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For Nd-actions, a martingale method has been applied recently by

D. Volný to ergodic sums over rectangles. For more general sets,

we will discuss the needed estimates in order to use this method

and their link with r-mixing and solutions of “S-unit equations” in

the case of some actions by algebraic endomorphisms.
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Introduction
In the study of the stochastic behavior of multidimensional models,
there are difficulties that do not occur in the one-dimensional mod-
els obtained by iteration of a single transformation, for instance the
lack of mixing of all orders which can occur for 2-mixing actions.

To make the problem precise, it is suitable to choose an explicit
model and to see what methods are available for these multidimen-
sional models.

An example is the model provided in the algebraic framework by
the action of automorphisms or endomorphisms of compact abelian
groups.

For connected groups mixing of all orders holds. In this talk, we
consider also a family of non connected groups for which we have to
deal with non mixing configurations due to the existence of solutions
of “S-unit type” equations.

Examples:
Tori: connected case, where there is mixing of all order,
Shift-invariant subgroups: non connected case, non mixing of all
order, hence a more difficult case.

2



General question: Let us consider:
- a compact abelian group G endowed with its Haar measure µ,
- T1, ..., Td, d commuting algebraic automorphisms or surjective en-
domorphisms,
- the action of Zd or Nd on G by T ` := T

`1
1 ...T

`d
d (underlined letters

represent vectors).

This action is assumed to be totally ergodic (that is: ergodic for
every ` ∈ Zd\{0}.

We denote by Ĝ the dual group of characters on G, by χ0 the trivial
character.

Total ergodicity (here) is equivalent to: T `χ 6= χ for ` 6= 0 and any
character χ 6= χ0, to the Lebesgue spectrum property, to 2-mixing).

A function f on G is called “regular” if it has an absolutely conver-
gent Fourier series. If its integral is 0, this implies that f has (for
the (T `) action) a spectral density ϕf which is continuous on Td.
Recall that the Fourier coefficients of ϕf (on Td) satisfy∫

Td
e2πi〈`,t〉ϕf(t) dt = 〈T `f, f〉, ∀`.

If f is function , T `f stands for f ◦ T `.
3



In the talk, the distribution is taken with respect to the Haar mea-

sure µ on G. For instance, if we act by ×2, ×3 mod 1 on the circle,

the distribution is taken with respect to the Lebesgue measure. All

functions are assumed to be centered (µ(f) = 0).

If f : G → R is regular on G, one can investigate the statistical

behavior of the random field (T `f)`∈Nd, in particular the following

limits (in distribution w.r. to µ):

a) (ergodic sums) for a sequence (Dn) of sets in Nd

lim
n
|Dn|−

1
2

∑
`∈Dn

T `f

b) (ergodic sums along a random walk) if Zn = Y0 + ...+ Yn−1 is a

r.w. on Zd or Nd,

lim
n
a−1
n

∑
0≤k<n

TZk(ω) f, for a.e fixed ω,

where (an) is a normalizing sequence (which may depend on ω).
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The case when G is a connected is easier, because mixing of all or-

ders holds. For non connected groups. in particular shift-invariant

subgroups of FZdp (characteristic p, where p ≥ 2 is a prime inte-

ger) and some commutative actions by endomorphisms or auto-

morphisms on such groups, mixing of all orders is not satisfied.

Nevertheless, it is possible to show that, for the model that we

consider, non-mixing configurations are sparse in some sense. This

allows us to apply the cumulant method, as we did for the connected

case, to prove limit theorems.

Is it possible to use a martingale method? Yes, as we will see, in

the case of exact endomorphisms. For a summation method like

ergodic sums on sets which are not rectangles, the method could

required results on S-units linked to r-mixing. We will discuss this

point.

Furthermore, it requires the reduction trick (Gordin’s method) which

does not work for all summation methods.
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1. Martingale method

A toy model: action by Sx = 2x mod 1, Tx = 3x mod 1 on T1

Let (X,A, µ) be the circle with its Borel σ-algebra and the Lebesgue

measure µ. The maps T, S are two commuting measure preserving

transformations of (X,A, µ).

Let (Rn) be a sequence of rectangles in N2 with length of sides

tending to ∞ and f a regular function on the circle, for instance a

trigonometric polynomial such that µ(f) = 0 and ‖f‖2 = 1. Sup-

pose we want to prove a CLT for

|Rn|−
1
2

∑
`∈Rn

f(3`12`2x).

To simplify, let us take squares Rn = [0, n − 1] × [0, n − 1]. We

consider
∑

0≤j,i<n f(3i2jx).

First it is possible to reduce f (up to a coboundary) to the case when

it has no frequencies multiple of 2 or 3, which implies
∫
f(.) g(2.) dµ =

0,
∫
f(.) g(3.) dµ = 0, for every g ∈ L2(µ).
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We suppose the reduction is made. Hence, f satisfies the double

(reverse) martingale difference condition:

E(f |T−1A) = 0, E(f |S−1A) = 0. (1)

For simplicity let us assume moreover that f is a real trigonometric

polynomial f(x) =
∑
` c`e

2πi`x, with c0 = 0 and ‖f‖2 = 1. Let us

prove the CLT, which reads here:

n−1 ∑
0≤j,i<n

f(3i2jx)
distr−→
n→∞ N (0,1). (2)

The proof is based on McLeish theorem recalled below. To check

the hypotheses of McLeish theorem, we will give two proofs:

- one of the proofs follows a recent paper of Dalibor Volnỳ,

- the second one is based on a computation related to mixing.

The advantage of the first proof is is generality (it can be applied to

totally commuting random fields), but it is adapted to the case of

Birkhoff sums over rectangles.The advantage of the second one is

that it applies to more general methods of summations, in particular

Birkhoff sums over domains which are not rectangles.
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Recall the central limit theorem of McLeish for arrays of martingale

differences:

Theorem 1. (McLeish) If (Xn,i, i = 1, ..., kn) is an array of martin-

gale (or reverse martingale) differences such that supnmaxkni=1 EX2
n,i <

∞ and

(i) maxkni=1 |Xn,i| → 0 in probability,

(ii)
∑kn
i=1 X

2
n,i → 1 in probability,

then
∑kn
i=1 Xn,i converges to N (0,1) in distribution.

We apply Theorem 1 with: Xn,i = T i[1
n

∑n−1
j=0 S

jf ], i = 0, ..., n − 1,

which is an array of reverse martingale differences. Let us check

conditions (i) and (ii). We will focus on (ii) and give two proofs.

1) First proof (D. Volnỳ): We have to prove (ii) for Xn,i. Actually

we will show L1-convergence, that is:

‖
1

n

n−1∑
i=0

T i (
1
√
n

n−1∑
j=0

Sjf)2 − 1‖1 → 0. (3)
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It is enough to show: given ε > 0, ∃ m and L such that, for n ≥ L,

‖
1

m

m−1∑
i=0

T i (
1
√
n

n−1∑
j=0

Sjf)2 − 1‖1 ≤ ε. (4)

Let us fix a positive integer m and for constants a1, ..., am consider

(
∑m
i=1 ai T

iSjf), j ≥ 1. They are reverse martingale differences by

(1) and by the central limit theorem of Billingsley and Ibragimov,

1
√
n

n∑
j=1

m∑
i=1

ai T
iSjf

distrib−→
n→∞ N (0,

m∑
i=1

a2
i ).

Let Fi,n := 1√
n

∑n
j=1 T

iSjf . From this it follows that the sequence

of random vectors (F1,n, ..., Fm,n) converges in distribution to a vec-

tor (W1, ...,Wm) of mutually independent and N (0,1)-distributed

random variables. For a given ε > 0, if m = m(ε) is sufficiently big,

then we have ‖ 1
m

∑m
u=1W

2
u − 1‖1 < ε/2.

By a truncation argument and uniform integrability of ( 1√
n

∑n−1
j=0 S

jf)2)n≥1,

we deduce, from the convergence in distribution of (F1,n, ..., Fm,n) to

(W1, ...,Wm), that for m = m(ε) sufficiently big, ‖ 1
m

∑m
i=1 F

2
i,n−1‖1 ≤

ε.
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2) Second proof.

Suppose we have a trigonometric polynomial as above. Let (wn(i, j))n≥1
be a sequence of positive weights such that

∑
i,j wn(i, j)2 = 1. An

example of weights is wn(i, j) = |Dn|−
1
2 1Dn(i, j), where Dn is an

increasing sequence of sets, for instance rectangles as above.

So we consider the normalized sums:
∑
i,j wn(i, j)T iSjf . They sat-

isfies

‖
∑
i,j

wn(i, j)T iSjf‖22 =
∑
i

∫
(
∑
j

wn(i, j)Sjf)2dµ =
∑
i,j

wn(i, j)2
∫
f2dµ = 1

and we want to prove their convergence in distribution toward
N (0,1).

Notation: ψn,i =
∑
j wn(i, j)Sjf , Xn,i = T iψn,i.

To obtain the result via McLeish theorem, we have to check con-
ditions (i) and (ii). Let us show (ii). Actually, we will prove
‖
∑
iX

2
n,i − 1‖2 = ‖

∑
i T

i(
∑
j wn(i, j)Sjf)2 − 1‖2 → 0, which is:

‖
∑
i

T i(ψ2
n,i −

∫
ψ2
n,i dµ)‖2 → 0.
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We have to evaluate:∑
j

wn(i, j)wn(i, j)wn(i, j′)wn(i′, k′)wn(i′, k′)
∫
T iSjf T iSj

′
f T i

′
Skf T i

′
Sk
′
f dµ

The expansion of ψ2
n,i −

∫
ψ2
n,i gives:∑

j

wn(i, j)wn(i, j)wn(i, j′)wn(i′, k′)wn(i′, k′)

∑
`1,`2,`3,`4

c`1 c`2 c`3 c`4e
2πi[3i(2j`1+2i

′
`2)+3i

′
(2k`3+2k

′
`4)]x.

Since the integrals are substracted, remark that∑
2i`1+2i′`2=0

c`1 c`2 = 0,
∑

2i`3+2i′`4=0

c`3 c`4 = 0.

After integration, all terms such that 3i(2j`1 + 2i
′
`2) + 3i

′
(2k`3 +

2k
′
`4) 6= 0 disappear. Take wn(i, j) = |Dn|−

1
2 1Dn(i, j). It suffices

to bound the number of terms for (i, j), (i, j′), i′, k′), (i′, k′) in Dn,

such that:

3i(2j`1 + 2i
′
`2) + 3i

′
(2k`3 + 2k

′
`4) = 0, (5)

11



For it, we use a result on S-units that we will recall later: if in (5) no

proper subsum vanishes and if the `i’s have no common factor, then

there is a finite number of solutions. Taking into account a previous

remark, the only possible vanishing subsums are (simultaneously):

3i2j`1 + 3i
′
2k`3 = 0, 3i2j

′
`2 + 3i

′
2k
′
`4 = 0, or

3i2j`1 + 3i
′
2k
′
`4 = 0, 3i2j

′
`2 + 3i

′
2k`3 = 0.

The `i’s are prime to 2 and 3. Therefore i = i′, j = k, j′ = k′ or

i = i′, j = k′, j′ = k.

If Dn = [0, an−1]×[0, bn−1], with an, bn →∞, the number of choices

is anb2n. The normalization of the ergodic sums is by |Dn|−
1
2; hence

we divide by |Dn|2 = a2
nb

2
n. This implies the result.

This shows (ii). An analogous proof can be given for (i).

The CLT for (2) follows.
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Complete commutation

Now we consider in general γ1, γ2, two commuting surjective endo-

morphisms of G such that Ker (γ1) is finite. One easily checks that

the following conditions are equivalent for the adjoint operators:

Tγ2Πγ1 = Πγ1Tγ2, (6)

Ker (γ1) ∩ Ker (γ2) = {0}. (7)

(6) is what M. Gordin called complete commutation.

The complete commutation allows the use of the martingale method

for ergodic means on rectangles, as we have seen for the example

of the 2-dimensional action generated by 2x mod 1, 3x mod 1 on

T1. But the method is not available for other summation methods

like the summation along a random walk (more precisely, the proof

of condition ii) does not work).

Another possibility is the method of moments. We will recall it

briefly, but after mentionning the question of r-mixing for a multi-

dimensional action.
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2. r-mixing and the method of moment or cumulants

The proof of the CLT given by Leonov in 1960 for a single er-

godic endomorphism of a compact abelian group G is based on the

computation of the moments of the ergodic sums of trigonomet-

ric polynomials and uses mixing of all orders. For Zd-actions by

automorphisms on compact abelian groups, mixing of all orders is

satisfied for actions on connected compact abelian groups, but may

fail (cf. Ledrappier (1978)) for a non connected group. Neverthe-

less, as we will see, when the non mixing configurations are sparse

enough the moment method can be applied.

Moments, cumulants

Let (X1, ..., Xr) be a random vector. For any subset I = {i1, ..., ip} ⊂
{1, ..., r}, we put m(I) := E(Xi1 · · ·Xip). The cumulant of order r is

C(X1, ..., Xr) =
∑
π∈P

(−1)p−1(p− 1)! m(I1) · · ·m(Ip), (8)

where π = {I1, I2, ..., Ip} runs through the set P of partitions of

{1, ..., r} into p ≤ r nonempty subsets, for p = 1, ..., r.
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Theorem 2. Let (Xk)k∈Zd be a random process (with Xk centered

in L2) and (wn)n≥1 a sequence of positive weights on Zd. Let
Y (n) =

∑
` wn(`)X`, n ≥ 1, such that ‖Y (n)‖2 6= 0. Then the

condition∑
(`1,...,`r)∈(Zd)r

wn(`1)...wn(`r)C(X`1, ..., X`r) = o(‖Y (n)‖r2), ∀r ≥ 3.

implies
Y (n)

‖Y (n)‖2
distrib−→
n→∞ N (0,1).

Non-mixing r-tuples

Let f =
∑
j∈J cjχj be a trigonometric polynomial and Φ = (χj, j ∈

J). We take Xk = T kf and consider the cumulants: C(T a1f, ..., T arf).

The set of “non-mixing” r-tuples for Φ = (χj, j ∈ J) (”bad config-
urations”) is defined as

N (Φ, r) := {(a1, ..., ar) : ∃χi1, ..., χir ∈ Φ : C(T a1χi1, ..., T
arχir) 6= 0}.

If (a1, ..., ar) 6∈ N (Φ, r), then, by expansion, C(T a1f, ..., T arf) = 0.

If (a1, ..., ar) ∈ N (Φ, r), i.e., (a1, ..., ar) is a non-mixing r-tuple for
Φ, then it satisfies T a1χj1...T

arχjr = χ0, for some (j1, ..., jr) ∈ Jr.
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Let (wn)n≥1 be a sequence of positive weights on Zd and f a regular

real function on G with spectral density ϕf , such that ϕf(0) 6= 0,

since otherwise the limiting distribution is δ0. Suppose the weights

are such that

σ2
n(f) := ‖

∑
`

wn(`)T `f‖22 ∼ (
∑
`

w2
n(`))ϕf(0).

Theorem 2 implies

Theorem 3. If, for any finite family Φ of characters,

∑
(`1,...,`r)∈N (Φ,r)

r∏
j=1

|wn(`j)| = o
(
(
∑
`∈Zd

w2
n(`))

r
2
)
, ∀r ≥ 3, (9)

then

(
∑
`∈Zd

w2
n(`))−

1
2
∑
`∈Zd

wn(`)f(T `.)
distr−→
n→∞ N (0, ϕf(0)). (10)

Now, the problem is to show that the sets N (Φ, r) are small in some

sense.
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3. Mixing of order r for Nd-action by endomorphisms

For a general Nd-action, ` → T `, preserving a probability measure

µ, the property of mixing of order r ≥ 2 is that, for any r-tuple of

bounded measurable functions f1, ..., fr with 0 integral, every ε > 0,

there is M such that

‖`j − `j′‖ ≥M, ∀j 6= j′ ⇒ |
∫
T `1f1...T

`rfr dµ| < ε. (11)

For the action by algebraic endomorphisms on G, mixing of order

r is equivalent to: for every set Φ = {χ1, ..., χr} of r characters

6= χ0, there is M > 0 such that ‖`j − `j′‖ ≥ M for j 6= j′ implies

T `1χ1...T
`rχr 6= χ0 (because for a character χ, either its integral is

0 or χ is the trivial character χ0).

In other words, r-mixing for an Nd-action by endomorphisms is

equivalent to: for every set Φ of r non trivial characters, there

is M s.t. ‖`j − `j′‖ ≥M, ∀j 6= j′ ⇒ (`1, ..., `r) is not solution of

T `1χ1...T
`rχr = χ0. (12)

.
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Example: action by ×2, ×3 mod 1 on T1

A set Φ of non zero characters is given by an r-tuple {k1, ..., kr} of

non zero integers. Equation (12) reads k12a13b1 + ...+kr2ar3br = 0.

Hence we consider the equation:

k12a13b1 + ...+ kr2
ar3br = 1, ((a1, b1), ..., (ar, br)) ∈ (Z2)r. (13)

It is known that, for a given set k1, ..., kr, there is only a finite number

of r-tuples ((a1, b1), ..., (ar, br)) solutions of (13), if no proper sub-

sum vanishes. It implies that the (invertible extension) 2-dimensional

action generated by ×2,×3 is mixing of all orders.

The result on solutions of (13) is a special case of a theorem on

S-units applied in 1992 by K. Schmidt and T. Ward to prove in

general: Every 2-mixing Zd-action by automorphisms on a compact

connected abelian group G is mixing of all orders.
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There is a long history of equations of type (13) (S-unit equations),

(van der Poorten, Evertse, Schlickewei, W. Schmidt, ...). In a paper

of the last three authors the following statement is proved:

Let K be an algebraically closed field of characteristic 0. Let

(K∗)r be the direct product consisting of r-tuples x = (x1, ..., xr)

of non zero elements xi ∈ K. Let Γ be a subgroup of (K∗)r. For

(a1, ..., ar) ∈ (K∗)r, let us consider the equations, with x ∈ Γ:

a1x1 + ...+ arxr = 1, (14)

If Γ has finite rank d, the number of non-degenerate solutions x ∈
Γ of equation (14), if no sub-sum of the left-hand side of (14)

vanishes, is finite (with an explicit bound).

This is what has been used to check McLeish condition previously.

At the opposite, in the non connected case (for example for en-

domorphisms of shift-invariant subgroups of FZdp ), we will see that

there are infinitely many bad r-tuples, for r ≥ 3.
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4. FZdp and its dual group, shift-invariant subgroups of FZdp

Let Fp := Z/pZ, p > 1 a prime integer. Let G0 = G
(d)
0 be the com-

pact abelian group FZdp identified with the space Sd = Fp[[x±1 , ..., x
±
d ]]

of formal power series in d variables with coefficients in Fp.

A point ζ = (ζk, k ∈ Zd) in G0 is represented by the formal power

series with coefficients in Fp: ζ(x) =
∑
k∈Zd c(ζ, k)x−k.

In this representation of the group G0, the action of the shifts

σ1, ..., σd on G0 is: σjζ(x) = xjζ(x).

P = Pd = Fp[x±1 , ..., x
±
d ] is the ring of Laurent polynomials in d

variables with coefficients in Fp. A Laurent polynomial P in P reads

P (x1, ..., xd) =
∑

k∈S(P )

c(P, k)xk,

where S(P ) is a finite subset of Zd. For P ∈ P and ζ ∈ S, the

product Pζ is well defined. It is easy to see that for any character

χ on FZdp there is a polynomial P ∈ Pd such that

χ(ζ) = χP (ζ) = e
2π
p ic(Pζ,0)

.
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Shift-invariant subgroups of FZdp (cf. K. Schmidt’s book (1995))

By what precedes, the dual Ĝ0 of G0 is P endowed with its additive
group structure.

Let G ⊂ G0 be a shift-invariant closed subgroup of FZdp .

The annulator G⊥ of G in Ĝ0 is {P : χP (ζ) = 1, ∀ζ ∈ G}, i.e.,
{P : c(Pζ,0) = 0, ∀ζ ∈ G}. Since G is shift-invariant, the relation is
satisfied for xkζ(x), for every k ∈ Zd. Hence Pζ = 0, ∀ζ ∈ G.

Therefore G⊥ can be identified with the ideal

J = {P ∈ Pd : Pζ = 0, ∀ζ ∈ G}.

By duality in FZdp , we have G = (G⊥)⊥. This shows that

G = {ζ : Pζ = 0, ∀P ∈ J}. (15)

The dual of G is identified with the quotient Ĝ0/G
⊥, i.e., Ĝ = P/J .

Conversely, every ideal J defines a shift-invariant subgroup of G0
by (15).
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5. Counting non mixing r-tuples

Now we consider the action on FZp given by polynomials in one

variable. Let R = (R1, ..., Rd) be a family of d prime polynomials in

one variable. We assume R1(x) = x. Their natural extension is the

shift-actions on the shift-invariant group GJ ⊂ FZdp defined by the

ideal J = Ker h, with h(Q)(x) = Q(x,R2(x), ..., Rd(x)).

Ledrappier’s celebrated example is a special case of this construc-

tion (for R(x) = 1+x). Its invertible extension given by the Z2-shift

action on the shift-invariant group GJ , where J is the ideal gen-

erated by the polynomial 1 + x1 + x2. The group GJ is the set of

configurations ζ in FZ2

2 such that ζ(n,m)+ζ(n+1,m)+ζ(n,m+1) =

0 mod 2, ∀(n,m) ∈ Z2.
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A set of characters is given by a finite family of polynomials P1, ..., Pr.

A ”bad configurations” of the Nd-action defined by R for this set,

is an r-tuple (a1, ..., ar) ∈ Nr such that in Fp[x]

P1(x)
d∏

i=1

Ri(x)a1,i + ...+ Pr(x)
d∏

j=1

Rr(x)ar,i = 0. (16)

(16) is analogous to an S-unit equation (like for the 2 and 3).

It can be reduced to the case where the Pj’s are scalars.

To count bad configurations we introduce the following definition:

A polynomial Γ in d-variables, Γ(x) =
∑
a∈Nd c(a)

∏d
i=1 x

ai
i is a special

R-polynomial if

Γ(R1(x), R2(x), ..., Rd(x)) =
∑
a∈Nd

c(a)
d∏

i=1

R
ai
i = 0. (17)
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Let D be any family of prime polynomials containing the polynomial

R1(x) = x. The polynomials xρ − ρ(x), ρ ∈ D, will be called basic

special D-polynomials (abbreviated in ”bs D-polynomial”). We say

that a polynomial Γ is shifted from another polynomial Γ0 if Γ(x) =

xaΓ0(x) for some monomial xa.

A polynomial Λ is called generalized basic special D-polynomial (ab-

breviated in “gbs D-polynomial”), if it is obtained from a basic spe-

cial D-polynomial ∆ by shift and dilation (exponentiation with a

power of p as exponent).

Therefore, Λ is a gbs D-polynomial, if there are a ∈ Zd, t ≥ 0 and a

bs D-polynomial ∆ such that: Λ(x) = xa (∆(x))p
t
.

24



Extending a result shown by Arenas-Carmona, Bergelson, Berend

(2008) for Ledrappier’s example, we have:

Theorem 4. Let r be an integer ≥ 2. For every family R = (Rj, j =

1, ..., d) of d ≥ 1 polynomials, there is a finite constant t(r,R) and a

finite family E of polynomials in one variable containing R such that

every special R-polynomial of length ≤ r is a sum of at most t(r,R)

gbs E-polynomials. Moreover t(r) = O(rδ), for some constant δ.
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Let D be a domain in Zd. A corollary of the previous theorem is:

Theorem 5. The number θ(D, r) of special R-polynomials Γ with

r terms, supported in a domain D, satisfies for a constant θ(r)

θ(D, r) = O(|D|r/3 (log diamD)θ(r)). (18)

Denote by A an r-uple (a1, ..., ar), P̃ = (P1, ..., Pr) a set of polyno-

mials. The corresponding cumulant is

c
P̃

(A) = c(Ra1P1, ..., R
arPr).

The problem, in the method of cumulants for limit theorems, is

to get a bound for #{A ∈ Dr : c
P̃

(A) 6= 0}. This is done in the

theorem:

Theorem 6. For each r ≥ 3, there exists θ1(r) ≥ 1 such that

#{A ∈ Dr : c
P̃

(A) 6= 0} = O(|D|
r
2−

1
2 (log diamD)θ1(r)). (19)
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6. Example of application to limit theorems

The case when G is a connected compact abelian group was con-
sidered in a previous paper in collaboration with G. Cohen. Here
we consider limit theorems in the framework of shift-invariant sub-
groups of FZdp .

Let us consider a family R = (R1(x) = x,R(2(x), ..., Rd(x)) of en-
domorphisms of FZp , extended to automorphisms of FZdp or extended
to the Zd-shift action on the shift invariant group G defined by the
constraints associated to the ideal J = Ker (hR). The (Rj)’s are
chosen to be algebraically independent. Therefore we have a totally
ergodic Zd-action on G.

Let us give an example of the results (for d = 2).

Theorem 7. Let (Zk) be a centered random walk with a finite
moment of order 2. Let ` → T ` be the standard Z2-action by
automorphisms (the shifts) on GJ . If f is a regular function with
spectral density ϕf then, there exists a constant C,for a.e. ω,

(CnLogn)−
1
2

n−1∑
k=0

TZk(ω)f(.)
distr−→
n→∞ N (0,1).
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Thank you for your attention!
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