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Quenched central limit theorem
for random walks with a spectral gap

Jean-Pierre Conze (University of Rennes 1)

Abstract

Let G be a discrete group acting on a probability space (X, m) such that the action (g, x) → (g.x)

is ergodic and preserves the measure m. For a probability µ on G we denote by Pµ the contraction
of Lp(m) de�ned by Pµf (x) =

∑
g f (g.x)µ(g). Let (gk(ω))k≥1 be the sequence of independent

random variables with distribution µ on G, i.e. the coordinate maps on the space Ω := GN∗

endowed with the probability product µ⊗N
∗.

For f a function on X and for a given ω ∈ Ω, we consider the ergodic sums Snf (ω, x) =∑n
k=1 f (gk(ω)...g1(ω)x).

Assume that P⊗
µ has a spectral gap property for the diagonal action on L2(X × X,m × m).

There are several examples of such a situation. We will present the following "quenched" central
limit theorem:
For f in L∞(m) with ‖f‖ 6= 0, there is σ(f ) > 0, such that for a.e. ω ∈ Ω,

lim
n

m{x :
1

σ(f )
√

n
Snf (ω, x) < a} =

1√
2π

∫ a

−∞
e−

1
2t2 dt.

We will also present examples of a quenched CLT under the weaker assumption of stationarity.
This is a joint work with Stéphane Le Borgne (University of Rennes 1).
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1 Annealed and quenched central limit theorems

Framework for a quenched CLT with the formalism of extensions of dynamical systems.
Here we consider the framework of dynamical systems, but there are several situations where the
question of a quenched CLT can be formulated. In statistical mechanics or for Markov chains.
In some cases it can be considered as the study of non stationary processes depending on a
parameter, such that stationarity arises after integration with respect to the parameter.
Let be given a measure preserving dynamical system (Ω,P, θ) and a metric space (X,B,m)

endowed with its Borel σ-algebra B and a probability m. Denote by T a semigroup of measurable
maps from X to itself which preserves m.
Let T : ω → T (ω) be a measurable map from Ω to T . The map T can be viewed as a cocycle
over the dynamical system with values in T .
We obtain a dynamical system de�ned on Ω×X with invariant measure P×m by setting

θT (ω, x) = (θω, T (ω)x).

The iterates of θT read

θk
T (ω, x) = (θkω, T k

1 (ω)x), with T n
1 (ω) = T (θn−1ω) ◦ ... ◦ T (θω) ◦ T (ω), n ≥ 1. (1)

If the transformations T (ω) satisfy a property of hyperbolicity, one can expect that the system
de�ned by θT has good statistical properties at least for the action on functions de�ned on X .
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We denote the ergodic sums of ϕ : x → ϕ(x) on X by Snϕ(ω, x) =
∑n−1

k=0 ϕ(T k
1 (ω)x).

The CLT holds for a space H of real functions in L2
0(X, m) if, for every ϕ ∈ H,

- the variance exists: σ2 = σ2(ϕ) := lim 1
n‖Snϕ‖2

2,P×m and if, σ2(ϕ) > 0, there is convergence in
distribution

P×m{(ω, x) :
1

σ
√

n
Snϕ(ω, x) ≤ a} → 1√

2π

∫ a

−∞
e−

1
2t2 dt. (2)

This is the "annealed" CLT on the product space according to the product measure P×m, for
the iterates of θT .
Now the quenched CLT consists in �xing ω in Ω and looking at the distribution of the ergodic
sums according to the measure m on the space X .
We say that the quenched CLT holds for a space H of real functions in L2

0(X,m) if, for every
ϕ ∈ H, for a.e. ω ∈ Ω,
- the variance exists and does not depend on ω: lim 1

n‖Snϕ(ω, .)‖2
2,m = σ2(ϕ).

- If σ2(ϕ) > 0, there is convergence in distribution

m{x :
1

σ
√

n
Snϕ(ω, x) ≤ a} → 1√

2π

∫ a

−∞
e−

1
2t2 dt. (3)

Remark that this type of quenched CLT di�ers from the quenched CLT where x is �xed and
the the convergence is with respect to the probability Px in ω starting from x, as considered by
several authors, beginning with M. Gordin and B. Lifshits.
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An example: sequence of toral automorphisms
Take for (X, m) the d-dimensional torus with the Lebesgue measure and for T the semigroup of
surjective endomorphisms of Td. Restricting to the case when the set of values of T (ω) is �nite,
we consider a �nite set A of matrices in GL(d,Z) and a measurable map T : Ω → A.
When A reduces to a single matrix A ∈ SL(d,Z) without eigenvalue root of unity, then
T (θk−1ω)...T (θω) T (ω) = Ak. If ϕ is Hölder on Td, the CLT holds for the ergodic sums
Snϕ(.) =

∑n−1
k=0 ϕ(Ak.).

Now let A = {Ai, i = 1, ..., r} be a set of hyperbolic matrices in SL(d,Z) and consider a map
T : ω → A(ω) taking values in A. We obtain a product of endomorphisms of the torus generated
by the stationary sequence (A(θnω)). We can ask about the CLT for a.e. ω for the sums

Snϕ(.) =

n−1∑

k=0

ϕ(T (θk−1ω)...T (θω) T (ω).).

In a joint work with S. Le Borgne and M. Roger, we have applied the method of "multiplicative
systems" of Komlòs in some special cases to give a positive answer. We will discuss this later,
as well as recent results.
Now we consider under a spectral gap property, but for more general actions, the independent
case.
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2 Spectral gap and limit theorems

Let (X,B,m) be as above and let G be a group of Borel invertible maps of X into itself which
preserve m and acts ergodically. Let µ be a probability measure on G with support Γ, such that
G is the closed group generated by Γ.
Let (Ω,P) = (ΓN, µN), ω = (ω1, ω2, ...). We denote by Tk(ω) := ωk the coordinate maps. With
the previous notation, we have T n

1 (ω) = ωn...ω1.
These data, denoted by (X, m, Γ, µ), de�ne a random walk on X with Markov operator P = Pµ

(and stationary measure m) given by

Pµϕ(x) =
∑

a∈Γ

ϕ(ax) µ(a). (4)

The operator corresponding to the diagonal G-action on (X × X, m × m) is P⊗
µ ϕ(x, y) :=∑

a∈Γ ϕ(ax, ay) µ(a).
Pµ is a contraction of Lp(X,m), ∀p ≥ 1, and it preserves the subspace L2

0(X, m) of functions
ϕ in L2(X,m) such that m(ϕ) = 0. Ergodicity of Pµ is equivalent to ergodicity of the action
of G on the measure space (X,B,m). We will use a strong reinforcement of the ergodicity, the
spectral gap property for the operator P when it holds.

Let P0,µ be the restriction of Pµ to L2
0(X,m). We say that Pµ satis�es the spectral gap

property if ‖P0,µ‖ < 1.



7

Recall that, with the previous notation,

Snϕ(ω, x) :=

n∑

k=1

ϕ(T k
1 (ω)x).

The existence of a spectral gap implies "quenched" properties for the random walk, as shown by
A. Furman and Ye. Shalom in 99.
By Kakutani's theorem, for all ϕ ∈ L1(X,m), for P-a.e ω, limn

1
n Snϕ(ω, x) =

∫
ϕdm, for m-a.e.

x. With a spectral gap for Pµ on L2
0(X,m), there is a.s. a rate of convergence.

Theorem 2.1. Suppose ‖P0,µ‖ < 1 and let ϕ ∈ L2
0(X, m), then

‖1

n
Snϕ(ω, .)‖ = o(

log1/2+ε n√
n

),
1

n
Snϕ(ω, x) = o(

log3/2+ε n√
n

), for P− a.e. ω.

If ‖P⊗
0,µ‖ < 1, there is a.s. an exponential rate of mixing along the random walk generated by µ.

(CLT) If ϕ ∈ Lp
0(X,m), p > 2, f 6= 0, let σn = ‖Snϕ‖2 (as a r.v. on (Ω ×X,P ×m)). Then

σ = limn
σn√

n
exists, is 6= 0 and

sup
a∈[0,1]

|P×m({n−1/2Snϕ < a})− 1√
2πσ

∫ a

−∞
e−t2/2σ2

dt| = O(
logp/2 n

nδ
), with δ = min(

1

2
,
p− 1

2
).

The last statement is an "annealed" CLT. Now we consider the "quenched" version of the CLT.
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3 Spectral gap and quenched CLT (Independent case)

In 2007, Ayyer, Liverani and Stenlund looked at the case of SL(2,Z) acting on the torus. More
precisely, they considered the model described above, when the setA consists of positive matrices
in SL(2,Z) and they proved a quenched CLT for regular functions. They use an inequality of
large deviations deduced from the theory of perturbation of operators along Nagaev method.
This perturbation method does not seem to apply (immediately) in our situation. But we can
adapt their method using the spectral gap property of the operator Pµ on L2

0. The main steps
are the two propositions below.
It can be shown that the variance computed for a.e. �xed ω is the same as the global variance:
Proposition 3.1. If ‖P⊗

0,µ‖ < 1, then, for every ϕ in L2
0(X,m), for a.e. ω, we have

lim
1

n

∫

X

Snϕ
2 dm = σ2.

Proposition 3.2. If ‖P0,µ‖ < 1, then for every R > 0 and α > 0, there exists C > 0 such that
for ϕ in L2R

0

E(|Snϕ|2R) ≤ Cn(1+α)R.

Theorem 3.3. (C., Le Borgne) Let G be a group acting ergodically on a probability space (X,m)

and µ be a probability measure on G with support Γ as above such that ‖P⊗
0,µ‖ < 1. Let ϕ be a

real function in Lp
0(X,m), p > 2. Then, for a.e. ω ∈ Ω, for every a ∈ R,
lim

n→∞
m(x :

1

σ
√

n
Snϕ(ω, x) < a) =

1√
2π

∫ a

−∞
exp(−t2/2) dt.
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4 Spectral gap: examples

There are algebraic examples with the spectral gap property, like group of automorphisms on tori
and nilmanifolds, action on homogeneous spaces of Lie groups. It never occurs for G amenable.
There are results of A. Furman, Ye. Shalom, J. Bourgain, A. Gamburd, Y. Guivarc'h, among
others.
Tori: For action by automorphism on the torus, the necessary and su�cient condition for the
existence of a spectral gap for Pµ is that there does not exist an invariant rational subtorus S

such that the action of the group generated by the support of µ on Td/S is the action of an
abelian group (up to a �nite index).
For example, if the group generated by the support of µ has no abelian subgroup of �nite index
and acts irreducibly on Rd, there is a spectral gap.
For automorphisms of a compact abelian group, the conditions ‖P0,µ‖ < 1 and ‖P⊗

0,µ‖ < 1 are
equivalent.
Nilmanifolds: Let N be a simply connected nilpotent group, D a lattice in N , X = N/D the
corresponding nilmanifold, and T = N/N ′.D the maximal torus factor. The following spectral
gap property holds for groups of automorphisms or a�ne transformations of nilmanifolds. Let
Γ be a countable group of a�ne transformations of N/D. Let µ be a probability measure with
support Γ. Recently B. Bekka and Y. Guivarc'h have shown that the existence of a spectral gap
for the action of Γ on T implies the existence of a spectral gap for the action of Γ on N/D.
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5 Another method, without spectral gap

In the case of the torus a quite di�erent method can be used for Hölder functions. It is based on
separation of frequencies and a CLT for "multiplicative systems" introduced by Komlòs. This
method is adapted to the case of non independent stationary products. But it can also be used
for the independent case. It provides a small rate of convergence in the quenched CLT.
The idea is that there is a fast growth of the norms of vectors in Zd for the dual action of the
endomorphisms, so that the "frequencies" of trigonometric polynomials ϕ are separated. The
CLT is obtained by making gaps in the ergodic sums Snϕ.
For each ω, T (ω) = tA(ω) is an endomorphism of the torus. We use the following conditions,
with the notation An

1(ω) = A(ω)...A(θn−1ω).
Condition 5.1. There is c > 0 such that for a.e. ω, for every p, q ∈ Zd\{0} with ‖p‖, ‖q‖ ≤ D,

Ar
1(θ

`ω)p 6= q, ∀r > c log D, ∀` ≥ 0. (5)
Condition 5.2. For a.e. ω, there exist γ > 1, c and C > 0 such that for every p ∈ Zd \ {0}

‖A`+r
1 (ω)p‖ ≥ Cγr−c log ‖p‖‖A`

1(ω)‖, ∀r > c log ‖p‖, ∀` ≥ 1. (6)

There is a "uniform" variant of 5.1 valid for matrices in SL(2,Z+).
Condition 5.3. There is δ > 0, γ > 1, c and C > 0 such that for every p ∈ Zd \ {0},

∀A1, ..., Ar ∈ A, ‖A1...Arp‖ ≥ C‖p‖−δγr, ∀r > c log ‖p‖. (7)
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5.1 Products of independent matrices in SL(d,Z)

As an application of the method of separation of frequencies, we obtain in the independent case
the following result. Let A be a �nite set of matrices in SL(d,Z). Assume it is
- proximal: the semigroup generated by A contains a contracting sequence (it is satis�ed for
example when a �nite product of elements of A has a dominant simple eigenvalue),
- totally irreducible: for every r, the action of A on the exterior product of

∧
rRd has no invariant

�nite union of non trivial sub-spaces.
Let µ be a probability on A such that µ({A}) > 0 for every A ∈ A. Let Ω := AN =

{ω = (ωn), ωn ∈ A, ∀n ∈ N} endowed with the product measure P = µ
⊗

N. For ω in Ω,
Ak(ω) = A0(θ

kω) is its k-th coordinate. Let Snϕ(ω, x) :=
∑n

k=1 ϕ(Ak(ω) . . . A1(ω)x). For the
action of the product An(ω) . . . A1(ω) on the torus, there is for a.e. ω a Central Limit Theorem
with a small rate.

Theorem 5.4. (C., S. Le Borgne, M. Roger) Let ϕ be a centered Hölder function on Td or
a centered characteristic function of a regular set. Then, if ϕ 6≡ 0, for P-almost every ω,
σ(ϕ) = limn

1√
n
‖Snϕ(ω, .)‖2 exists, is 6= 0, independent from ω, and on the space (Td,m)

(
1

σ(ϕ)
√

n
Snϕ(ω, .)n≥1

converges in distribution to the normal law N (0, 1) with a positive rate of convergence.
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5.2 Stationary non independent examples

Coming back to the general framework of the beginning, consider stationary (but not necessarily
independent) products of automorphisms of Td. In this direction, we have a partial result, if we
restrict the choice of the matrices. Here two examples in dimension 2.

1) Endomorphisms of T2 with > 0 coe�cients
Theorem 5.5. Let ϕ be a Hölder continuous function or the characteristic function of a regular
set. Let the sequence (T n

1 (ω)) be generated by a dynamical system (Ω, θ, µ). If the map T :

Ω → Aut(T2) takes values in a �nite set A of matrices ∈ SL(2,Z) with > 0 coe�cients,
then either for µ-almost ω ∈ Ω, (‖Snϕ(ω, .)‖2) is bounded or, for µ-almost ω ∈ Ω, the sequence
(n−

1
2‖Snϕ(ω, .)‖2) has a limit σ(ϕ) > 0 not depending on ω. In the latter case, a non degenerated

quenched CLT holds with a rate of convergence.

For instance, if the sequence (T n
1 (ω)) is generated by an ergodic rotation on the circle, with

T (ω) = A(ω) = A on an interval and = B on the complementary, where A,B are two matrices
in SL(2,Z+), then the CLT holds for every such sequence.
For a trigonometric polynomial ϕ 6≡ 0, it can be shown that the variance σ(ϕ) is > 0.



13

2) Kicked systems

Let H be a hyperbolic matrix in SL(2,Z) and (Bn) be a sequence in SL(2,Z) such that the
sequence (trace(Bn)) is bounded. Let s ≥ 1 be a �xed integer. Let us consider the sequence Mn

of automorphisms of the torus:

Mn = B1H
s...Bn−1H

sBnH
s. (8)

L. Polterovich and Z. Rudnick called such a sequence (8) a "kicked" system. They proved the
following "mixing stability" property: if H is not conjugate to its inverse, for every constant
K > 0,there exists s0 such that, for every sequence of "kicks" (Bk) with trace bounde by K,
the sequence de�ned by (8) is mixing for every s ≥ s0, i.e. the decorrelation property holds: if
ϕ and ψ are Hölder functions, there exist constants C and 0 < κ < 1 such that

|
∫

Td
ϕ(tMnx) ψ(x) dm(x)| ≤ Cκn, ∀n ≥ 1.

A way to generate stationary kicked systems is the following. Let A be a set of matrices of the
form A = {BjH

s, j ∈ N}, where {Bj} is a family of matrices in SL(2,Z) with bounded trace.
Let ω → T (ω) = B(ω)Hs be a measurable map from Ω to A. Consider the skew product θT

de�ned on Ω× T2 as before by θT : (ω, x) 7→ (θω, T (ω)x).
By iterating the map θT we obtain a kicked system depending on ω of the form:

Mn(ω) = B(θn−1 ω)Hs ... B(θω)Hs B1(ω)Hs. (9)
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A quasi-morphism on a group G is a function r : G → R such that the function dr : G×G → R
de�ned by dr(g1, g2) = r(g1g2)− r(g1)− r(g2) is bounded. A homogeneous quasi-morphism also
satis�es r(gn) = nr(g) for all n ∈ Z.
We use the following results of Polterovich and Rudnick. Let r be a homogeneous quasi-morphism
of SL(2, Z) which vanishes on all parabolic elements. Then there is c > 0 such that for every
non zero vector v ∈ Z2 and every A ∈ SL(2,Z),

‖Av‖ ≥ ec|r(A)| ‖v‖−1.

If H is note conjugate to its inverse, there is an homogeneous quasi-morphism with

r(H) = 1 and r(BnH
sBn−1H

s...B1H
s) =

n∑
i=1

[r(Hs) + r(Bi)] + O(1) = ns + O(n).

This implies a uniform lower bound for the Lyapunov exponent. Using this result and Oseledets
ergodic multiplicative theorem, we can prove a weak form of the "separation of frequencies"
property and deduce from it:

Theorem 5.6. The quenched CLT is satis�ed by a kicked stationary system.


