycle (Snϕ) is recurrent if a.e. point y ∈ Y is recurrent. It is transient if a.e.
point y ∈ Y is transient.

Since the set of recurrent points is invariant and the system (Y, λ, τ) is ergodic,
every cocycle (Snϕ) is either transient or recurrent.
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For the sake of completeness, let us give a simple proof of the following known
equivalence:

Proposition 3.5. The recurrence of (Snϕ) is equivalent to the conservativity of
the system (Y × Rd, λ⊗ ℓ, τϕ).

Proof. By definition the dynamical system (Y × Rd, λ ⊗ ℓ, τϕ) is conservative if,
for every measurable set A in Y × Rd with positive measure and for a.e. (y, v) ∈ A
there exists n ≥ 1 such that τn

ϕ (y, v) = (τny, v + Snϕ(y)) ∈ A.
We show conversely that this property holds if (Snϕ)n≥1 is recurrent in the sense

of the above definition.
We can suppose that A is included in Y × L, where L is a compact set in Rd.

One checks easily that the set B := {(y, v) ∈ A : ∀n ≥ 1, τn
ϕ (y, v) 6∈ A} has pairwise

disjoint images.
Using the recurrence of (Snϕ), one can find for every ε > 0 a compact set Kε

such that, for a set of measure ≥ 1 − ε of points y, the sums Snϕ(y) belongs to Kε

for infinitely many n (we use the fact that for a.e. y, the set {Snϕ(y), n ≥ 1} has
a finite accumulation point and that there is a neighborhood of this accumulation
point in which Snϕ(y) returns infinitely often).

The measure of the set Fε := Y ×(L+Kε) is finite. Since B has pairwise disjoint
images, we have

∫

Y

1B(y, v)
∑

n≥1

1Fε(τ
n
ϕ (y, v)) λ(dy) dℓ(v) =

∑

n≥1

(λ × ℓ)(B ∩ τ−n
ϕ Fε)

=
∑

n≥1

(λ× ℓ)(τn
ϕB ∩ Fε) ≤ (λ× ℓ)(Fε) < +∞,

and therefore, for a.e. (y, v) in B,
∑

n≥1 1Fε(τ
n
ϕ (y, v)) <∞.

This implies that (λ× ℓ)(B) ≤ ε, hence B has measure 0. The set A satisfies the
announced property.

¿From the proposition it follows that, when (Snϕ) is recurrent, the random walk
visits P⊗ ν-a.e. infinitely often any neighborhood of 0 in V , i.e., lim infn→∞ ‖Sn(ω,
x)‖ = 0, P⊗ ν-a.e. When the random walk (Snϕ) is transient, then limn→∞ ‖Sn(ω,
x)‖ = ∞, P ⊗ ν-a.e. on Ω ×X .

In the transient case, the system (Y ×Rd, λ⊗ℓ, τϕ) is dissipative, i.e. there exists
a Borel subset B ⊂ Y × Rd, such that

Y × Rd =
⋃

n∈Z

τn
ϕB and (λ⊗ ℓ)(τn

ϕB ∩B) = 0, ∀n ∈ Z \ {0}.

Now we will study these properties of recurrence and transience in the case of the

random walk (Sn(ω, x)) over the dynamical system (Ω̂×X, P̂1, σ1) and its extension

(Ω̂ ×X × V, σ̃, P̂1 ⊗ ℓ) defined at the beginning of this section.

Theorem 3.6. Assume that (X, ν,Γ, µ) satisfies property (SG).
1a) If the displacement (ca, a ∈ A) satisfies (NR), then ( 1√

n
Sn(ω, x))n≥1 con-

verges in law with respect to P ⊗ ν to the centered normal law on V with non
degenerate covariance Σ.

1b) If the displacement (ca, a ∈ A) satisfies (AP), then the local limit theorem
holds: for any ϕ ∈ L2(X) and f continuous with compact support, α̃ = αν ⊗ δ0,
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with α ∈ L2(X), α ≥ 0, ν(α) = 1, we have

lim
n

(2πn)d/2(detΣ)
1

2 P̃nα̃(ϕ⊗ f) = ν(ϕ) ℓ(f). (19)

2a) For d ≤ 2 (Sn) is recurrent: P ⊗ ν a.e. lim infn→∞ ‖Sn(ω, x)‖ = 0.
2b) For d ≤ 2, if the displacement (ca, a ∈ A) satisfies (AP), then σ̃ is ergodic

with respect to P̂1 ⊗ ℓ.
2c) If d ≥ 3, if the displacement (ca, a ∈ A) satisfies (AP), (Sn) is transient:

P ⊗ ν a.e. on Ω ×X limn→∞ ‖Sn(ω, x)‖ = ∞.
3) For any d ≥ 1, if the displacement (ca, a ∈ A) satisfies (AP), the equation

P̃h = h, h ∈ L∞(ν ⊗ ℓ), has only constant solutions.

Proof. 1) We have

Sn(ω, x) =
n∑

k=1

Yk(ω, x) + u(an...a1x) − u(x),

with Yk(ω, x) = c′(ak, ak−1...a1x). We observe that

E(Yk(ω, x)|a1, ..., ak−1) =

∫
c′(a, x) dµ(a) = 0,

since w(x) =
∫
c(a, x) dµ(a) = (Pu− u)(x).

On the other hand, for any v ∈ V , by definition of Σ(v) and from (18) we have
the martingale property and in particular E(〈Yk, v〉 〈Yℓ, v〉) = 0, if k 6= ℓ, and

E(〈Yk, v〉2) =

∫
〈Yk(ω, x), v〉2dP(ω) dν(x) =

∫ ∫
〈v, c′a(x)〉2 dµ(a) dν(x) = Σ(v).

Clearly Yk = Y1 ◦ σk
1 and σ1 preserves the measure P ⊗ ν. Ergodicity of σ1 and the

ergodic theorem imply P ⊗ ν-a.e.

lim
n→∞

1

n

n∑

k=1

〈Yk, v〉2 = Σ(v).

Hence

lim
n

1

n
E(〈

n∑

1

Yk, v〉2) = Σ(v) = lim
n

1

n
E(〈Sn, v〉2).

Brown’s central limit theorem ([7]) applies to (Yk), and gives the CLT for (Sn)
since the coboundary term u(an...a1x) − u(x) is bounded. So we get the con-
vergence in law of 1√

n
Sn(ω, x) with respect to P ⊗ ν to the centered normal law

on V with covariance Σ. The non degeneracy of Σ follows from the formula
Σ(v) =

∫
〈v, c′a(x)〉2 dµ(a) dν(x) and Condition (NR).

The statement 1b) (the convergence (19)) is proved in Lemma 3.8 below.

2a) Using the CLT as a recurrence criterion for the R2-valued Z-cocycle, (Sny)
over the measure preserving transformation σ1 (cf. [33] or [8]), the recurrence
property follows:

lim inf
n→∞

‖Sn(ω, x)‖ = 0. (20)

2b) We observe that the trajectories of the random walk on X × V defined by µ
are given by

Xn(ω, x, v) = (σn
1 (ω, x), v + Sn(ω, x)).
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By (20), for any relatively compact open set U ⊂ V , P ⊗ ν-a.e. on Ω ×X × U
there exists n(ω, x, v) ≥ 1 with Xn(ω, x, v) ∈ Ω ×X × U .

In other words, the Markov kernel P̃ on X × V satisfies Property R defined in
[18]. Hence, using Proposition 2.6 in [18], the ergodicity of (Ω̂×X×V, σ̃, P̂1⊗ℓ) will

follow if we show that the equation P̃ h = h, for h ∈ L∞(ν ⊗ ℓ), has only constant
solutions.

Since P̃ h = h, we have for any n ∈ N, ϕ ∈ L2(X), f ∈ L1(V ) with
∫
f(v) dℓ(v) =

0,
〈(P̃ ∗)n(ϕ⊗ f), h〉 = 〈ϕ⊗ f, h〉.

Lemma 3.7 below gives 〈ϕ⊗f, h〉 = 0, hence h is invariant by translation by v and
defines an element h ∈ L∞(X, ν) with Ph = h. Then we have

∑
a∈A h(ax)µ(a) =

h(x), hence the invariance of h by a ∈ A. Since ν is Γ ergodic, h is constant ν-a.e.
Therefore h is constant ν ⊗ ℓ-a.e. This proves 2b).

2c) Let us show that, for any relatively compact subset U of X × V , for a.e.
(x, v) ∈ U we have on U :

∑∞
n=1 1U (an...a1x, v + Sn(ω, x))) < +∞.

We have, for every non negative Borel function ψ on X × V :

E(

∞∑

n=1

ψ(an...a1x, v + Sn(ω, x))) =

∞∑

n=1

P̃nψ(x, v).

Here we will prove the convergence
∑∞

n=1〈|P̃nψ, ψ〉| <∞ for ψ of the form ϕ⊗f .
Since we can choose ψ ≥ 1U , this will implies

E(

∞∑

1

1U (an...a1x, v + Sn(ω, x)1U (x, v)) <∞,

hence the result. This convergence follows from Lemma 3.8 below.
To finish the proof of 2), we observe that if ϕ is a continuous function with

compact support on V and ψ = α⊗ ϕ, where α ∈ L2(X) and α̃ = αν ⊗ δ0, then

〈P̃nψ, ψ〉 = (P̃nα̃)(ψ)ℓ(ϕ).

In particular by (19) the sequence (nd/2〈Pnψ, ψ〉) is bounded. If d > 2 the series∑∞
n=0 |〈P̃nψ, ψ〉| converges. Hence the result.
3) The assertion is shown in the proof of 2b).
Now, under the assumption (AP) as in the theorem, we prove the lemmas used

in the previous proof.

Lemma 3.7. For any ϕ ∈ L2(X) and any f ∈ L1(V ) with
∫
f(v) dℓ(v) = 0, we

have
lim

n→∞
‖(P̃ ∗)n(ϕ⊗ f)‖1 = 0.

Proof. In the proof of Proposition 3.6 of [17], a Markov operator Q on X×Rd which
commutes with the Rd-translations is considered and it is proved that limn→∞ ‖Qn

(u ⊗ f)‖1 = 0 for Hölder continuous functions u in Hε(X) and f as above. The
essential points of the proof are: polynomial growth of Rd as a group and a spectral
gap property for the Q-action on functions of the form u⊗λ where u ∈ Hε(X) and
λ is a character of Rd.

Here we observe that the adjoint operator P̃ ∗ of P̃ on L2
0(X×V, ν⊗ℓ) is associated

with µ̌ the symmetric of µ which has the same properties as µ as observed above.
The action of P̃ ∗ is also well defined on the functions of the form u ⊗ λ where

λ is a fixed character of V and u is in L2(X). It reduces there to the action of P ∗
λ
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on L2(X) hence using b) ⇒ a) of Theorem 3.9 below we get that (AP) implies that
P ∗

λ has a spectral gap. Hence the lemma follows from the proof of Proposition 3.6

in [17] with Q = P̃ ∗.

Lemma 3.8. Let α be a probability measure on X which has a L2-density with
respect to ν. Let α̃ be the probability measure α ⊗ δ0 on X × V and let µ̃n :=
(2πn)d/2(detΣ)

1

2 P̃nα̃. Then the sequence of Radon measures (µ̃n) on X×V satisfies
limn µ̃n(ϕ ⊗ f) = ν(ϕ) ℓ(f) for any ϕ ∈ L2(X) and f continuous with compact
support.

Proof. Let ϕ be a function in L2(X) and f ∈ L1(V ) be such that its Fourier

transform f̂(λ) =
∫
f(v) ei〈λ,v〉 dℓ(v) has a compact support on V . Then, by the

inversion formula we have:

f(v) = (2π)−d

∫
f̂(λ) e−i〈λ,v〉 dℓ(λ).

As in [6], p. 225, we test the convergence of µ̃ϕ
n(f) = µ̃n(ϕ ⊗ f) using functions f

as above. We apply the method of [16] for proving the local limit theorem, giving
only the main steps of the proof. According to b) ⇒ a) of Theorem 3.9 below, we
observe that the operator Pλ considered above satisfies r(Pλ) < 1 for λ 6= 0, in view
of Condition (AP). Furthermore, by perturbation theory, for λ small enough, Pλ

has a dominant eigenvalue k(λ) and a corresponding one dimensional projection pλ

such that:

Pλ = k(λ)pλ +Rλ,

Rλpλ = pλRλ, r(Rλ) < |k(λ)|,

k(λ) = 1 − 1

2
Σ(λ) + |λ|2o(|λ|).

Also pλ, rλ depend analytically on λ. These facts will allow us to adapt the
analogous proof of [16]. We write P̃nα̃ as follows:

P̃nα̃ =

∫
δγx ⊗ δc(γ̃,x) dµ̃

n(γ̃) dα(x);

Pnα̃(ϕ⊗ f) = (2π)−d

∫
ϕ(γx) e−i〈λ,c(γ̃,x)〉 f̂(λ) dµ̃n(γ̃) dα(x) dℓ(λ)

= (2π)−d

∫

Rd

α(Pn
−λϕ) f̂(λ) dℓ(λ),

hence

µ̃n(ϕ⊗ f) = (2π)−d/2(detΣ)
1

2 nd/2

∫

Rd

α(Pn
−λϕ) f̂(λ) dℓ(λ).

Since r(Pλ) < 1 for λ 6= 0, the integration can be reduced, in the limit, to a small
neighborhood U of 0 in Rd and it suffices to consider

In := (2π)−d/2(detΣ)
1

2

∫
√

nU

α(Pn
−λ/

√
n(ϕ) f̂ (λ/

√
n) dℓ(λ);

Using the spectral decomposition of Pλ we see that limn→∞ In = limn→∞ Jn

with

Jn = (2π)−d/2(detΣ)
1

2

∫
√

nU

k(λ/
√
n)nα(Pλ/

√
n(ϕ)) f̂(λ/

√
n) dℓ(λ).
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Since limn→∞ k(λ/
√
n)n = e−

1

2
Σ(λ) and limλ→0 pλ(ϕ) = ν(ϕ), we get

lim
n→∞

Jn = (2π)−d/2(detΣ)
1

2

∫
e−

1

2
Σ(λ) ν(ϕ) f̂ (0) dℓ(λ);

hence limn→∞ Jn = (ν ⊗ ℓ)(ϕ⊗ f).
The following theorem will play an important role, since it allows to pass from

approximate coboundary equation to an exact one.

Theorem 3.9. Let Π0 be the restriction of P to L2
0(X) and let Pλ, λ ∈ V , λ 6= 0,

be defined on L2(X) by (17) with ca(x) ∈ L∞(X) for every a ∈ supp(µ). Assume
that r(Π0) < 1. Then the following properties are equivalent:
a) the spectral radius r(Pλ) of Pλ acting on L2(X) is 1;
b) the condition (AP) is not satisfied at λ: there exists a real θ and a measurable
function α such that

ei(〈λ, ca(x)〉−θ) = ei(α(ax)−α(x)), ν − a.e.

c) there exists θ ∈ R such that ei(〈λ, ca(x)〉−θ) extends as a cocycle σλ(γ, x) on Γ×X,
with values in the group of complex numbers of modulus 1, and the representation
ρλ of Γ on L2(X) contains IdΓ, where

(ρλ(γ)ϕ)(x) = σλ(γ−1, x)ϕ(γ−1x). (21)

Proof. a) ⇒ b)
We begin as in the proof of Proposition 2.1. Assume r(Pλ) = 1 and let eiθ,

(θ ∈ [0, 2π[) be a spectral value of Pλ. Then, either the subspace Im(eiθ − Pλ) is
not dense in L2(X) or there exists ϕn ∈ L2(X), with ‖ϕn‖ = 1, such that

lim
n

‖Pλϕn − eiθϕn‖2 = 0.

In the first case, there exists ϕ ∈ L2(X) with eiθP ∗
λϕ = ϕ. Since e−iθPλ is a

contraction of L2(X), this implies Pλϕ = eiθϕ. Hence it suffices to consider the
second case. We have:

0 ≤ ‖Pλϕn − eiθϕn‖2
2 = ‖Pλϕn‖2

2 + ‖ϕn‖2
2 − 2ℜe〈Pλϕn, e

iθϕn〉
≤ 2 − 2ℜe〈Pλϕn, e

iθϕn〉.
Then the condition limn ‖Pλϕn − eiθϕn‖2 = 0 is equivalent to:

lim
n

ℜe〈Pλϕn, e
iθϕn〉 = 1,

i.e. to

lim
n
〈Pλϕn, e

iθϕn〉 = 1.

We have also, since ‖ϕn‖2 = 1,

0 ≤ |〈Pλϕn, e
iθϕn〉| ≤ 〈P |ϕn|, |ϕn|〉 ≤ 1.

It follows limn〈P |ϕn|, |ϕn|〉 = 1, i.e. limn ‖P |ϕn| − |ϕn|‖2 = 0.
We can write |ϕn| = 〈|ϕn|, 1〉 + ψn, where ψn := (|ϕn| − 〈|ϕn|, 1〉1 ∈ L2

0(X) and
therefore limn ‖(P − I)ψn‖2 = 0 and 〈|ϕn|, 1〉 ≤ ‖ϕn‖2 ≤ 1.

Since r(Π0) < 1, the restriction of Π0 − I to L2
0(X) is invertible. Hence the

condition limn ‖(P − I)ψn‖2 = 0 implies limn ‖ψn‖2 = 0.
If c ∈ R+ is a limit of a subsequence 〈|ϕni |, 1〉 of 〈|ϕn|, 1〉, we get limi ‖|ϕni | −

c‖2 = 0.
Since ‖ϕn‖2 = 1, we have c = 1, hence the convergence limn ‖|ϕn| − 1‖2 = 0.
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On the other hand, the condition limn〈Pλϕn, e
iθϕn〉 = 1 can be written as

lim
n

∫
〈ei〈λ,ca〉ϕn ◦ a, eiθϕn〉 dµ(a) = 1,

where, for each a ∈ supp(µ), |〈ei〈λ,ca〉ϕn ◦ a, eiθϕn〉| ≤ 1.
It follows, for any a ∈ supp(µ),

lim
n

‖ei〈λ,ca〉ϕn ◦ a− eiθϕn‖2 = 0.

We can write ϕn(x) = |ϕn(x)|eiαn(x), with αn(x) ∈ [0, 2π[. Hence:

ei〈λ,ca〉ϕn ◦ a− eiθϕn

= ei〈λ,ca〉+iαn◦a(|ϕn ◦ a| − 1) − eiθ(|ϕn| − 1)eiαn + ei〈λ,ca〉+iαn◦a − ei(αn+θ).

Hence

lim
n

‖ei(−αn+αn◦a+〈λ,ca〉−θ) − 1‖2 = 0,

therefore, for a subsequence (nk)

ei(〈λ,ca(x)〉−θ) = lim
k
ei(αnk

(ax)−αnk
(x)), ν − a.e.

Clearly limk e
i(αnk

(ax)−αnk
(x)) is the restriction to A×X of a cocycle σλ(γ, x) of

Γ ×X .
On the other hand property (SG) implies strong ergodicity of the action of Γ on

X ; hence proposition 2.3 of [32] gives the existence of a measurable function α on
X such that σλ(a, x) = ei(〈λ,ca(x)〉−θ) = ei(α(ax)−α(x)), ν-a.e.

b) ⇒ c)
With ϕ(x) = e−iα(x), we have by condition b) σλ(a, x) = ϕ(x)/ϕ(ax) which

extends to Γ ×X as a cocycle. By the definition of ρλ(a−1) (cf. (21)), we have

(ρλ(a−1)ϕ)(x) = ϕ(x).

Since A generates Γ as a group, this means that the representation ρλ contains
IdΓ.

c) ⇒ a)
Let µ̌ be the push-forward of µ by the map γ → γ−1. We observe that, by the

definition of ρλ, ρλ(µ̌) = e−iθPλ.
Therefore eiθ is an eigenvalue of Pλ, so that r(Pλ) = 1.

Remarks. 1) In general, it is non trivial to calculate the set of λ ∈ Rd such that
r(Pλ) = 1. However, Corollary 3.10 is useful for this question.

2) Also we observe that condition c) in the proposition implies that the action
of Γ on X × T given by γ(x, t) = (γx, tσλ(γ, x)) is not ergodic.

Corollary 3.10. Assume property (SG). The set Rµ = {λ ∈ Rd : r(Pλ) = 1} is a
closed subgroup of Rd. It is discrete if (NR) is valid.

Proof. Assume λ1, λ2 satisfy r(Pλ1
) = r(Pλ2

) = 1. Then condition b) of the
Proposition gives the existence of θ1, θ2 ∈ R, ϕ1, ϕ2 with |ϕ1| = |ϕ2| = 1, such that,
for j = 1, 2 and ν-a.e.

ei(〈λj ,ca(x)〉−θj) = ϕj(ax)/ϕj(x).
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It follows

ei(〈λ1−λ2,ca(x)〉−θ1+θ2) =
ϕ1(ax)ϕ2(ax)

ϕ1(x)ϕ2(x)
,

i.e. condition b) is satisfied with λ1−λ2, θ1− θ2, ϕ1(x)ϕ2(x). Hence Rµ is a group.

The definition of Pλ, Pλ′ gives the following inequality:

|(Pλ − Pλ′)ϕ(x)| ≤ sup
x,a

|ei〈λ−λ′, ca(x)〉 − 1|P |ϕ|(x),

hence, since |ca(x)| is bounded by a constant c,

‖(Pλ − Pλ′)ϕ‖2 ≤ sup
a∈A

‖ca‖∞ |λ− λ′| ‖ϕ‖2 ≤ c|λ− λ′|‖ϕ‖2.

Therefore, we have ‖Pλ − Pλ′‖ ≤ c|λ− λ′|, which implies that, if λ is fixed with
r(Pλ) < 1, we have also r(Pλ′ ) < 1 for λ′ sufficiently close to λ. Hence Rµ is closed.

Assume now Condition (NR) is satisfied. Observe that ‖Pλ − P0‖ ≤ c|λ|. Since
r(Π0) < 1, the spectrum of P = P0 consists of {1} and a compact subset of the
open unit disk. Hence P has a dominant isolated eigenvalue, which is a simple
eigenvalue. By perturbation theory, this property remains valid in a neighborhood
of 0.

Using Lemma 3.2 and the fact (noted in Theorem 3.6 part 1) that the covariance
matrix Σ is non degenerate, the dominant spectral value k(λ) satisfies: r(Pλ) =
|k(λ)| < 1, for λ small and 6= 0. Hence Rµ ∩W = {0} for some neighborhood W of
0, i.e. Rµ is a discrete subgroup of Rd.

Remark. If ca(x) takes values in Zd, the previous results have an analogue if we
replace the space X ×Rd by X ×Zd. The character λ ∈ V should be replaced by a
character of Zd, i.e. λ ∈ Td, and the Lebesgue measure ℓ by the counting measure
on Zd. This will be used in 4.3 below.

The following corollary makes explicit the result in Theorem 3.6 for a functional
c(x) of a Markov chain.

Corollary 3.11. Assume that (X, ν,Γ, µ) satisfies property (SG), that ca(x) = c(x)
does not depend on a ∈ A, and that the Rd-valued function c is bounded and satisfies∫
c(x) dν(x) = 0. Moreover, assume that A ⊂ Γ has a symmetric subset B such

that B2 acts ergodically on (X, ν). Then we have:
1) if d ≤ 2, we have P × ν-a.e. lim infn→∞ ‖Sn(ω, x)‖ = 0;

2) if the measure c(ν) is not supported on a coset of a proper closed subgroup of
Rd,
- for d ≤ 2, σ̃ is ergodic with respect to µ× ν × ℓ,
- for d ≥ 3, the local limit theorem is valid for (Sn(ω, x)) and limn→∞ ‖Sn(ω, x)‖ =
+∞, P × ν-a.e.

Proof. The result follows from Lemma 3.4 and Theorem 3.6.

The arguments in the proof of the proposition give also the following corollary,
which is a direct consequence of the main result of [19] (see also Theorem 6.3 in
[11]).

Corollary 3.12. Assume supp(µ) is finite, generates Γ and the representation ρ0

of Γ in L2
0(X) does not contain weakly IdΓ. Let Γ∗ be the group of characters of Γ



22 J.-P. CONZE AND Y. GUIVARC’H

and Γ∗
X be the subset of elements of Γ∗ contained in the natural representation of Γ

in L2(X, ν). Then Γ∗
X is a finite subgroup of Γ∗. The measure µ satisfies property

(SG) if and only if supp(µ) is not contained in a coset of the subgroup kerχ for
some χ ∈ Γ∗

X , χ 6= 1. In particular, if (supp(µ))k generates Γ for any k > 0, then
(SG) is satisfied.

Proof. Let ρ be the natural representation of Γ in L2(X, ν). For a given χ ∈ Γ∗
X ,

there exists ϕ ∈ L2(X, ν) with ϕ(γx) = χ(γ)ϕ(x), ‖ϕ‖2 = 1. The ergodicity of the
action of Γ on X implies that ϕ is uniquely defined up to a scalar, with |ϕ(x)| = 1,
ν-a.e.

Also it is clear that Γ∗
X is a subgroup of Γ∗. To obtain that Γ∗

X is closed in
Γ∗, we note that if χ ∈ Γ∗ satisfies for some sequence (ϕn) with |ϕn(x)| = 1,
χ(γ) = limn ϕn(γx)/ϕn(x), then χ ∈ Γ∗

X . As in the proof of the proposition this
follows from Proposition 2.3 of [32], since the subgroup of T-valued coboundaries of
(Γ, X, ν) is closed in the group of cocycles endowed with the topology of convergence
in measure.

In order to show that each element of Γ∗
X has finite order, we observe that, using

[19], (Γ, X, ν) has no non atomic Z-factor up to orbit equivalence. Hence, for every
χ ∈ Γ∗

X and some n ∈ N∗ one has χn = 1. Since Γ is finitely generated, Γ∗
X is a

closed subgroup of a torus. Therefore Γ∗
X is finite.

If supp(µ) is contained in the coset {γ ∈ Γ : χ(γ) = c} and ϕ(γx) = χ(γ)ϕ(x)
with ϕ ∈ L2(X), one has:

Pϕ(x) =
∑

a∈supp(µ)

ϕ(ax)µ(a) = c ϕ(x),

hence µ does not satisfy (SG).
Conversely, if µ does not satisfy (SG), then for some c of modulus 1 and a sequence

(ϕn) in L2(X) with ‖ϕn‖ = 1, we have limn ‖Pϕn − cϕn‖2 = 0. As in the proof of
the proposition, we can use the condition that ρ0 does not contain weakly IdΓ to
get that P − I is invertible on L2

0(X) and obtain that limn ‖|ϕn| − 1‖2 = 0. Then,
writing ϕn(x) = |ϕn(x)| eiαn(x), we get that for a subsequence (nk) of integers,

limk e
i(αnk

(x)−αnk
(γx)) = c.

Then there exists χ ∈ Γ∗ with χ(a) = c for every a ∈ A, and for every γ ∈ Γ,

χ(γ) = limk e
i(αnk

(x)−αnk
(γx)). From above χ ∈ Γ∗

X . The condition χ(a) = c for
every a ∈ A implies supp(µ) ⊂ {γ ∈ Γ : χ(γ) = c}. Hence the result.

For the last assertion, we observe that, if χ ∈ Γ∗
X \ {1} satisfies χ(a) = c for

some c ∈ T and every a ∈ supp(µ), then, for some k ∈ N∗, χk(a) = ck = 1. Then
any γ ∈ (supp(µ))k satisfies χ(γ) = 1. Since (supp(µ))k generates Γ, we get χ = 1,
which contradicts the hypothesis on χ.

4. Examples.

4.1. Random walk in random scenery. As an example corresponding to Corol-
lary 3.11, we consider a group Γ, a probability measure µ on Γ such that A :=
supp(µ) is symmetric and (supp(µ))2 generates Γ as a group. We denote by
(Σn(ω), ω ∈ AZ) the left random walk on Γ defined by µ and we consider the
visits of Σn(ω) to a random scenery on Γ.

Such a random scenery is defined by a finite set C ⊂ Rd, a probability measure
η on C with supp(η) = C and

∑
v∈C η(v) v = 0. To each γ ∈ Γ, one associates

a random variable xγ with values in C. The variables xγ are assumed to be i.i.d.
with law η.
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The scenery defines a point x = (xγ)γ∈Γ of the Bernoulli scheme X = CΓ en-
dowed with the product measure µ⊗Γ and Γ acts on CΓ by left translations: if
x = (xγ , γ ∈ Γ), then ax = (xaγ , γ ∈ Γ). If we define f(x) = xe ∈ C, the cumulated
scenery is given by Sn(ω, x) =

∑n
k=1 f(ak(ω)...a1(ω)x). One can give the following

interpretation: the random walker collects the quantity xγ when visiting the site γ
and his “cumulated gain” at time n along the path defined by ω is Sn(ω, x).

The probability measure ν = η⊗Γ is Γ-invariant, ergodic, and
∫
f(x)dη⊗Γ(x) =

∑

v∈C

η(v)v = 0.

The transformation σ1 on AZ × CΓ = Ŷ is given by σ1(ω, x) = (θω, a1(ω)x). Since
A is symmetric, σ1 can be seen as a “T − T−1” transformation (cf. [21]).

We consider the Markov operator P on X associated with µ and its restriction
Π0 to L2

0(X). It is well known (see [3], Ex E45, p. 394) that the action of Γ on
L2

0(X) decomposes as a direct sum of tensor products of the regular representation
in ℓ2(Γ). A typical summand is ⊗k

1ℓ
2(Γ) and if r0(µ) is the spectral radius of the

convolution operator by µ in ℓ2(Γ), we have r(Π0) = supk≥1(r0(µ))k = r0(µ).
Assume that Γ is non amenable. Then we have r0(µ) < 1 (see [23]), hence

property (SG) is satisfied. If we assume that C ⊂ Rd is not supported on a coset
of a closed subgroup of Rd, the hypothesis and the conclusions 2 and 3 of Corollary
3.11 are valid. Hence, with the above notations, it follows:

Proposition 4.1. Let Γ be a non amenable group, µ a probability measure on Γ
such that supp(µ) is symmetric and (supp(µ))2 generates Γ, Σn(ω) the correspond-
ing random walk on Γ. We assume that Γ is endowed with an Rd-valued random
scenery with law η, that C = supp(η) is finite with

∑
v∈C vη(v) = 0, and supp(η) is

not contained in a coset of a closed subgroup of Rd. We denote by Sn(ω, x) the accu-
mulated scenery along the random walk and by σ̃ the transformation on Ω×CΓ×Rd

defined with f(x) = xe by

σ̃(ω, x, t) = (σω, a1(ω)x, t+ f(x)).

Then the convergence of 1√
n
Sn(ω, x) to a non degenerate normal law is valid. If

d ≤ 2, σ̃ is ergodic and (Sn) is recurrent with respect to µ × ν × ℓ. If d ≥ 3,
µ⊗Z × ν-a.e., limn ‖Sn(ω, x)‖ = +∞.

Remark 1. The above result should be compared with the case Γ amenable. For
Γ = Z, 1

n3/2
Sn(ω, x) converges in law towards a non Gaussian law ([24], [26]).

Here, due to the strong transience properties of Γ, Sn(ω, x) behaves qualitatively
like a sum of i.i.d. random variables. Let us consider Γ = Zm, for m large.

Using independence of the random variables (xγ , γ ∈ Γ), we see that

‖
∞∑

k=0

P kf‖2
2 = ‖f‖2

2

∑

γ∈Γ

(π(γ))2,

where π =
∑∞

k=0 µ
k is the potential of µ on Zm. If m ≥ 5, it is known that∑

γ∈Γ(π(γ))2 < ∞ (see for example [36]), hence ϕ =
∑∞

k=0 P
kf is finite η⊗Γ-a.e.

and defines an element of L2
0(X) which satisfies (I − P )ϕ = f . This implies the

convergence in law of 1√
n
Sn(ω, x) to a non degenerate normal law ([13]).
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4.2. Random walks on extensions of tori. Now we present a special case where
Condition (AP) can be checked.

Here the 2d-dimensional torus T2d is identified with [− 1
2 ,

1
2 [2d and {x} denotes

the point of [− 1
2 ,

1
2 [2d corresponding to x ∈ T2d.

Proposition 4.2. Let µ be a probability measure on Sp(2d,Z) acting by automor-
phisms on T2d and let Γ be the subgroup generated by supp(µ). Assume that Γ acts
Q-irreducibly on R2d and Γ is not virtually abelian. Let ν be the Lebesgue measure
on T2d. Then, with the notations of Section 3, we consider the transformation σ̃
on Ω × T2d × R2d defined by

σ̃(ω, x, v) = (σω, a1x, v + {x}).

Let Sn(ω, x) =
∑n

k=1{ak...a1x}. Then, if d = 1, σ̃ is ergodic and (Sn) is recurrent
with respect to µ⊗Z × ν × ℓ. If d ≥ 2, µ⊗Z × ν-a.e. limn ‖Sn(ω, x)‖ = +∞.

Since x → {x} is bounded and
∫
{x} dν(x) = 0, the proposition is a direct

consequence of Theorem 3.9, Theorem 3.6 and the following lemma.

Lemma 4.3. Let µ be a probability measure on Sp(2d,Z) and let Γ be the subgroup
generated by supp(µ). For λ ∈ R2d let Pλ be the operator on L2(T2d) defined by

Pλϕ(x) =
∑

a

ei〈λ,{x}〉ϕ(ax)µ(a).

Then, if Γ acts Q-irreducibly on R2d and Γ is not virtually abelian, we have r(Pλ) <
1, for λ ∈ R2d \ {0}. In particular (SG) and (AP) are valid.

Proof. We will use as an auxiliary tool the Heisenberg group H2d+1 and its auto-
morphism group Sp(2d,R)⋉R2d. The group H2d+1 has a one dimensional center C
isomorphic to R and a lattice ∆ such that ∆∩C is isomorphic to Z, and ∆/∆ ∩C
is isomorphic to Z2d.

Let X̂ be the corresponding manifold H2d+1/∆. Up to a set of 0 measure, we

can represent X̂ as T2d ×T1 and x̂ ∈ X̃ as x̂ = (x, z), with x ∈ T2d, z ∈ T1 = R/Z.
The action of an element g of Sp(2d) ⋉ R2d on H2d+1 can be represented as

a matrix g =

(
(a) 0
u 1

)
acting on R2d × R, where a ∈ Sp(2d,R), u ∈ R2d. If g

preserves ∆, we have a ∈ Sp(2d,Z), u ∈ Z2d and the action of g on X̂ is given by
g(x, z) = (ax, z + [u, x]), with a ∈ Sp(2d,Z), x = (x1, x2) ∈ T2d, u = (u1, u2), u

′ =
(−u2, u1) ∈ Z2d and

[u, x] = {〈u1, x2〉 − 〈u2, x1〉} = {〈u′, x〉} ∈ T2d.

For a fixed u ∈ Z2d, we associate to a ∈ Sp(2d,Z) the element g = â of Sp(2d,Z)⋉
Z2d with components a ∈ Sp(2d,Z) and u ∈ Z2d.

We denote by µ̂ the push-forward of µ by the map a → â. We denote by Γ̂ the

group generated by supp(µ̂) and we consider the convolution action of µ̂ on L2(X̂).
On functions ψ of the form ψ(x, z) = ϕ(x) e2iπz , with ϕ ∈ L2(T2d), the action of µ̂
is given by

P̂uϕ(x) =
∑

a

ϕ(ax) e2πi[u,x] µ(a) =
∑

a

ϕ(ax) e2πi〈u′,x〉 µ(a) = P2πu′ ϕ(x).
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We denote by ‖µn‖2 (resp. ‖µn‖2) the norm of the convolution operator by µn

on ℓ2(Γ) (resp. by µn on ℓ2(Z2d \ {0})). We write

r0(µ) = lim
n

‖µn‖1/n
2 , r0(µ) = lim

n
‖µn‖1/n

2 ,

rn = sup(‖µn‖2, ‖µn‖1/2d+2
2 ).

Now we observe that, for λ, λ′ ∈ R2d, we have

|(Pλ − Pλ′)ϕ| ≤ 1

2
|λ− λ′|P |ϕ|,

and ‖Pλ − Pλ′‖ ≤ 1
2 |λ− λ′| since P is a contraction.

On the other hand, if λ′ = 2πu′, u′ ∈ Zd, we have for any n ∈ N, using [4]
(Theorem 3), ‖Pn

λ′‖ ≤ rn.
We observe also that the qualitative result r(Pλ′ ) < 1 follows from the implication

b) ⇒ a) of Theorem 3.9 and the remark following it, since Γ acts ergodically on

T2d, and therefore Γ̃ acts ergodically on X̃ (cf. section 1).
The hypothesis on Γ implies its non amenability (See [5], Corollary 6), hence

(see [23]) the spectral radius r0(µ) of the convolution operator on ℓ2(Γ) defined by
µ satisfies r0(µ) < 1. Also from [5], Corollary 6, we have r0(µ) = r(Π0) < 1.

We bound ‖Pn
λ ‖ as follows: we have Pn

λ′ − Pn
λ =

∑n−1
k=0 P

k
λ′(Pλ′ − Pλ)Pn−k−1

λ .
Since Pλ is a contraction on L2(T2d), we have:

‖Pn
λ′ − Pn

λ ‖ ≤
n−1∑

k=0

‖P k
λ′‖ ‖Pλ − Pλ′‖ ≤ ‖Pλ − P2πu′‖

n−1∑

k=0

rk.

Hence, ‖Pn
λ ‖ ≤ c‖λ−2πu′‖+rn, with c = 1

2

∑∞
k=1 rk, which is finite since r0(µ) < 1,

r0(µ) < 1.
Let λ 6= 0. Since limn rn = 0, in order to show that r(Pλ) < 1, i.e., ‖Pn

λ ‖ < 1 for
some n > 0, it suffices to find u′ ∈ Z2d such that c‖λ− 2πu′‖ < 1. This is possible
at least for a multiple of λ: one can find k ∈ N, k 6= 0, and u′ ∈ Z2d such that
‖kλ− 2πu′‖ < c−1.

Now, if r(Pλ) = 1, one has also from Corollary 3.10 that, for any k ∈ Z, r(Pkλ) =
1. ¿From above this is impossible; hence r(Pλ) < 1.

4.3. Random walks on coverings. Let G be a Lie group, H a closed subgroup
such that G/H has a G-invariant measure m. If µ is a probability measure on G,
we consider the random walk on G/H defined by µ, and the corresponding skew
product σ̃ on GZ × G/H endowed with the measure µ⊗Z ×m. Then one can ask
for the ergodicity of such a skew product and its stochastic properties. If H is a
normal subgroup of another group L ⊂ G such that G/L is compact, G/H is fibred
over G/L and one can use harmonic analysis on G/L and H/L.

A special case of Proposition 4.4 below corresponds to the abelian coverings of
compact Riemann surfaces of genus g ≥ 2. In this case, H is a subgroup ∆′ of a
cocompact lattice ∆ in SL(2,R) and G/∆′ can be seen as the unit tangent bundle
of the covering.

Proposition 4.4. Let G be a simple non compact real Lie group of real rank 1,
µ a symmetric probability measure with finite support A ⊂ G such that the closed
subgroup Gµ generated by A is non amenable. Let ∆ be a co-compact lattice in G,
∆′ a normal subgroup such that ∆/∆′ = Zd, m the Haar measure on G/∆′.
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Let σ̃ be the extended shift on Ω × G/∆′ defined by σ̃(ω, y) = (σω, a1(ω)y) and
write Σn(ω) = an(ω) ... a1(ω) ∈ G.

If d ≤ 2, σ̃ is ergodic with respect to µ⊗Z ×m. If d ≥ 3, we have µ⊗Z ×m-a.e.
limn Σn(ω)y = +∞.

Proof. Since ∆′ is normal in ∆, the group Λ = ∆/∆′ ≃ Zd acts by right transla-
tions on G/∆′ and this action of Λ commutes with the left action of G.

The G-space G/∆′ can be written as X×Λ where X ⊂ G/∆′ is a Borel relatively
compact fundamental domain of Λ in G/∆′. We will denote by y the projection of
y ∈ G/∆′ on X identified with G/∆, by (g, x) → g.x the natural action of g ∈ G on
an element x of the fundamental domain X , and by m the Haar measure on G/∆,.

Let z(y) be the Λ-valued Borel function on G/∆′ defined by y = yz(y). Then
the G-action on X × Λ can be written as g(x, t) = (g.x, t+ z(gx)) where the group
Λ = Zd is written additively.

For g ∈ G and x ∈ X , writing Z(g, x) := z(gx), we obtain a cocycle:

Z(g2g1, x) = Z(g2, g1.x) + Z(g1, x).

Since G is simple and Gµ is non amenable, we know ([11], Theorem 6.11) that the
convolution operator Π0 on X = G/∆ defined by µ has a spectral radius r(Π0) < 1
on L2

0(X). On the other hand, if for any a ∈ supp(µ), x ∈ X , we write ca(x) =
z(ax) = Z(a, x) and ã(x, t) = (a.x, t + ca(x)), we are in the situation of Section 3.
Here the group Γ is the subgroup of G generated by the support of µ.

In order to verify this, we observe that, since X is relatively compact and supp(µ)
is finite, the functions ca(x) are uniformly bounded. Furthermore, the cocycle
relation for Z(g, x) gives for any g ∈ G, x ∈ X : Z(g−1, x) +Z(g, g−1.x) = 0; hence,
using the invariance of the measure, we have

∫
(Z(g−1, x) + Z(g, x)) dm(x) = 0.

Since µ is symmetric, we have the centering condition:
∫
ca(x) dm(x) dµ(a) = 0.

For any character λ ∈ Λ∗, any ϕ ∈ L2(X), the formula ρλ(g)ϕ(x) = ei〈λ,z(g−1x)〉

ϕ(g−1.x) defines a unitary one-dimensional representation of G, hence of the group
generated by supp(µ), since Z(g, x) satisfies the cocycle relation.

Hence, using Theorem 3.9 and Theorem 3.6, the proof will be finished if we show
that r(ρλ(µ)) < 1, for λ 6= 0.

Since Gµ is non amenable and G is simple, the result will follow from Theorem
C, part 2 of [34], if we can show that ρλ does not contain weakly the representation
IdG. By definition, ρλ is the induced representation to G of the representation λ∆

of ∆ defined by the character λ. Clearly, if λ 6= 0, λ∆ does not contain weakly Id∆.
Since G/∆ has a finite G-invariant measure, it follows from Proposition 1.11b, p.
113 of [27] that ρλ does not contain weakly IdG.

4.4. Random walks on motion groups. Let G be the motion group SU(d)⋉Cd,
d ≥ 2. Write X = SU(d), ν for the Haar measure on X , V = Cd. We identify a
vector in V with the corresponding translation in G and we write G = X V . Let
Γ ⊂ SU(d) be a dense subgroup with property (SG) and A a finite generating set
of Γ. As mentioned is Section 2, such groups exists if d ≥ 2. To each a ∈ A we
associate ã ∈ G with ã = a τa, where τa ∈ V . We consider a probability measure µ
on A with supp(µ) = A and we denote by µ̃ its push-forward on Ã := {ã, a ∈ A}.

In contrast to the above examples the main role here will be played by Γ̃, the
subgroup of G generated by Ã. Let us consider the convolutions µ̃n, n ∈ N, on G
and the natural affine action of G on V . We will use the following lemma.
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Lemma 4.5. Let H be a closed subgroup of G = SU(d) ⋉ Cd, d ≥ 2, such that
H ∩Cd = {0} and its projection on SU(d) is dense. Then H is conjugate to SU(d).

Proof. Let π be the projection of G onto SU(d). Observe that π(H) is a Lie sub-
group of SU(d) isomorphic to H . Also π(H) contains a finitely generated countable
subgroup ∆ which is dense in π(H), hence in SU(d). Then ∆ is non amenable since
otherwise, using [35], ∆ would have a polycyclic subgroup ∆0 with finite index.
Then the closure of ∆0 would be solvable and equal to SU(d), which is impossible
since d ≥ 2.

Let H0 be the connected component of identity in H and observe that π(H0)
is normal in π(H). It follows that the Lie algebra of π(H0) is invariant under the
adjoint action of π(H), hence invariant under the action of its closure SU(d). Then,
using the exponential map, we see that π(H0) is a normal Lie subgroup of SU(d).

Since SU(d) is a simple Lie group, we get π(H0) = {e} or π(H0) = SU(d). In
the first case, H would be a discrete subgroup of G, hence amenable like G. This
imply that π−1(∆) ⊂ H would be amenable. Hence ∆ itself would be amenable
which is a contradiction. Hence π(H) = SU(d) and π is an isomorphism of H onto
SU(d). In particular H is compact and its affine action on V has a fixed point
τ ∈ V . Hence τ−1Hτ = SU(d).

For d = 1 and µ a probability measure on Ã ⊂ SU(1) ⋉ C, equidistribution
properties of the natural random walk on C are known (see for instance [22], [14],
[37]). For d > 1, the corresponding problem was posed by G. A. Margulis. Here we
have the following result:

Theorem 4.6. Assume that Γ ⊂ SU(d) is such that the natural representation of

Γ in L2
0(SU(d)) does not contain weakly IdΓ and the affine action of Ã on V has

no fixed point. Then there exists c > 0 such that for any continuous function f
with compact support on G, limn µ̃

n(f)nd = c(ν⊗ ℓ)(f). In particular, for any f, f ′

continuous non negative functions on G with compact support, we have:

lim
n

µ̃n(f)

µ̃n(f ′)
=

∫
f(g) dg∫
f ′(g) dg

.

Furthermore the convolution equation µ̃ ∗ f = f on G, with f ∈ L∞(ν ⊗ ℓ), has
only constant solutions.

Proof. We will use the results of Section 3; the link with Section 3 is as follows.
The maps ã on X × V are defined here as left multiplication on G = XV by aτa:

ã(x, v) = ã(xv) = (ax, v + x−1(τa)),

where x−1(τa) is the vector obtained from τa by the linear action of x.
Hence the action of A on X is by left multiplication on the group SU(d) and

ca(x) = x−1(τa). The centering condition
∫
ca(x) dµ(a) dν(x) = 0 is valid here,

since it reduces to
∫
x−1(τa) dν(x) = 0, which is a consequence of the fact that this

integral is the barycenter of the sphere SU(d)τa of center 0 and radius ‖τa‖, hence
is 0.

Then the action of Γ̃ ⊂ G on X × V is by left multiplication on G = XV . This
action is part of the action of G on itself by left translation.

Let us fix some notations. For x ∈ X , v ∈ V , with the above notations, x(v)
corresponds to the element xvx−1 of G. We observe that, if g = xgτg and h = xhτh,

then xgh = xgxh, τgh = x−1
h (τg) + τh.
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Therefore, with the action of G on X is given by (g, x) → xgx, the function
(g, x) → x−1(τg) is a V -valued cocycle on G × X , i.e. x−1(τgh) = (xhx)

−1(τg) +

x−1(τh). It follows that for γ̃ ∈ Γ̃, c(γ̃, x) as defined in Section 3 is equal to x−1(τγ̃)

and is the restriction to Γ̃×X of the cocycle on G×X given by c(g, x) = x−1(τg).

We show now that the closure H of Γ̃ is equal to G. We observe that H ∩ V is
a normal subgroup of H and the action by conjugation of G on V reduces to the
linear action of G.

Since Γ is dense in SU(d) and W = H ∩ V is Γ-invariant, W is a closed SU(d)-
invariant subgroup of V . Hence W = {0} or V .

Suppose we are in the first case. Then the projection H → SU(d) is injective.

In particular Γ̃ is isomorphic to Γ. In connection with Section 3, we may observe
that c(γ̃, x) = x−1(τγ̃) defines also a cocycle on Γ ×X since τγ̃ depends only on γ;
hence c(γ̃, x) = c(γ, x).

The existence of a fixed point for the affine action of H on V , as shown in
the previous lemma, contradicts the hypothesis on Ã, hence W = V . Since the
projection of H on SU(d) is dense, we get H = G.

Now we apply Theorem 3.6, part 1b). For this we have to verify (AP). If (AP)
is not valid, there exists (λ, θ) ∈ V × R, λ 6= 0, and d(x) with |d(x)| = 1, such that

ei〈λ,c(a,x)〉 = eiθd(xa)/d(x), ∀a ∈ A.

As observed above, c(a, x) extends to G as the cocycle c(g, x) which is equal to
x−1(τg) on (g, x) = (xgτg, x). Then we have eiθ = ei〈λ,c(a,x)〉d(x)/d(a.x) and the

right hand side is the restriction to Ã×X of the cocycle on G×X

cλ(g, x) = ei〈λ,c(g,x)〉d(x)/d(xgx).

This cocycle takes values eiθ on Ã, hence its values are also independent of x on
the group Γ̃. Since Γ̃ is dense in G and cλ is measurable on G ×X , using the L2

continuity of the translation, it is also independent of x on G, hence it defines a
character on G.

Since G has no non trivial character we get eiθ = 1. Then we have, for any γ̃ ∈ Γ̃

with γ̃ = γτγ̄ and a.e. x ∈ X , ei〈λ,x−1(τγ̃)〉 = d(γx)/d(x). This means that the

function on G defined by ψ(xv) = e−i〈λ,v〉 d(x) is invariant by left translation by

any element γ̃ ∈ Γ̃. Since Γ̃ is dense in G, hence ergodic on G, ψ is constant, i.e.
λ = 0, d = 1. It follows that (AP) is valid. Hence the result.

Since (AP) is valid, the last assertion is a consequence of 3) in Theorem 3.6.

There exists various possibilities for the geometry of the subgroup Γ̃ inside G, as
the following proposition shows.

Proposition 4.7. With the above notations, assume that the finite set A ⊂ SU(d)

generates a dense subgroup Γ and the affine action of Â on V has no fixed point.
1) If Γ has property (T), then Γ̃ ∩ V is dense in V .

2) If Γ is a free group, then Γ̃∩V = {0}, so Γ̃ is a dense subgroup of G isomorphic
to Γ.

Proof. 1) We show using arguments as in the proof of Theorem 4.6 that Γ̃ is dense

in G. We observe that Γ̃∩V is a normal subgroup of Γ̃ and the action by conjugation
of G on V reduces to the linear action of SU(d).

Since Γ is dense in SU(d) and Γ̃ ∩ V is Γ-invariant, its closure W is a closed
SU(d)-invariant subgroup of V . Hence W = {0} or V .
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Suppose W = {0}. Then the projection Γ̃ → Γ is injective, hence Γ̃ is isomorphic
to Γ and has property (T). We have also c(γ̃, x) = x−1(τγ̃) = x−1(τγ) = c(γ, x).

Then the cocycle c(γ̃, x) from Γ̃ ×X to the vector group V is trivial (See Zimmer,
p. 162), hence c(γ̃, x) = ϕ(γx) − ϕ(x) for some ϕ ∈ L2(X).

Also, from above, τγ = x(c(γ̃, x)) does not depend on x. Then, for every γ ∈ Γ,

τγ = x(ϕ(γx) − ϕ(x)) =

∫
x(ϕ(γx) − ϕ(x)) dν(x) = γ−1(w) − w,

with w :=
∫
x(ϕ(x)) dν(x) =

∫
γx(ϕ(γx)) dν(x).

It follows, for the affine action of γ̃ on V : γ̃w = γ(w + τγ) = γ(γ−1(w)) = w.

This contradicts the hypothesis on Ã, hence Γ̃ ∩ V = {0} is not valid. Therefore

Γ̃ ∩ V is dense in V . The fact that Γ̃ is dense in G follows, but was already proved
in Theorem 4.6.

2) We denote by π the natural projection of G onto SU(d), and we observe that

π(ã) = a for any a ∈ A; hence π(Γ̃) = Γ. Since Γ is free it follows that the restriction

of π to Γ̃ is an isomorphism of Γ̃ onto Γ.
In particular, since π(V ) = {0} we have Γ̃ ∩ V = {0} and Γ̃ is free. The density

of Γ̃ in G has been shown in the proof of Theorem 4.6.

5. Questions. 1) In the situation of random walks in random scenery (example
4.1), with Γ = Zm, m ≥ 3, is the local limit theorem for Sn(ω, x) ∈ V valid?

2) In the situation of motion groups (example 4.4), for d ≥ 2, if Γ̃ ⊂ SU(d) ⋉ Cd

and Γ ⊂ SU(d) is dense, is the local limit theorem for Sn(ω, x) ∈ V still valid?

What can be said about the equidistribution of the orbits of Γ̃ on V ?
What are the bounded solutions of the equation µ̃ ∗ f = f , f ∈ L∞(ν⊗ ℓ), on G.
3) In the above considerations the maps a ∈ A are chosen with probability µ(a)

which does not depend on x and the product space is endowed with the product
measure P = µ⊗N

∗

. One can extends this framework by choosing the maps a ∈ A
according to a weight µ(x, a) depending on x ∈ X and consider the corresponding
Markovian model. One can also replace the shift invariant measure P by a Gibbs
measure.

A question is then the validity of the results obtained above in these more general
situations.

Acknowledgments. The authors thank Bachir Bekka for useful discussions and
the referee for his helpful remarks. After completion of this paper, they learned that
a direct proof of the equidistribution part of Theorem 4.6 (not using Proposition
2.3 of [32]) has been given by P.P. Varjú ([38]). This answers question 2 above in
the affirmative.
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