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Abstract

An example due to Erdos and Fortet shows that, for a lacunary sequence
of integers (g, ) and a trigonometric polynomial ¢, the asymptotic distribution
of ﬁ Zz;é ©(qrx) can be a mixture of gaussian laws. Here we give a general-
ization of their example interpreted as the limiting behavior of some modified
ergodic sums in the framework of dynamical systems.

Introduction

Let (g,,) be a lacunary sequence of natural integers. The stochastic-like behavior of
the sums Y7~} (grx) for ¢ a regular 1-periodic real function has been the subject
of several works (Fortet, Kac, Salem, Zygmund,...). Before the second war and in the
forties, different particular cases were treated for which the Central Limit Theorem
(CLT) can be shown. The fact that the CLT is not always satisfied in its standard
form was already noticed by Fortet et Erdos. Gaposhkin [Ga65|, Berkes |Be76|,
recently Berkes and Aisleitner [AiBe08| gave arithmetic conditions on the sequence
(¢n) which imply the CLT.

The counter-example of Fortet and Erdos is very simple. Let us take ¢, = 2" —1 and
o(x) = cos(2mx)+cos(4mzx). Then the limit law of the distribution of the normalized
sums 12 S o (28 —1)x) is not the gaussian one, but a mixture of gaussian laws,
explicited in [Kad7|, [Ka49]'.

This fact is related to the arithmetic properties of the sequence 2" — 1. But it can
also be interpreted from other points of view. It can be viewed as a consequence of
non ergodicity for stationary martingales which gives asymptotically a mixture of
gaussian laws.

'The proof announced by Kac, as well as an article by Erdos, Ferrand, Fortet and Kac on
the sums ZZ;& ©(gnx) mentioned in [Ka49], were never published as far as we know. For a proof
based on a result of Salem and Zygmund, [SaZy48]) for lacunary sequences see Berkes and Aisleitner
[AiBe08]. Here we give a slightly different proof and generalizations of it.



As we will show in Section 2, one can equally view it as a special case of a general
phenomenon for isometric perturbation of dynamical systems of hyperbolic type.

For instance, let A € SL(d,Z) be a matrix without eigenvalue root of the unity, let
B be a matrix with integral coefficients and det B # 0. Denoting by A the Lebesgue
measure on the d-dimensional torus T¢, we have, for every centered Holder function
¢ on T, for every t € R,
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where o(¢p,) is the asymptotic variance of the translated function: ¢,(x) := p(z+y).

In Section 3 we will also use a different method, based on a property of multiple
decorrelation, to extend the results to a large class of chaotic dynamical systems
and their modified ergodic sums.

In what follows (X,d) will be a metric space with its Borel o-algebra B and a
probability measure g on B, T a measure preserving transformation on (X, B, u),
and ¢ a real function on X with some regularity. We denote by S,¢ (or S,(¢)) the
ergodic sums of :
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1 Generalization of an example of Fortet and Erdos

In order to explain the method on a simple example, we begin with the counter-
example of Fortet and Erdos mentioned in the introduction. Then we indicate how
it can be extended to modified ergodic sums for expanding maps of the interval.

1.1 The example of Fortet and Erdos

The space X is the circle R/Z, 1 is the Lebesgue measure and 7' is the transformation
r — 2z mod 1.

Notations 1.1 We denote by R,p(x,y) the translated modified ergodic sums

n—1

Rup(z,y) =Y o2z —x+y). (1)

k=0

Let ¢ be an Holderian function on R/Z such that fol wdp = 0. We denote by ¢,(p)
its Fourier coefficient of order p € Z. We have:

i Swel3= Y lla@P +2 Y (- L)en@me)

p#0 1<j<n—1

The variance of ¢ is well defined and given by
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For ¢(x) = cos(2mx) + cos(4mx), we have the following convergence for every ¢t € R:

n—1 1 t/| cosy|
1 1 2
lim p x:—E o((2F —1Dz) <t} = — / e 2ds) dy, 2
L { ﬁk:o (( )z) } o ) ( . ) (2)

or in terms of characteristic function:

lignE(eZt% >kt <P((2k—1)-)) :/ 6—%(cosy)2t2 dy. (3)
0

Before we give generalizations of this result, for the reader’s convenience we recall a
proof of (3) (cf. [AiBe08|) based on the following general statement:

Lemma 1.2 Let (Z,) be a sequence of real random variables on [0,1]. Let L be a
probability distribution on R, with characteristic function ®(t) = [ e L(dx). The
following conditions are equivalent:



a) for every probability density p, the sequence (Z,) under the measure py converges
in distribution to L;
b) for every interval I C [0, 1],

) 1
hin mu{x €l:Z,(x) <t}=L(—-o00,t]), VteR; (4)

c) for every Riemann integrable function 1, the sequence (VZ,) converges in distri-
bution to a limit distribution with characteristic function fol O(YP(y)t) dy.

In particular if L= N(0,1), under the previous conditions the sequence (ng con-
_1 t2
verges in distribution to a limit distribution with characteristic function f i dy.

Proof Assume b). Let 1 be a step function, ¥ = >77_; ¢l
a; < ... < apy; = 1. We have:

) aji1 1
Eu(eztw(.)Zn(.)) _ Z/ eitciZn(.) dp — Z,u,(]j)q}(cjt) = / O(YP(y)t) dy.
i 7 i 0

The general case ¢) follows by approaching ¢ by step functions.

with ag = 0 <

aj1D

Conversely, let p = f 0 Cilia;, a4,y With p > 0 and fol p dx = 1. Under Condition

b) or c), we have:
thn Z C]/ ZtZ" du — [Z Cj(CLj.H - aj)]q)(t) - CI)(t)

As above we obtain the general case by approximation. Condition a) follows. 4

Salem and Zygmund proved in [SaZy48| the CLT with Condition b) of Lemma 1.2
for ¢ = cos and any lacunary sequence (gx). The convergence (3) follows from their
result, from Lemma 1.2, and from the trigonometric identity (n > 2):

n

Z[cos(?w(Zk — 1)) 4 cos(4m(2F — 1) )]
k=1

= cos(2mw) + cos(2m (2"t — 2) x) + 2 cos(mx) Z cos(2m(2" — 3/2) x).

Now we give an analogous result for more general functions. The method of proof
is slightly different from the previous one and will be applied to various examples in
the sequel of the paper.

First of all we need a well known improved version of the CLT for regular functions.

In the special case of this section, it can be proved using the classical method of quasi-
compact operator. We first sketch the idea for the transformation x — 2x mod 1
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on R/Z. For this map, the dual (Perron-Frobenius) operator P is given by

T T

)+ oS+l

Let p be a probability density on X = R/Z. Then for every integer ¢ > 0, we have:

|/ ¢ R Sne(@) )dx—/ ¢! v Snel®) dx|
X
_ / — VS e T oy / e VS e@ (Ployp) — 1) da

X

< £||90||oo+ 1P = 1]l1.

\/_

If p is a function of bounded variation or a Holder function, then || P*p—1||; converges
to 0 when ¢ tends to oo with an exponential rate. If p is only in L', convergence
holds a priori without rate.

Therefore, in the CLT, we can replace the Lebesgue measure by a measure which
is absolutely continuous with respect to the Lebesgue measure when the density is
regular. It allows us to apply Lemma 1.2 or similar results. Actually this principle
holds for dynamical systems in a very general situation as we will see later. Ap-
plied here to the density p(D) *1p_,u where D is an interval in [0, 1], it yields the
following result:

Lemma 1.3 For every y, every interval D, every reqular 1-periodic function p,

n—1 t/o(py)
D) ! x:n_% r+yy<tandzxe D — — / _52/2ds
u(D)" > @z +y) < v =

k=0

where o(py) is the asymptotic variance of the translated function: ¢,(z) = p(x+y).

We will also use a property of regularity of the variance with respect to translations:
Lemma 1.4 If C(p) =) |p||cy(¢)| < +00, then we have:

n2||Rup(,y) = Bae(y)ll2 < Clo)ly — - (5)
Proof For every p # 0, we have 2 [ | 3720 e™2'%%|2 4z = 1.

Writing o(282 — 2 +y) = > p0 ¢, () e?mPlu=2)2im2s the following uniform bound
holds:

1 1 Tip.
%!\Rnw(-,y)—Rnw(-,y’)Hz < !y—y’\Z!p\ !Cp(w)!!\%!\sng P

= Jy— y|2|pllcp ) =C()ly—y/l.
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By convention in the sequel, when the variance o is 0, ff{; emu’/2

as the repartition function of the limit law, the Dirac mass at 0.

du is interpreted

Theorem 1.5 If ¢ satisfies 3 [pl[cy(¢)| < +00, we have:

e
pf{x \/_Z<p r—x <t}—>\/—_/(/ e ds) dy. (6)

2T o

Proof It is enough to check the convergence when ¢ is a continuity point of the limit
distribution. By integrating with respect to y and applying Lebesgue theorem, it
follows from Lemma 1.3:

n—1

1 1 1 t/U(‘Py) 9
——u{(x,y):n Z@(Qkx—l—y) <tandz € D—y} — / (/ e=*/2 ds) dy.
( ) k=0 V2 Jo s

The change of variable (z,y) — (x,y + ) leaves the measure dz x dy invariant. We
get that the difference:

—

n—

t/o(py)

o2 —x+y)<tandye D} — \/_ (/ 12 45\ dy (7)

NI

ﬁu{(%y) n"

converges to 0. For v > 0, we obtain by (5):

=
Il

0

wlz %Rnso(x, 0) <1}

< pla }Rngo(x y) <t} +pfe: fmngo(x 0) = Rug(a, )| = 1},

hence:
plo = Rupl,0) < 1)
= L/ p{x g e(r,y) <t+7} 1p(y) dy+0(90)25—2 (8)
= uD) ST e = 7
5 [ e T=Ruple.n) < =) o) dy - CorS;
< p{w: \/1_Rn<,0(x 0) <t} (9)

Let € > 0. First we take v such that

t+y/o(py) 2/9 1 1 t/o(py) 29
e % /%ds) d ——/ / e ¥ ds) dy| < e,
r%// vay-— [ ) dyl
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then § such that C(w)Q% < ¢ and finally ny such that the difference in (7) (with
t £+~ in place of t) is less then e.

Applying (8) and (9), we get

[y

n—

) 1 oo
|pf{x - (2 r—x)<t)—— [ ( e ds) dy| < 6e.

7 V2r

WM

O

Non-degeneracy of the limit distribution

For a regular function ¢, the set {y : o(p,) = 0} is closed, since o(y,) is continuous
as a function of y. This set coincides with E(p,T) :={y : ¢, is a T'—coboundary}.
Since ¢ is regular, if ¢, = 1, o T" — 1, for a function v, then 1, is also regular.

If the set E(y,T') has measure 1, it coincides with [0, 1]. The functions ¢, vanish for
every y on the fixed point of T', which implies that ¢ is identically zero. Therefore
the limiting distribution in (6) is non degenerated when ¢ is non identically zero.

1.2 First generalizations, expanding maps

Expanding maps

The previous example can be extended to other dynamical systems or "sequential
dynamical systems" in different directions. For instance we can consider a lacunary
sequence of positive integers (¢,) and a modified version of the corresponding ergodic

sums, like ZZ:_& o(qrr — x).
An other extension is in the class of expanding maps on the interval, like the (-

transformations, for which the spectral properties of the transfer operator can be
used.

We will not develop these specific extensions, but we will consider the following
general framework. The example of Erdos and Fortet can be view as a special case
of the following general construction.

Let us consider a dynamical system (X, T i), a space F of real valued functions on
X, and a map 0 : x — 0, from X into the set of Borel maps from X to X which
preserve F under composition. Thus, for each x € X, a map 6, (also denoted by
0(x)) is given.

Suppose that for ¢ € F the sums S_1—) o(T*z) after norrlnalization have a distri-
bution limit, for instance convergence in distribution of n=2 >3 ¢(T%z) toward a



gaussian law. Now let us consider the modified sums:

3
—

p(0:(T"x)). (10)

i

In the previous section, the system was x — 2x mod 1 on the circle, F the space
of Hélder functions or the space of functions ¢ satisfying 3 |p| |c,(¢)| < +o0, and
the map 0, : y — y — x. In the sequel of the paper we will describe different cases
where a limit law for the modified sums (10) can be obtained.

A simple situation is the following. Let us consider a map 6 taking a finite number
of values. More precisely, suppose that there is a finite partition (4;,j € J) of X in
measurable sets A; such that 0, = 6; on A;, where 0; is a Hoélderian map from X
to X.

Applying a result of Zweimiiller (|[Zw07]), we have:

' 1 . n—1 . T —
jed
— > 4) e~30°(900;) ¥

Jj€J

We would like to extend such a convergence to maps 6 taking a continuum of values
like in the example of Erdos and Fortet. In the next section, this will be done when
there is a compact group G acting on X and when 6 is a regular map with values
in G. If we denote the variance o2(¢ o 6,) by o2, our aim is to prove that the limit
distribution of the normalized modified sums (10) has for characteristic function:

/ e 2%t du(x).
b

2 Generalization to group actions

2.1 A general result

Let (X,T,u) be a dynamical system. Suppose that a compact group K acts on
X and preserves the measure pu. Denote by m the Haar measure on K, and by
(k,x) — kz the action of K on X.

Let & : X — K be a Borel function. The modified sums that we consider here
have the form

i
L

©0(0(x) TFx).

i



Let g the measure on K defined by pg(B) = u(6~'B), for B Borel set in K. For a
function ¢ in L*(u), we introduce the two following properties:

Property 2.1 (Central limit theorem with density for o(k.)) There exists o, > 0
such that, for every p density with respect to p on X, for every interval A in R,
every k € K,

: %Snga(kx) €A} —

If o), =0 in (11), the limit law is the Dirac measure at 0.

(pp){z

/Aexp(—%j—Z) ds. (11)

k

1
v 2moy,

Property 2.2 (Continuity of the variance of the modified sums with respect to the
translations)

i
L

p(O()T'T)2 < CVnd(k,e).

0

IIIZw IRAD

%\H
T

Proposition 2.3 If the function ¢ satisfies 2.1 and 2.2, the following convergence
holds:

\FZsO 1)y — [ [ o35 duh)

Proof First, let us fix D a compact neighborhood of the identity in K. For every
element k of K, the regularity of the action of K and Property 2.1 for the function
ok(+) = p(k-) give the convergence

( 1 1
T —=
a vn V2moy,

where o7 is the asymptotic variance associated to the function ¢y.

Sppp(z) <u, 0(x) 'k € D} —

u 1 82 3
/ exp(—iﬁ)ds plr : 0(x)"'k € D},
— 0 k

By taking the integral over K, we obtain:
1
Vvn

“ 1
/ exp(—58—)ds p({z : 0(x) 'k € D}) dk
oo ol

k

(n@m){(x, k) : Spor(r) <wu, 0(x) 'k € D}

1
K V2moy,

The measure p ® m is preserved by the change of variable x = x, k¥’ = 0(x)"'k. So,
by dividing by m(D), we get:

—_

1 e
VriS
/ eXp(—%S—z)dS ple : HT(nx()l;)k € DY) dk.

p@m{(z, k) : o(0(x) k' T'z) < u, k¥ € D}

N
m(D)

%\

1
K V2moy,
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The measure
p{z: 0(x)"'k € D})
m(D)
tends to pg (the image of p by #) when the diameter of D tends to 0. Property 2.2
now allows us to conclude. Let € be a positive number. Let R,¢(x, k) be the sum

dk

n—1

Rup(x, k) = Z o(0(x)kT ).

=0
We have

en %an, e) < u})

ulfe : =Rplek) Sut D) +ulle | =lRplek) = Rug(e.e) > <)
<l = Ruplo k) S ut o)) 4 TRl o)
< p(f{z %Rnga(x, k) <u+e})+ %.
Denoting by §(D) the diameter of D, the average taken on D yields:
Mo+ =Rup(r.e) <))
< Wu @ m{(z, k) : % 3 o(O(x)kT'z) <u+e, K € D} + %21))2

l

Il
=)

and, because of the above convergence,

limsup p({z : %Rnw(x, e) <u})

/ - eXp(;j;)ds u(fa ﬁ%k = s Ciﬂ

1
K V2mwoy,

thus, letting 6(D) tends to 0,

1 1 u+e —82
lim su r . —Rypo(x,e) <u}p) < exp(—=)ds dug(k).
mewp (e + =Rp(re) <)) < [ o [ expl s duolh)

Similarly we have

1
liminf u({z : —=R,p(z,e) <u})

n—0o0 S Vn KV 27T0'k

Therefore, excepted maybe for u = 0 if o, = 0 for a set of positive pg-measure of
elements k, we have the convergence:

1
lim p({z Tn

u—e 1 52
eXp(—iﬁ)dS dpg (k).

k

—Ryp(x,e) <u})

u 182
exp(—=—)ds dug(k).
[ [ explg s duoty
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A typical situation in which one might apply this result is when the central limit
theorem holds for regular functions and the action of K is regular. Let (X, d) be a
metric space. For a real number 1 > 0, on the space of Hélder continuous functions
of order n we define the 7n-variation and the n-Holder norm by

lp(z) — p(y)]
[ely = WP el = llelloo + [2]n- (12)

We say that the action of K is Holder continuous if, for every k € K, x — kx is
Holder continuous. For many chaotic systems it has been proved that the central
limit theorem holds for Holder continuous functions. If the action of K is Holder
continuous, then the central limit theorem holds for ¢(k.). Moreover, because of the
theorem of Eagleson (|[Ea76|, [Zw07]), the theorem is true for measures absolutely
continuous with respect to u. In this case a Holder continuous function ¢ satisfies
Property 2.1.

Definition 2.4 We say that (X, T, u) is ezponentially mizing if, for every n > 0,
there exist C' > 0 and « €]0, 1] such that, for every centered n-Holder continuous
functions ¢, v,

(T, )] = | / oo T du| < C gl 0]l
X

Proposition 2.5 Let (X, T,u) be a dynamical system where X is a riemannian
manifold. Assume that there is a measure preserving action of a compact Lie group
K on (X, ) which is C*°. Assume that the central limit theorem holds for differ-
entiable functions on X and that (X, T, p) is exponentially mizing. Then for every
C function @ on X, for everyt € R,

1 I 1 52
pf{x NG ;@(Q(x)Tkx) <t} — /K Nz /OO exp(—iﬁ)ds dpg(k).

Proof We will use harmonic analysis on K. We briefly summarize what we need.
For more details see [Bo82].

The action of K on X defines a unitary representation U of K on L*(u) by k —
©(k~'x) which can be decomposed as a sum of irreducible representations. Let K
be the set of equivalence classes of irreducible representations of K and let § be an
element of K.

Let us fix a base R of the root system of IC the Lie algebra of K. Let us call W
the associated Weyl chamber. To each irreducible representation of K is uniquely
associated a linear form belonging to a lattice in WW: the dominant weight of the
representation. Let 6 be an element of K and let s be the corresponding dominant
weight.

11



The Weyl formula gives the dimension, ds, the irreducible representation associated
to ¢ as a function of v :

_ 77 (@nte
=11 (a,p)

where R, is the set of positive roots and p the half sum of the positive roots.

acER

For every 0 € f(, let s be the character of 0, ys = ds&s, and

PJZU(%):dé/KWU(k) dk.

The operator Pj is the projection of L?(u) on the isotypic part Fs := Ps(L*(u)).

One has
L*(n) = @}_5'

seK
For a given vector v in L?*(u) let us denote vs the element Ps. An element v of Fs
is K-finite:

dim VectKv < dj. (13)

One says that v is C* if the map k — U(k)v is C*. One defines the derived repre-
sentation of U on the space of C'™ elements; it is a representation of the Lie algebra
IC of K and that one can be extended to a representation of the universal enveloping
algebra of K. We use the same later U to denote these three representations.

Let Xi,..., X, be an orthonormal basis for an invariant scalar product on K. The
operator 2 =1—3""  X? belongs to the center of the universal enveloping algebra
of K. So, by Schur’s Lemma, if 14 is a representation of type ¢, there exists cs such
that

1s(Q2) = csps(1).

The operators Q(X;) being hermitian, ¢s is positive. One can show (cf. [Bo82|) that
there exists a scalar product () such that

cs = Qs +p) — Qp).

If v is C*°, one has
P5U(Q)U = CngU = C§Us,

thus, for every non negative integer m, for every ¢ in K, one has
vs =c5" (U(Q")v)s,

with large cs for large 5. From this equality and the definition of Py, one deduces
that

d? m
[[03]]o0 < C—,iIIU(Q J0loe-
()

12



In particular, the series ) ;_ vs converges uniformly toward v. This allows us to
write, for every x € X,

p(k™'z) = Y UK)(ws)(@)

seK

p(B(2)ke) = Y U((B()k) ) (ws)()-

seK

We want to study the quantity:

H\FZw (-)kT") Z@ (T 2

With the notations introduced above we can write:

> olokT's Zso - S~ U )
= S (WY — IUB) ) (T )
seK (=0

On one hand, since vs is K-finite, there exists a finite set of C'*° functions {ys;, j =
1...q} (with @5 = U(k;j)ps for some k; and g < dj because of (13)) and uniformly
bounded functions us; such that

U (k™) — Id)U( Zugj ) s 5-

From this we deduce that

(TPU (R = IQ)UO() s, TUU (k™) = Id)U(O() ") ps)]
< Cdy | @slalls e~ < Cdjllslalloll ™. (14)

On the other hand, one has
(UK = Id)vs|| < |Isll"d(, e)lvsll, (15)

where ||7vs]| denotes an usual norm of a point in a lattice (the norm of the operator
(U(k™') — Id) on Fs is said to be moderately increasing function of ¢ ([Bo82|, p.
82-83)). From (14) and (15) we deduce that

n—1

E((Q_(UE™) = Id)U(0(x) " )ps)(T'2))?)

=0
< Y KTPUET) = 1UOC)es, TUUK) = IDU ()" )ps)|

1<p<g<n

<0 Y min(dsdlgslallpllya sl d(k, e)lgs])

1<p<qg<n
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By cutting this sum in two pieces (|p—q| < M In; (d(k,e)) and |p—q| > M In, (d(k,e)))
one obtains that there exists L > 0 such that:

Z — Id)U(0(x) V) s)(T'2))?)

1=0
< Cllvsl“llesllzllelly n d(k, e)® ni (d(k, €)),
that is

n—1

I (UE) = I)UB(@) ) es) (T') 2

(=0
< Cllsll*lleslla*llelly* v d(k, e) In (d(k, €)™

The triangular inequality now gives

IS (WG — IUEC) e @),

sek =0

< O Clhwl sl lielly” v d(k, e) In (d(k, €))>.

seK

Since ¢ is C*°, the series ) ;. CH”Y&HLHQO(S’E/Q converges and we have proved that

[y

n—

(-)kT*) P(OC)T")l2 < C(p)d(k, ) Iny (d(k, e)) "2,

«MH
§\~

O

We have treated the case of exponentially mixing dynamical systems to simplify the
exposition. This hypothesis can be weakened: summable correlations for regular
functions suffice to obtain an inequality like

H\FZsO (-)kT* ) Z@ ()T )2 < Clp)Bd(k, e)),

where (3 is a function such that lim, o 3(¢) = 0.

2.2 Examples

Automorphisms of the torus(cf. [Le60], [LB99])

Let A € SL(d,Z) be a matrix without eigenvalue root of the unity. It defines an
ergodic automorphism of the d-dimensional torus T¢ for the Lebesgue measure \.

14



Let B be a matrix with integral coefficients. For every centered C'*° function ¢, for
every t € R, we have:

M : % igp((Ak‘ — B)z) <t} — y \/%0 /_ exp(%)ds dAg(y).

If det B # 0 then Ag = .

Non-degeneracy of the limit

If T is a hyperbolic automorphism of the torus T¢, then for any Holderian ¢, the
set E(o,T) = {y : ¢(. + y) is a T—coboundary} is closed because (. + y) is a
coboundary if and only o(p,) = 0 and y — o(p,) is a continuous function (this
is a consequence of the mixing properties of 7' ; see section 4.2 below). On the
other hand if p(. + y) is a T—coboundary then it is a coboundary inside the set of
Holder continuous functions: there exists a Holder continuous function 1, such that
o(. +vy) = Ty, —1,. Thus if B is surjective and o, = 0 A-almost surely, then
o, = 0 everywhere and ¢(0 +y) = T¢,(0) — ¢, (0) = ¢, (0) — ,(0) = 0. So, if B is
surjective, unless ¢ = 0, the limit law is not degenerated.

If T is an ergodic non-hyperbolic automorphism of the torus T then one has to rein-
force the regularity hypothesis on ¢ in order to apply the second part of the previous
reasoning: if ¢ is d-times differentiable, has a Holder continuous d*’-differential and
is a measurable coboundary then it is a coboundary in the space of Holder continuous

functions (|Ve86], [LB99]).
Automorphisms on nilmanifolds (c¢f. [CoLB02|)

Let X be the 3-dimensional nilmanifold defined as the homogeneous space N/T',
where N is the Heisenberg group of triangular matrices

1 2 =z
0 1 )
0 0 1

and I' the discrete subgroup of integral points in N. Let p be the N-invariant
measure on N/T induced by the Haar measure on N. We identify N and R? equipped
with the law

(w1, @9, 2). (2, 2%, 2') = (w1 + 2, w9 + 29, 2 + 2/ + mah, — 2 29).

Let A= (¢

on N/I" by

Z) be a hyperbolic matrix in S1(2,Z). It defines a transformation 7'

T : (x1,x9,2)[' = (axq + bxa, cxy + dag, 2)T.

The group of isometries of the manifold X can be seen as the circle. Let 6 be a
Borel map defined from the quotient torus T? to R/Z: 0(x1,x9,2) = 0(x1,15). Then
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we have for every Holder function ¢:

—

1 « 1 ! 1 s2
T — AR (1, x2),0(21, 20) + 2) < t} — / exp(—=—)ds d ,
Mo e X e ona) +3) <0 — | oo | o500 duty
where 03 is the asymptotic variance associated to the function ¢,(z1,29,2) =

(,O(Il,l'g,z + y)

Diagonal flows on compact quotients of SL(d,R)(cf. [LBP05])

Let G be the group SL(d,R), let ' be a cocompact lattice of G, and let u be
the probability on G/T" deduced from the Haar measure. Let gy be a diagonal
matrix in G different from the identity. It defines a transformation 7" on G/I™:
r=gl'— Tz = gogl'.

Let ¢ be a centered C* function from G/I" to R and let 6 be a Borel map from G/T"
to SO(d,R). We have

n—1
1 1 t 1s?
e — o(0(x)TFz) < t} — / exp(—=—)ds duy(y),
o Eletorn < — [ oo [ epog s du)

where o7 is the asymptotic variance associated to the function ¢, (z) = ¢(y.z).

3 Generalization to multiple decorrelation

3.1 Multiple decorrelation and gaussian laws

Let (X, T, 1) be a dynamical system defined on a manifold X. Let d be a riemannian
distance on X. The Holder norm is defined as in (12). The expectation E is the
integral with respect to pu. In some proofs, we will denote by the same letter C'
a constant which may vary in the proof. Now we introduce the following multiple
decorrelation property:

Property 3.1 There exist C > 0 and § €]0, 1] such that, for all integers m and m’,
all Holder continuous functions (gpz)?z[m/ defined on X, all integers 0 < 1 < ... <
by < k1 <...<kp,N >0,

m m/ m+m/ m+m/
Cov(JT 7% @i, [TTe0s) < CCTT leilloo + D losln [T llpilloc)s™.
i=1 =1 i=1 j=1 i

This property has many interesting consequences. Following C. Jan’s method ([Ja00]),
we will show that the normalized ergodic sums behave in some sense like gaussian

16



variables even for some non invariant measures on X absolutely continuous with
respect to p and which can vary with the time.

Let us first state a very simple consequence of this property. There exist C' > 0,
¢ €]0, 1], such that, for every centered Holder continuous functions ¢ and v defined
on X with zero average with respect to u, we have:

[, T") < Clielly 10ll2€" 1€, T")] < Clipllz 1]l €™ (16)

The first inequality above is a consequence of 3.1, the second one is proved by using
the Cauchy-Schwarz inequality and distinguishing two cases [|¢|l2 < [|¢]|,0™/? and
el > ll¢ll,0™2. In particular the asymptotic variance of the normalized ergodic
sums of a Holder continuous function is well defined and given by:

a(9)* = u(e?) +2) (o, T*)

Theorem 3.2 Let (X, T,pn) be a dynamical system defined on a manifold X sat-
isfying Property 3.1. Let (p,) be a sequence of density functions with respect to p
with norms ||pn|l, bounded by Cn*, for some constants n > 0,C, L. Then for every
sequence () of centered Hélder continuous functions with Hélder norms uniformly
bounded, we have

it 1
ponexp(—75 > T'pn)) — exp(—50(pn)*t?) = 0.

Proof Let  €]0,1/2[. The difference fSngon( T)— \/ﬁSnapn(x) oT™ tends uniformly
toward 0. When ||p, |, < Cn’, Property 3.1 gives:

—1 n—1
it it no
|14(pn exp —/Z ) = plpn) plexp—rz > T,
(= =0

< C(Hanoo + n[‘:@n]nnpnnoo + [pn]n)éna < Cn* ™.

n—1 . n—1
A o it
Thus we only have to study p(exp(—5 E T 0,)) = ,u(expm E T 0,).
=0 =0

On a probability space (€2, P) containing (X, 41), we can construct a sequence (X ,,)
of centered independent bounded random variables of variance o(p,,)? with distri-
bution %(5_0(%) + 05(pn)), independent from the variables ¢,. Since the sequence
(Ilenlly)n is bounded, the sequence (o(¢n)), is also bounded and one easily check
that

<« 1
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We claim that the difference between the characteristic functions

n—1
1 k
1/2 E T pp
k=0

and # Z;(I)ka tends to 0. To show it, let us write

Bé,n = eXp( 1/2T (,On) Cﬁ,n - exp( 1/2X€ n)

We have:

exp 1/2ZTég0n exp 'I/QZXM HBM HC’M, (17)

and
n—1 n—1 n—1 £—1 n—1
H Bf,n - H CZ,n = Z(H Ck,n) (Bf,n - CZ,n) ( H Bk,n)a
/=0 /=0 /=0 k=0 k=0+1

- >
g

Ay

where the products with an empty set of indexes are conventionally taken to be 1.

nlta—1 -1
The variables Ay = (B, — Cip) H By, and HCM are independent. We
k=(+1

will show that most of the n terms [E(A,)| are bounded by some constant times
n~3/2Inn. This will imply the result.

Consider a sequence (x(m)) that will fixed later. When ¢ 4 3x(n) + 1 < n, we split
the product A, in three blocks:

L+x(n) +2x(n
AZ - (Bf,n - Cf,n) H Bf,n H Bk n
k=0+1 /k =l+x(n)+1
A ¥
£43x(n) n—1

H Bk,n H Bk,n .

k=f+2x(n)+1 k=0+3x(n)+1

C D

-

Let us now study

E(A,) = E(ABCD) = E(A(B — 1)(C — 1)D) + E(ABD) + E(ACD) — E(AD).

The mean value theorem shows that A is bounded by some constant times tn~'/2

and (B —1),(C — 1) are both bounded by

[[@nloo 1 Xen]loo

£+2x(n)

2t
ni/2 Z o loos

k=l+x(n)+1

18



thus E(A(B — 1)(C = 1)D) < C|lenl% X (n)*.

The three other terms can be treated in the following way.

Consider for example : E(ABD) = Cov(AB, D) + E(AB)E(D). Property 3.1 gives
Cov(AB, D) < C 6X™). Let us now study

£+2x(n)
AB - (Bf,n_CE,n) H Bk,n
k=041
Ztchpn X, . 42x(n) .
= expw — expw exp | itn~ k;l T p,

The expansion of the two terms at order 1 and order 2 yields

it

AB = W(T on — Xen) — 2—(T£80n Xin)

o +2x(n) 2 £+2x(n)
Y TR T'on +—Xen Y Tron+ D,
n
k=6+1 k=t+1
where D satisfies
2 t3 t4 tQ

D] < Clogm (M) + g5 + x(0)] < Cogrx(n)?

By taking the expectation, one obtains:

[E(AB)| <
t2 t2 L+2x(n , t2 ,
Ppxt) - LRI +2 3 T T) 4 Oy, (1)
k=(+1

By hypothesis we have

E(XZ,) = o’(pn) = E(T'h) +2 ) BT, T'pn)

k=0+1
£4+2x(n) 00
= BT +2 > E(TF, T'.) +2 Y E(T%p, T'pn).
k=0+1 k=0+2x(n)+1

Replacing E(X7,) by this expression in (18) we obtain

o0

EAB)| < C(t* > E(T g, T'a)n™" + x(n)’n~*?),

k=(+2x(n)+1

19



and because of the decay of correlations (16):

IE(AB)| < C(2¢X™n~" + x(n)*n=%?).
Since, on the other hand, |E(D)| < 1, we have

E(Ag) < CE(Cn™" + x(n)*n ™) + O+ oS 3/QX( n)?).

Now we can bound (17):

n—1 n—1 n—1
E(]] Ben =[] Cen)l = 1D E( H(J,m Ag|<Z|EAg
0 0 =0 k=0

n—1—4x(n)—
< S T a4 0
=0
n—1
+lenll] 3/2X( )+ Y E(A).
l=n—1—4x(n)

From the mean value theorem one also deduces
E(Ag) S O?’L_l/2.

If we take x(n) = C'lnn with C large enough, then we are done.

3.2 Application

Let (X, T, 1) be a dynamical system defined on a manifold X. Suppose that Property
3.1 holds. Let 6 : x — 6, be a map from X into the set of the Holder continuous
maps from X to X. We will use also the notation #(x) instead of 6,. We suppose
that 6 satisfies for some 1 > 0

sup d(0,(2),0,(2)) < Cd(z,y)". (19)

zeX

Let ¢ be a Holder continuous function from X to R. We want to study the behavior
of

3
—

p(0:(T"x)).

0

B
Il

We can assume that the exponent of regularity in (19) and the exponent for ¢ are
the same. Since the maps 6, do not necessarily preserve the measure p, one has to
center these modified ergodic sums. We write

o, == E(p(6.()) = /X (0 (1)) duly).
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Y e0.(TF) — By,

k=0

We claim that both functions @, and o are Hélder continuous. Let us show it for
o3 . On one hand, in view of (16), the absolute value of

o* () — 0°(po,) = usps,) — 1(05,) + 2 Z 10, T*po,) — 11(09,- T*00,))
is bounded by

2]l @lloollfn, — 2o, ll2 + 2> 1110, (TF0, — TFpo, )| + 2> |1((po, — po,) T 00, )|
1 1

< 2l¢llcllivn, = o, 2 +4C Y~ Cllla lln + lia, o) 00, — s, ll2 ¢*
1

< Clllga.lln + llea,lln)llvo. = o, 2,

and, on the other hand,

2
lpo. = o, ll2 < llvo. — o, lloo < Cd(z,y)"

Now suppose that there exists (P,) a sequence of partitions with the diameter of
the elements of P, smaller than n~2"" such that, for positive constants C, L, for
every n € N, every P in P,, there exists a density function p, p such that

1

on,plly < CN", |lpnp — u(P)'1p|x < o (20)

Let us fix such a sequence (P,). Cutting out the space X according to the partition

P, we get
n—1 n—1
D o (TFa) = > 1p(x)pp, (TF2).
k=0

PePn k=0

For each element P of P, we choose in P a point z,, p. If z € P, then the distance
d(0,(T*x),0,, .(T*z)) is bounded by Cd(z,z, p)" < Cn~*". We thus have

|221P CPGfo Zzlp L,OGJF Tx)|<C’mL

PePy, k=0 PePn k=0
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Let us now study the characteristic function of ) p i 1p(2)Po(a,, ) (TFx):

E(exp(i Z Z 1p(7) Yoz, p) (T*x)))

PGPn k=0
:E(Z 1p(x)exp(t Z(pg(xnp (T*x)))
PeP,
" n—1
= > WP)E(u(P) " 1p(x) expli—= Y o, o) (TF2))).
PePy \/ﬁ k=0

By (20) we have

n—1
t
[E(1u(P) ™ 1p(2) exp(i E Po(z, ) (T*x)))—E(pn, pexp(i T > " G0 (T2)))| < 1/n.
k=0

We know from Theorem 3.2 that

n—1

; 1
E(pup expli—z= Y @o(a, ) (T*2))) = exp(—5 05, 1) = 0.
(p ,PGXP(Z\/ﬁkO Po(an,p) (172))) = eXP(=5 Tjia, )t) =

The sum Zpep wu(P) exp(—log(xmp)tQ) is a Riemann sum of the Holder continuous

function o . It converges to
1
[ expl=508 ) duta).
X

Now for the assumption (20), it is known that every smooth manifold has a tri-
angulation (see [Ca35|, [Wh57]). The existence of a sequence of partitions P,, and
of functions p, p satisfying the previous conditions are thus satisfied when X is a
smooth manifold. So, we have proved the following theorem.

Theorem 3.3 Let (X, T,u) be a dynamical system defined on a smooth manifold
X for which Property 3.1 holds. Let 6 be a map from X to the set of the Hélder
continuous maps from X to X such that (19) is satisfied. Then for every centered
Hélder continuous function ¢ on X, we have

Blesp(i—= Y (#(0: ) =70 )] — | expl=503.1) du(a).

Now let us give some examples satisfying the hypothesis. The examples given at
the end of Section 2 can be treated by this method since Property 3.1 is satisfied
for ergodic automorphisms of the torus, ergodic automorphisms on nilmanifolds,
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diagonal flows on compact quotients of SL(d,R). By the method used in this Section
3 we obtain the same result for Holder continuous functions under the assumption
that the map 6 is Holder continuous. If we identify in these cases the element 6, of
K with the translation by 6(x) we obtain:

1
E(exp(i Z@ )(TFz))) — / exp( —509 t2) du(z)
and, by definition of the image measure of y by 6 on K:
1 1
/ exp(—§03($)t2) du(z) :/ exp(—iazﬂ) dpg(k).
b's K

By linearity of the Fourier transform, we just have another formulation of the con-
vergence stated in Proposition 2.5. The result is the same. But this second method
allows us to consider transformations 6(z) that are not given by translation by el-
ements of a compact group acting on X. In the case of the automorphisms of the
torus, one can for example take for 6, a regular family of diffeomorphisms of T¢.
This method can be also adapted to expanding dynamical systems for which the
Perron-Frobenius operator has good spectral properties.

3.3 Convergence of the variance

Proposition 3.4 Let (X, T, u) be a dynamical system defined on a manifold X for
which Property 3.1 holds. Let 6 be a map from X to the set of the Hélder continuous
maps from X to X such that (19) is satisfied, and ¢ a centered Holder continuous

function on X. Then
1 (¢ i
. (Zw(ec)T’f-)) ~ [ duto)
k=1 X

Proof Consider a sequence of partitions (P,) with the same properties as in the
previous subsection. We have:

% (Zs@(é)(-)T’“-)> = E| > 1P(-)% (i <P6(->(Tk')>

PePy, K

For every P € P, let p, p be a function with norm ||p, p||, less than Cn’ such that
|pn,p — (P)~'1p|ly < n~?. We have:

%(ZW')T’“J) - > WPE | pury ( ) we<xn,P><T'“~>> |<1/n.

PePy
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Let us study E <pnp (S0 ot ) (TF ))2) We fix o € (0,1/2).

n—1 n+n‘171
1
E(pn,PE(Z Po(anp) (T"))?) — PnP Z Co(en ) (T*))?)
k=0 k=n*
1 n®—1 n—1 n+n®—1
= E(pn,Pg( PO(xn,p) Z PO(xn,p) Tk ) (Z 909(90n,P)(Tk'> + Z @e(xn,P)(Tk')V)
k=0 k=n% k=n% k=n
1 n®—1 n+n‘171
= ~E(pn,p[( D #otwr)(T*)) Z Lo, ) (T))7)]
k=0
n—1 n®—1 n+n®—1
+2E(pn.p( D 00 ) (TN 0t ) (T5) = D o, (T)))
k=n% k=0 k=n
4 n—1
< el% + —[Eon,p( Y o) (T2l
k=n®%
We have
n—1
E(pnp( D o (TF))?)
k=n®
n—1
pnP Z Po(zn,p) Tk ) + |COU(pn’p, ( Z we(xn,P)(Tk'))2)|‘
k=n® k=n>

Because of Property 3.1 the covariance tends to 0 faster than 1/n. On the other
hand E((37Z)., ©o(a, »)(T"))?) is bounded by C'n for some constant C' > 0. Putting
this together one obtains:

n—1 n+na -1

B (3 @ (T)) = Bl (3 Paten (7))

k=0 k=n%
< n** 7 Hgl2, +4Cn Mgl sllellyn'? < Cllglloollpllyn® 2.

Again because of Property 3.1, we have

n-l—no‘—l n-l—no‘—l
pnP (D Porm(T) Z o) (T5)2)] < Cllglloollollyn™
k=n> k=n>

Thus we have shown that

EC (30 o007 ~ 3 wPYEC (S do (7))

PeP,

< Cligllsollollyn®2.

Because of the mixing property of T" we have

n—1
1
E(g(z SOG(xn,p)(Tk'))2) - O-g(acn,p)
k=0
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so that

n

B OO ) = 3 1P) e, | < Cllplelicln™

n
k=1 PePy

Since the last sum is a Riemann sum for the function © — o7 , this concludes the

proof. o
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