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Abstract

Let (7,,) be a sequence of toral automorphisms 7, : © — A,z mod Z? with A,, € A, where A is
a finite set of matrices in SL(d, Z). Under some conditions the method of "multiplicative systems"
of Komlos can be used to prove a Central Limit Theorem for the sums >} _; f(T,0Tp—1 - - -0 T1T)
if f is a Holder function on T¢. These conditions hold for 2 x 2 matrices with positive coefficients.
In dimension d they can be applied when A4, = A, (w), with independent choices of A,(w) in a
finite set of matrices € SL(d,Z), in order to prove a "quenched" CLT.

AMS Subject Classification: 60F05, 37A30.

Introduction

Let us consider a sequence of maps obtained by composition of transformations (7;,)
acting on a probability space (X,B,\). The iteration of a single measure preserving
transformation corresponds to the classical case of a dynamical system. The case of several
transformations has been also considered by some authors, and the stochastic behavior
of the sums Y ,_, f(7 0 T4—1 - - - o 7yz), for a function f on X, has been studied on some
examples. For example the notion of stochastic stability is defined using composition of
transformations chosen at random in the neighborhood of a given one. Bakhtin considered
in [3] non perturbative cases with geometrical assumptions on the transformations. In
the non-invertible case, the example of sequences of expanding maps of the interval was
carried out in [4].

Here we consider the example of automorphisms of the torus. Given a finite set A of
matrices in SL(d,Z), to a sequence (4;);en taking values in A corresponds the sequence
(7:)ien of automorphisms of the torus T¢ defined by: 7; : z +— Alx mod 1. If the choice in
A of the matrices is random, we write A;(w) and 7;(w).

*IRMAR, UMR CNRS 6625, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex,
France
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Let f : T? — R be a Holder function with integral zero. A question is the existence of
the variance and the central limit theorem for the sums Sy f = SIn_| f(74...71.) and the
Lebesgue measure A on the torus.

When the matrices are chosen at random and independently, our problem is strongly
related to the properties of a random walk on SL(d,Z). Among the many works on
random walks on groups let us mention a paper of Furman and Shalom which deals with
questions directly connected to ours. Let p be a probability measure on SL(d,Z). Let
P = u®N the product measure on § := SL(d,Z)N. In [6], if the group generated by the
support of 1 has no abelian subgroup of finite index and acts irreducibly on R?, a spectral
gap is proved for the convolution by p on L2 and a CLT is deduced for f(m(w) ... 7 (w)z)
as a random variable defined on (2 x T¢ P ® \). Remark that results of Derriennic and
Lin [5] imply the CLT for f in L not only for the stationary measure of the Markov
chain, but also for A-almost every x, with respect to the measure starting from z. This is
a quenched CLT, but with a meaning different from ours: for them =z is fixed, for us w is
fixed. Note also the following "quenched" theorem in [6]: for any f in L2, for any € > 0,
for P-almost every w,

Our main result here is the following:

Theorem Let A be a prozimal and totally irreducible finite set ? of matrices d x d with
coefficients in Z and determinant +1. Let p be a probability measure with support A and
P = p®N be the product measure on Q := AY. Let f be a centered Hélder function on T?
or a centered characteristic function of a reqular set. Then, if f # 0, for P-almost every
w the limit o(f) := lim,, \/LﬁHSn(w, Fll2 exists and is positive, and

(W S f(rw) . .Tl(w)-))

converges in distribution to the normal law N (0,1) with a rate of convergence.

n>1

An analogous result has been proved for positive 2 x 2 matrices and differentiable functions
f in [2] via a different method.

The paper is organized as follows. In Section 1 we give sufficient conditions that ensure
the approximation by a normal law of the distribution of the normalized sums mS Nf
The proof is based on the method of multiplicative systems (cf. Komlos [11]) (see B.
Petit [14] for an other application of this method). In Section 2, we address the case
of a product of independent matrices and prove a "quenched" CLT as mentioned above.

!This is true in a more general abstract situation (see [6])
2The result is still true if A is proximal, irreducible on R¢ and the semigroup generated by A coincide
with the group generated by A.
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The key inequalities are deduced from results of Guivarc’h and Raugi ([10], [8]). Section
3 is devoted to the general stationary case under stronger assumptions on the set A, in

particular for 2 x 2 positive matrices.

Acknowledgements We thank Guy Cohen for his valuable comments on a preliminary

version of this paper.

Contents

1 Preliminaries
1.1 A criterion of Komlos . . . . . . . . . .

1.2 Bounding |E[¢"TsnTz] — ¢~ 2*

2
|
2 Products of independent matrices in SL(d,Z)
2.1 Products of matrices (reminders) . . . . . ... ...
2.2 Separation of frequencies . . . . . . . . ... Lo

2.3 Variance and CLT . . . . . . . . .

3 Stationary products, matrices in SL(2,Z")
3.1 Ergodicity, decorrelation . . . . . . .. ... oo
3.2 Non-nullity of the variance . . . . . . ... . ... .. ... ...

3.3 ACSL2ZY) oo oo

4 Appendix

1 Preliminaries

1.1 A criterion of Komlos

10
10
12
19

23
23
26
28

33

Notations Let d be an integer > 2 and || - || be the norm on R? defined by ||z| =
max<i<q |7;|,7 € R We denote by d(z,y) := inf,cz4(|]|z — y — n||) the distance on the
torus. The characters of the torus, t — e2™™? for n = (ny,...,ng) € Z%, are denoted by

x(n,t) or by x,(t).

The Fourier coefficients of a function h € L2(T?) are denoted by (h(n),n € Z%). The

Holder norm of order « of an a-Hdélder function f on the torus is

_ /(=) = f(w)]
”fHa — Hf”oo "’ii}jw
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A subset E of the torus is said to be regular if there exist C' > 0 and « €]0, 1] such that

M{t € T?: d(t,0F) < e}) < Ce® Ve > 0.

The Lebesgue measure on T? is denoted by A. It is invariant under the action of automor-
phisms of the torus. The action of a product of automorphisms 7;...7;, j > ¢, corresponds
to the action on the characters of the matrices which define the automorphisms by com-
position on the right side. If Ay, Ay, ... is a sequence of matrices, if ¢ < j are two positive
integers, we use the notation

Al = A A (1)

2

Multiplicative systems

In the proof of the central limit theorem we will use a lemma on "multiplicative sys-
tems" (cf. Komlos [11]). The quantitative formulation of the result will yields a rate of
convergence in the CLT. The proof of the lemma is given in appendix.

Lemma 1.1. Let u be an integer > 1, ((x)o<k<u—1 be a sequence of length u of real bounded
random variables, and a be a real positive number. Let us denote, for x € R:

u—1 u—1
Z(w) = expliz Y G(), Qz,) = |1 +iz¢()),
k=0 k=0
u—1
Y o= ) ¢ 0= max |Gl
k=0 -

There is a constant C' such that, if |x| 6 < 1, then
—sax 1
[E[Z(x)] — e72*"| < Cula]’s” + 2 1Q@)LIY = alla + [1 — E[Q()]]- (2)

1
If moreover |z|||Y — a||2 < 1, then

1

[E[Z(2)] — e < Cula's® + 3+ 272 |Q@)[l2)[][Y = all§ + e 1 = E[Q()]]. (3)
IfE[Q(x,.)] = 1, the previous bound reduces to

Cule[*6® + (3+2 e 2 [Q(@)]l») =[]V — all3. (4)
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1.2 Bounding |[E[e"Tsnl2] — e72%"|

The application of the lemma to the action on the torus of matrices in SL(d,Z) requires
a property of "separation of the frequencies" which is expressed in the following property.

Property 1.2. Let (Ay,..., A,) be a finite set of matrices in SL(d,Z) and let (D, A) be
a pair of positive reals. We say that the property S(D,A) is satisfied by (Aq,..., Ay) if
the following property is satisfied:

Let s be an integer > 1. Let 1 < O3 < 0] < Uy < U, < U3 < ... <l §€'S < n be any
increasing sequence of 2s integers, such that £, > U + A forj =1,. — 1. Then

or every families py,ps,...,ps and P, ph,....,p. € Z¢ such that Abpr + A s = 0 and
Y p1,p p P1, P2 s lps P
Ip;ll; 1951l < D for j =1,...;s, we have:

S

SOIAY Y, + AVpy] £ 0. (5)

Jj=1

A particular case of the property is the following. Let s be an integer > 1. Let ¢, < {5 <

.. < ls be any increasing sequence of s integers such that ¢;1; > ¢(;+Aforj=1,...,s—1.
Then for every family py, pa, ..., ps € Z% such that ps # 0 and ||p;|| < D for j =1, ..., s, we
have:

E .
> AV #0. (6)
j=1
This condition implies a multiplicative property as shown by the following lemma:

Lemma 1.3. Let (D,A) be such that the property S(D,A) holds with respect to the
finite sequence of matrices (Ay,...,A,). Let g be a trigonometric polynomial such that
g(p) =0 for ||p|| > D. If 1 < by < ... < U is an increasing sequence of integers such that
livy > Ui+ A forj=1,..,s—1, then

/Hg ) dt = 0.

Recall that the transformation 7, is associated to the matrix A, as said in the introduction.

In what follows, relative sizes of D and A will be of importance. The interesting case is
when S(D,A) is satisfied with A small compared to D (say A of order In D). We will
now focus on the characteristic function

E[eiwsn] _ / eingz_ol gn(Te-71) It
Td

for a real trigonometric polynomial g,, where S,, are the ergodic sums

= Z gn (TK
/=1
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We will use the inequality given by the following lemma for large integers n. Typically, if
1S, ]|2 is of order y/n, it will be applied when A,, is small compared with n?/2.

Lemma 1.4. Let n be an integer. Suppose that there exist 5 €]0,1[, D, > 0, A, > 0

such that A, < %nﬁ and S(D,,A,) is satisfied with respect to the finite sequence of

matrices (Aq,...,An). Then, if g, is a real trigonometric polynomial with g,(p) = 0 for
lpll > D, there exists a polynomial function C' with positive coefficients such that, for
[2lllgnlloen® < ISulla and Jallgall*n ™" < || Sall2:
[Ele"F] — 37
< CllgalMallSalls* o= + faf* 1Sl 0427 + fal ol n ™5
HaPlSall 02 A + |2l?]|Sull5 *nt P A). (7)

Proof The proof of (7) is given in several steps.
A) Replacement of S, by a sum with "gaps"

In order to apply Lemma 1.1, we replace the sums S,, by a sum of blocks separated by an
interval of length A,,.

Let 3 €]0,1], D,, A, and g, as in the statement of the lemma. We set:

Uy = [P, uy = [nfu,) <200, (8)
Lip = kvn, Ry = (k+1)v, — A, (9)
[k:,n = [Lk,m ka], for 0 S k S Up — 1. (10)

Let S/ (t) be the sum with "gaps":

Up—1

= Tin(t), (11)

where

Tin) = Y galm.mit). (12)

Lk,n<éSRk,n

The interval [1,n] is divided into w,, blocks of length v, — A,,. The number of blocks is
almost equal to n'~# and their length almost equal to n”. The integers Ly, and Ry,
are respectively the left and right ends of the blocks, which are separated by intervals of
length A,,. The array of r.v.’s (T,) is a "multiplicative system" in the sense of Komlos.

Expression of | Ty (t)[?

TenF = (D > a0)x(ATY. 1) (Y Y ap)x(—Aip, 1)

vely , p'ezd Lely n pez®

»,p EZd EE’EIk n

= gl%,n + ka(t)?
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with

o= [ Ma®Pd= Y 9000 S Ly (13)

p,p' €74 LU €l n

Win(t) == > §)3(p) > x(AlY - Alp.t).

p.p/ €LY GUEl, AL p'#ASD

B) Application of Lemma 1.1 We will now apply Lemma 1.1 to the array of r.v.’s (7} ,, 0 <
k < wu, —1). For a fixed n, we use the same notations as in the lemma: u = u,, and for
k=0,..,u,—1

Up—1

G o= Thm Y =Yoo= [Tral’

k=0
a = a,=E(Y,) = Zaz’n.
k

With the notation of the lemma, the expression of @, (x,t) is

Unp—1

Qu(z,t) = [] (1 +iaTn(t)). (14)

k=0

First let us checked that E[Q,(x,.)] = 1,Vz. The expansion of the product gives

Qn(z,t) =1+ i (iz)° > 117 ).

0<k1 <...<hs<un—1 j=1
The products szl T}, n(t) are combinations of expressions of the type: X(ijl Aﬁj P, t),
with ¢; € Iy, and [|p;[| < D,. So, by the property S(D,A), >75_, Afjpj # 0, and
/HTkj,n(t) dt =0 (cf. Lemma 1.3).
j=1

Now we successively bound the quantities involved in Inequality (4).

B1) Bounding u,0>

undy =ty max | Toallls < Cn'77|gallZn® = Cllgallin™.
0<k<un—1

B2) Bounding ||Y, — au||2

If Uy, ..., Uy are real square integrable r.v.’s such that

E[(Uk — EUk)(Uk/ — EUk/)] = O,Vl <k< K <L,
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then the following inequality holds

1D U= EUl; = Y EU]-(Q_EU)

!
< gﬁm < Lmax | Uil max E(|Us])-
We apply this bound to Uy = (Tjn)* and L = u, (remark that 17, = o7, + W, and

that we have orthogonality: f Wi Wi ndt =0, 1 < k <k’ < u,, due to the choice of the
gap. Using rough bounds for || T, ||%, and || T3, it implies

H ZTl?,n - Z UI%,nH% < UananoUZ Hl]?X O-I%,n < 2Hgn”gon1+ﬂ m]?X Jl%,n'
k k

So we have

1 1
2l Ya = anll3 < 244 gal| 22 2ln 5" Max O - (15)

B3) Bounding E|Q,(z)|?

This is the main point. We have

Up—1 Up—1
Qu(z, ) = J[O+2*Tea@®)?) = T] 1+ 207, + 2 Wi (1)] (16)
k=0 k=0
Up—1 Up—1 ZL'2
= 1 252 14+ ——Wi, (¢t 17
[T0+aota] TT1+ g Wenlt) ()

We will show that the integral of the second factor with respect to t is equal to 1. The
first factor in (17) is constant and the bound 1+ y < ¥, Vy > 0, implies

Up—1

2 un—1 2 2
H [1 4 1‘20'2 n] < e” 2620 Tk — et
k=0

Hence the bound
/]Qn(a:,t)]2 dt < e’

It remains to show that
/ uﬁl .I'Q
1+ ——Win(t)] dt = 1.
i 1+ %07,

In the integral the products Wy, (t)...W,(t), 0 < ky < ... < ks < u,, are linear combina-
tions of expressions of the form
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e .
where 0;, 0 € Iy, n, Ay'D; # A?pj, j = 1,..,s and pj;,p; are vectors with integral co-
ordinates and norm < D,, which correspond to the non null terms of the trigonometric
polynomial g,.

As S(D,,, Ay) is satisfied, our choice of gap in the definition of the intervals I, ,, implies
ijl(Aij Py — Aij p;) 7 0 and so the integral of the second factor in (17) reduces to 1.

From the previous inequalities (in particular (15) and (4) of Lemma 1.1) we deduce that,

if ][] gl < 1 and 2|21/ g,]|5*n "% max 07, < 1, then

ix.S] —Lanz —Lla, =z 3
[Ble™h] — em2 | < |aPundl + (3+ 272 | Q(@)||2) [#]|Y — an|3
148 1
< CjaPllgall2n™ + |2][lgall3Pn maxoy ,). (18)

C) Bounding the difference between S, and S,
Recall that S, is the sum Y | g, (7%...nz) and S, = >, Tk, is the sum with gaps. We
still have to bound the error made when replacing S,, by S/ :

Unp—1

1S, — 5.2 = / Y Y gent

k=0 Ry, <f<Lgi1n

Up—1
= Z /| Jn (Tg...Tlt)|2 dt

Ry, n<£<Lk+l n

+2 Z / Z Gn(T0...711t) Z Gn(Tpr ... 11 t) dt.

0<k<k/<un—1" Rppn<t<Lipi1n Ry <U<Lpsiy

The length of the intervals for the sums in the integrals is A,. The second sum in the
previous expression is 0 by Lemma 1.3 (since n” — A, > A,). Each integral in the first
sum is bounded by ||g, ||, A2. Tt implies:

1S = SLII3 < llgall3 A7 wn < 2l|gnll3n' ™A% (19)

Thus, we have

118allz = 1Sull21 < 2018ull2llS = Sull2 + 180 = S,113
1-8 _
< 2V2|Sullzllgnlloon = An + 2llgall2n' P AT (20)

On an other hand, setting Z,(z) = Z! (z) = ¢ we have:

EZu(z) = Z,(2)]] < E[|L— 55 I] < |2[E[lSn = Spll < [][1Sn = Spll2
< V2l [lgnlloen = A, (21)
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D) Conclusion

Now we gather the previous bounds. Recall that o}, (defined by (13)) is bounded by
CllgnllZn.

From (21), (20) and (18), we get that, if ||||gs]lon® < 1 and |z|||g, [ T < 1:

‘E[eizsn] _ 6—%||Sn\\%:c2‘

< ‘E[eixsn] i E[eixsﬁl” + |E[eimsg] . e—%angﬂ’ n ’eféan;ﬁ o 67%\\Sn||§x2|

. o 148 1 1
< B[] = B[] + C(lellgallion™ + lalllgallL2n 5 max o) + S2%la, — [1Sa3]
< O(lgnlloo)[2]Ann 7 + [2[Pn 28 4 |20 5 + |2[?||Sullan = A, + |2)*n' A2,

Replacing x by z||S,[|5", we obtain Inequality (7) of the lemma.

2 Products of independent matrices in SL(d,Z)

2.1 Products of matrices (reminders)

Let A be a finite set of matrices d x d with coefficients in Z and determinant 1. Let H
be the semi-group generated by A.

We assume that there is a contracting sequence in H (proximality). This property holds
if A contains a matrix with a simple dominant eigenvalue. We assume also total irre-
ducibility of H. It means that, for every r, the action of H on the exterior product of
A, R? has no invariant finite unions of non trivial sub-spaces (cf. [15] for this notion).

Let u be a probability on A such that pu({A}) > 0 for every A € A and let
Q= A" ={w = (wn),wn € A, Vn € N}

be the product space endowed with the product measure P = @Y. For every element w
in Q, we denote by Ay(w) (or simply Ay) its k-th coordinate. In other words, we consider
a sequence of i.i.d. random variables (Aj) with values in SL(d,Z) and distribution g,
where p is a discrete probability measure with support A.

In this section, we prove a central limit theorem with a (small) rate of convergence for the
action of the product A,(w)...A;(w) on the torus for a.a. w. This establishes, in a more
general setting and by a different method, a "quenched" central limit theorem obtained
in [2|. The proof relies on results on products of random matrices obtained by Guivarc’h,
Le Page and Raugi ([10], [8], [13], [9]). Let us describe the results we will need.

The group G = SL(d,Z) acts on the projective space P“'. We denote by (g,2) — g.x
the action. For p a probability measure on G, this define a p-random walk on P4~!, where
the probability for going from x to g.z is du(g) (in our case p has a finite support A and
du(g) is just p(g)). Let X and A be two independent random variables, respectively with
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values in P4~! and G, and with distribution » and . Then the distribution of A.X is
i * v, where

o) = [ [ eloa) duto) i)

The measure v is p-stationary if pxv = v, i.e., whenX and A.X have the same distribution.
If A is proximal and totally irreducible, then there is a unique p-stationary measure on
P41 denoted by v.

Notations Let ¢ be a function on P?~!. We set

|o(u) — p(v)|
e(u,v)

where e is the distance on P?~! given by the sinus of the angle between two vectors. A
function ¢ is said to be Lipschitz if ||o]| = ||¢]le + [¢p] < 0.

[p] =  sup

u,w€PI—1 yz£y

For a matrix M € GI(d,R), we denote by
M =N(M) D(M) K(M) (22)

its Iwasawa decomposition with N (M) an upper triangular matrix and A(M) a diagonal
matrix with positive diagonal entries. For M = A4;(w) ... A,(w), we write

Y

N (w) := N(A;(w) ... Ap(w)),
D™ (w) == D(A;(w) ... Ap(w)
KM () := K(A(w) ... A,(w))

n(w)

€

)

so that by (22): A?(w) = A1(w)... A, (w) = N™(w) DM (w) K™ (w).

€

Let agn) (W) := Dy(AY(w)), i = 1, ...,d, be the diagonal coefficients of the diagonal matrix
D,

Proposition 2.1. If A is proximal and totally irreducible, then there exist 6 > 0, C > 0,
and p €)0, 1] such that, for every Lipschitz function ¢ on Pt

|E(o(An ... A1.2)) — v(@) ]| < Cp™leoll, (23)
(n) J
2\ a;}7(w)
sup / IN®W)[? dP(w) < oo, (25)
n Q
sup / (&, )] du(y) < +oo. (26)
reSd—1 . Jgd—-1
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Proof. These statements are consequences of important results of Lepage and Guivarc’h.
They can be deduced: (23) from [13], (24), (25), (26) respectively from Theorems 5, 6, 7’

Let us derive some consequences that we will need.
(v
The Markov inequality and (24) show that there are constants C' > 0, { > 1, & €]0, 1],
and a set &, of measure < C¢ such that, if w does not belong to &, then

We first remark that almost surely a&") (w) > a;"(w), for ¢ € [1,d — 1], for n large enough.

al(w) > e (w), Vi=1,--,d—1. (27)

Let e4 be the last element of the canonical basis of R%. As ‘N is lower triangular we
have

E(p(‘A, ... Areq) = E(p('K™WDMIN®D ¢,))
E(p("K™.eq)).

If we consider the set {*A, A € A} of transposed matrices, the conditions of proximality
and irreducibility are also satisfied and we have the same results with a !A-stationary
measure /. Because of (23) there exists 3y € (0,1) such that

E(p(" A ... Apeq)) = V' (9)llo < CHGlIl-

But A, ...t A; and ‘A, ...' A, have the same distribution. So, for ¢ a function on P41,
under the proximality and irreducibility conditions, there exists 3y € (0, 1) such that

IE(o("K™.eq) = v (9)lloo < CBl4I- (28)

The probability v/ satisfies the regularity property (26). We deduce that there exist C' > 0,
d > 0 such that, for x € S4~! and € > 0, we have
V{ye STl |(z,y)| < e} < Ce°. (29)

We are now ready to begin our proof.

2.2 Separation of frequencies

Lemma 2.2. There exist ng € N, C > 0, a €]0,1] and B €]0, 1] such that, if ¢, > (",
then for n > ng and for every vector x:

P(|A; ... Anz| < nllAs ... Aull2]) < C<°. (30)
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Proof Let (ey,...,eq) be the canonical basis of R%. Let x be a unit vector. By expanding
x in the orthonormal basis (*K™ey, ... .t KM™ey), we get

A(w) . Apw)r =) (@ KMe;) al Ne;.

i
Hence:

[41@) - An@) @) < o N3 e KPe) < ag [Nl < o [N

In particular the norm ||A;(w)...A,(w)]|| is less than a((in) [N
On the other hand we have

d—1
1A (@) .. An(@)(@)]| > af” |, K™eg)] — [N af.
=1

If the conditions
(@, 'K eg)] > 220 [N, ag(A7) > Chay( A7), Vi € [1,d — 1],

are both satisfied, we have
d—1 (n)

n n D1 Y
[A1(w) .. An(@)(@)]| > 220 | N™laa(AT) (1 - m)

> 26,|IN™laa(AT) (1 = (d = 1)¢ e, ).

Take (y € (1,(). If e, > (5" and (1 — (d — 1)("™¢y"°) > 1/2, then for n > ng, we have:

[A1(w) .. An(@)(@)]] = el N™[laa(A}) > en | A1) ... An(w)].

Thus we have obtained that, for n > ng,

P(|Ar ... Apzll < eallAr- .. Aullll) < B(|(z, ‘K ™eq)|
< 26,[IN™|) + P(aa(A7) < ("ai(A7)).

This inequality gives the following one for every b,. We will later chose b, related to &,.

P(|Ar ... Auz|| < enflAr... Aullllz]]) < P(/{z, *K™ea)|
< 2e5ba) + P(IN®]| > b,) + P(aa(AT) < ¢"ai( A7)

Let 2 € P! and ¢ > 0. By convolution one can smooth the indicator function of a "strip"
in P4"!. There exists (¢?) a Lipschitz function on the sphere with values between 0 and
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1, such that ¢Z(y) = 1 on the set {y : [(x,y)| < 2¢}, = 0 on the set {y : [(x,y)| > 3¢},
and such that ||¢?|| < Ce™!. Using (28) and (29), we have:

P({w: I{o! K"eq)| < 2¢))
[er© Ao < [ e o)+ o

IN

< Vv [a,v)| <3} + OB < C(3e)° + CBre .
By taking € = ¢,,b,, it follows

P({w: |(z,! KMey)| < 2e,b,}) < C(3e,b,)° + CBMenbn) ™t

On the other hand, we have by (27)

P({w: aq(Af(w)) < ("ag-1(A7(W))}) < &,
so that

P([[Ay - Apz| < enllAr. .. Anll]l2]])
P(aa(A}) < ¢"aa-1(A7)) +P(|{z," K™Weq)| < 2e,b,) + P(|N™]| = b,)

<
< CE 4 O(3e,by)° 4+ CBre bt + OB °.

We are looking for o > 0 such that the following inequalities hold: b;° < &2, (b,e,)° < &2,
& < &% and Bfe,; bt < 2. Let us take a = §/3 and b, = snl/z. Then b;° < &% and

1ia . .- .
(bpen)? < e If g, > 32" and ¢, > g”/ “ then the two other inequalities are satisfied.

1

So by taking 3 > max(¢; !, 2+a, é/a), we obtain (30).

Remark that the bound is uniform with respect to z in S*!.4

Corollary 2.3. Let 0 < 71 < 7o < 1. For a.a. w, there exists L(w) < +oo such that,
forn > Ly(w), for every vector p with integral coordinates and norm less than e™" :

APl > e [ AT [ 2]l
Proof Let n > ng such that e " > 3". By Lemma 2.2, for each vector p we have
P(||Afpl < e [|AT]l[lp]) < Cem™.

Therefore the probability that there is an integral vector p with a norm less than ™™
such that
—n n
IATpIl < e[ AT Pl

is less then Ce® e~ This is the general term of a summable series. We conclude by

the Borel-Cantelli lemma. 0
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Corollary 2.4. For every M > 0, there exists ' > 0 such that for a.a. w, there is
Ly(w) < 400 such that, for n > Le(w), for every vector p with integral coordinates and
norm less than n™ :

n 1 n
1472l = —FllAT Il

Proof Let n > ng such that n=% > 3". Thus by Lemma 2.2, for each vector p, for n > ng,
we have:

P(A2p] < APl < C—.

M

Therefore the probability that there is an integral vector p with a norm less than n' such

that .
AP < n—FIIA?IIIIPII

is less than Cn® L. If aF > dM + 1 this is the general term of a summable series. We

no

conclude by the Borel-Cantelli lemma.

Lemma 2.5. Let o, 3 €]0, 1] given by Lemma 2.2. There exist ng € N, C > 0, such that
for every unit vector x, every sequence (g,) such that €, > (", every n and every integer
r ="ng,---,N —ng, we have

P(||A; ... Apz|] < egren—r||A1. .  Ap||[|Arsr .-  Anl]) S C(eX + 5.

n—r

Proof If ||Ay ... Apx| > & ||Ar .. A | Arsr - - - Anzl] and ||Argq . Apz]| > e ||Avsr - Asll
then || Ay ... Apz|| > eren—r||A1 . Arl|[|Argr - .- Apl|. Thus

P(|A; ... Azl < erenrlAr o Al Arir - . Au)
< P(||ATz|| < e[| ALl Avyazl]) + POIAT Azl < ener[[ AT ]])

Lemma 2.2 shows that if ¢,,_, > "7, then, for n — r > ngy, we have

P(|A7 2] < enrl| A4 ]]) < Ceg

n—r-:

The bound obtained in Lemma 2.2 is uniform in x and the matrices A7, and Aj are
independent. Thus, if £, > 3" and r > ng, one has

Pl ATz]| < ef|Atfl[[ A7 2l) = P(IATAL 2] < el ATIHIAT 2])

/QIP’(HA’in < e ALyl dPar, +(y)
< (Cel.

r

IN

O

Corollary 2.6. Let k € (0,1) and F > 2. For a.e. w, there is L3(w) < 400 such that,
forn > Ls(w), for every integer r between n® and n — n":

1
T

W’|A1Ar||||Ar+1An” (31)
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Proof If n is large enough and n® < r < n — n”, the inequalities r > ng and r=F > 3"
are satisfied. Let x be a unit vector. By Lemma 2.5, for every integer r between n* and
n — n", we have

P(|Ar... Apz]| <7 Fn—r) )AL A | Argr - An) S COF 4+ (n—r)7F).

Therefore the probability that there is an integer r between n” and n — n” such that
AL Apz|| <r Fn—r) T AL AL Argr - - Al

is less than 2Cn(n~"**). By the choice of F we have > °7 nn™"" < co.

From the Borel-Cantelli lemma, we deduce that, for a.a. w, there is L3(w) < 400 such
that, for every n > L3(w), every integer r between n” and n — n*:

1
I Anal| > —

A Al Al

In particular this imples (31). o

Lemma 2.7. There exists Cy > 0 such that, for a.a. w, there is Ly(w) < 400 such that,
forn > Ly(w), for every integer £ € [1,n], for every r € [C}logn,n],

g > ¢,

Proof We have ||Aj]| > \ag)|. By a previous result, (cf. (27), there exist ¢ > 1 and
&o €]0, 1] such that

P({|a] < ¢"al”|}) < C& V=1, d — 1.

On the other hand the product of the dz(»r)’s is one. We thus have:
P([| A7 < (@19 < O (32)
As the probability measure P is invariant by the shift, for every integer ¢ we have
P([| A7) < ¢4V < O (33)

The probability that there exist 1 < ¢ < n, C;logn < r < n such that HAEJ”"H < ¢(@=n/dr
is bounded by Cn265M 8™, If ¢} > —3/log & the sequence Cn2&S* '™ is summable. We
conclude by the Borel-Cantelli lemma.

The next proposition on separation of frequencies shows that, for M > 1 and v €]0, 1],
for a.e. w, for n big enough, the property S(D,, A,) is satisfied with respect to the finite
sequence of matrices (A;(w),. .., Ap,(w)) for D, = nM, A, =n?. It will enable us to use
Inequality (7) of Lemma 1.4 with a well chosen .
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Proposition 2.8. For every v €]0,1[, every M > 1, for a.e. w, there exists a rank
Ls(w) such that, for every n > Ls(w), the property S(n™,n?) is satisfied with respect the
finite sequence of matrices (A;(w),...,An(w)). That is: Let s be an integer > 1. Let
1 <0 <0<ty <t <..</l; </l <n bean increasing sequence of 2s integers such
that ;4 > 05407, for j=1,....,s—1. Then, for every py,ps, ...,ps and pi,ph, ...,p}, € Z

such that A1 P+ Abpg #0 and |p;|, 1pjll < nM for j=1,.. s, we have:

S

7. ’ 2
S 1AV + AY'pi] # 0. (34)

Jj=1

Proof We will use Corollary 2.6 and the gap between the ¢;’s to obtain a contradiction

from the equality
s—1

’ Y8 .
ATPL+ Afpy = = D [AY P, + AV pj). (35)

Jj=1

Let us consider two cases:

1) Assume that ¢ — £, is small: 0 < ¢, — ¢, < n" (for some 7 € (0,7?)) or that p, = 0.
Write ¢; = Af: 41Ps + ps. It is a non zero element of Z¢ by assumption and its norm is
bounded by n" max{||4]| : A€ A} x n™M < 2pM R"". We have ¢, > n”. So the norm

of g5 is bounded by 202/ TRE According to Corollary 2.3, for every ' > n/~, almost
surely, for n large enough, we have

AT gl = e > e |l AY . (36)

According to Corollary 2.6, we have:

s—1

s—1
o j ¢ ;
1) [A7p) + APplll < n™ > TIIAY || + IA7 1]
=1 =

s—1 ls ls
AP A7
< | Y, +z e, 17
=4, ol 7 1Ag
_8—1 1 s—1 1
< pMEE| AL +
;HA@S [ ;IIA%HII
< nM+2FHA€S ch 1)(€5—Ls) /d+ZCd 1)(¢;—¢€s)/d
Lj=1

The last inequality holds because of Lemma 2.7. As ¢; — {; > (j — s)n” and g; 0, >
(j — s)n?, it implies:

|| Z TP+ Alp]|| < O ==t /) gty

(37)
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If we take 7, n and 1’ such that n/y < ' <, the inequalities (36) and (37) show that
(35) is not satisfied for large n.

2) Now assume that ¢ — (, is large: ¢/, — {; > n" and p’, # 0.
On the one hand, we have (Corollary 2.4)

! 1 /
|ATP = AT

On the other hand, by Corollary 2.6 and Lemma 2.7:

Z/

IAY
Z.
14,

Tl

CF (] — £)F < pMH2Fc(=nmn/d) gt (38)

s

1ALl < [lps]

thus by (37) and (38):

s—1
1 £ —(d—1)n —(d—1)n Vi
| ASp, + SIATE, + AP pyll| < MR (¢ =y ¢

j=1
In this case as above, Equality (35) does not hold for n large enough.

The proposition implies that, for every increasing sequence of s integers, 1 < fy < ... <
by <nwith £, > €;+n7, for j =1,..,5 — 1, every pi,pa, ...,ps € Z% such that p, # 0
and ||p;|] < nM for j =1,..., 5, we have:

> AYp; #0; (39)
j=1

Lemma 2.9. There exist (; > 1, & €]0,1[ and C > 0 such that
P({vp € Z |lp < ¢ : [IATpll > ('} > 1 - Cgr. (40)

Proof We have ||A}] > |a((1")\. As we have seen (Lemma 2.7), there exist ( > 1 and
& €]0, 1] such that
P(||A7]| = ¢=VDm) > 1 — Ogg (41)

According to Lemma 2.2, if & is in |3, 1], there exist C' > 0 and &3 €]0, 1] such that:
P(lATpl = &Il AT(I[pl) = 1 = C&. (42)

From (41) and (42) we deduce that, if p is an integral vector, there exist C' > 0, (o > 1
and &, €]0, 1] such that (take &' < ¢((@4=1/d);

P([ATpll = &) = P([[AVpll = Gllpll) = 1 - C&F, (43)

or equivalently P(||A7p|| < (&) < C¢&}.
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Let ¢; be a real number in |1, ([ such that ¢{¢, < 1. By taking the sum in the previous
inequality over integral vectors p in the ball centered at zero of radius (}', we obtain

P({3p € Z% |Ip| < ¢+ APl < G3}) < OGS

The lemma follows since (3 > (;. o

The following lemma will be used in the approximation of a function by a trigonometric
polynomial. It can be proved by taking the sequence (p,,) of the products of the Fejér
kernels in each coordinate.

Proposition 2.10. There exist a constant C' > 0 and a sequence of trigonometric poly-
nomials (p,) of order less than dn, such that, for every a-Holder function f on the torus,

ln * f = flloo < Cl[fllar™,

and for every a-reqular subset A of the torus, ||¢n * 14 — 1alla < Cn™.

2.3 Variance and CLT

We denote by 6 the left shift on €:

0 (Ap(w))kz1 — (Arr1(W))r>1,

T4, (w) the map on the torus

Ta(w) @ & — Ai(w)z,

6. the transformation on  x T¢:

Or : ((Ap(W))k>1,7) —— (A1 (W))k>1, Ta, () T),
and let .
Sp(w, f)(x) = Z f(TAk(w) ce TAl(w)x)‘
k=1

Proposition 2.11. Let f be a Hélder function on the torus not a.e. null and with zero
1

mean. Then for P-almost every w € Q the sequence (n™2||S,(w, f)|l2) has a limit o(f)

which 1s positive and does not depend on w.

Proof Denoting F(w,t) := f(t), we have S, (w, f)(t) = Sp—y F(0*(w,t)) and

s DE =P+ 2 S [ PO PO 0

r=1 /(=0

Under our hypotheses, the "global variance" exists: the following convergence holds

liin%//wn(w,fﬂ? it dw = o(f)2.
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Actually this holds for every centered function f in L2(T?), and we have

o0

o)=Y /QXW(F Fo0)(w,t)dt dw (45)

r=1

as a consequence of the existence of a spectral gap for the operator of convolution by u
on L3(T?), which implies the convergence of the series. Moreover it can be shown that
o(f) > 0if f is not a.e. null (cf. [7], see also [6]). We have to prove that (44) has the
same limit o(f)? for a.e. w.

Let us first consider the sum

n— T

—ZZ/ PO (w, ) F (05 (w, 1)) dt.

r=1 /(=0

The second term of the right-hand part of the following equality

n® n—1—r

_Z > / F(05(w, ) F (05 (w, 1)) dt =

r=1 ¢=0
2Z/TanFF00T )64 (w, t) dt—QZ Z/ F(0L(w, 1)) F(057 (w, 1)) dt

is bounded by 2|| f||3n?*~!. For a < 1/2, it suffices to consider the first term.

Let us denote by v; the function defined on 2 by
wj:/FFoegdt—/ F Fo® dtdw. (46)
Td QxTd
It only depends on the j first coordinates of w, so that
/Q%. P00 dP(w) =0, if [ > j.

We claim that, for every 0 < a < 1, j < n®, n > 2a,

To prove it, let us expand the fourth power of Zg:o pjof™:

(S w00™) = 3 w00 068 0004, 0 0™

m=0 i,k,l,m
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The number of 4-uples (i, k,[,m) such that i < k <i+ j and I < m <1+ j is less than
j*n% and, if i + j < k or | + j < m, then the integral of the corresponding term is equal
to zero. For every € > 0, the probability

n—1
P( sup |Z@/Jjo¢9m| > nPe)
7j=1,...,n% m—0

is less than Z;ﬁl E((3 4 00™)Y) /e*n®?, therefore it is less than Cn>t7t¢=48 We can
chose a, (3, n such that this sequence is summable and @ < 1 — 3. Let us take g = 0.8,
a = 0.01 and n = 0.02).

Then almost surely, we have:

limi sup |ij06l\: : (47)

n nf j=1,...,ne

We deduce from (46) that:

Z/Td % ST(F Fof)(8(w. 1)) di

n< n—1 n< n—1
1 1
= =) ¢ o0f + / — F Fod)(0(w,t))dt dw
n® n—1 n®
1
- nf1 =N 00 + / F Fofl)(w,t)dt dw.
By (47) both sequences
n® 1 n—1—r
S [ S (F Fom@iwn)
Td T

r=1 =0
Z/ (F Fof)(w,t)dt dw
r—1 Y OxTd

converge toward the sum of (45).

We now consider the sum

n—1 n—1—r

(F Fodr)(0(w,t))dt.

For a given integer n, let g, be a centered polynomial of degree less than n™ such that

If = gnll2 <n™*.
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Corollary 2.6 shows that, almost surely, the frequencies of the polynomial g, o 8" are
greater than r—F[=F|| AL|| ||Af+1\| so greater than n=2F||A}||¢". The norms of the frequen-
cies of the polynomial g, o 6L are less than n™||Al||. So, if r > n®, almost surely for a
sufficiently large n, [, & 0 (Gn gn 0 07) (08 (w, 1)) dt = 0.

Thus, we have almost surely in w

mHSn(C;;f)HQ _ ||f|]2+22/ TdFFo@Z)(w,t)dtdw

— lim ZF 0% (w, 1)) dtdw.

no Jaxrd T

O

Remark that the statement of the previous proposition holds if f is a centered character-
istic function of a regular set of positive measure of the torus.

The proof the CLT for S,,(w, f) is now an application of the method of Section 1.

Theorem 2.12. Let A be a proximal and totally irreducible finite set of matrices d x d
with coefficients in 7. and determinant £1. Let f be a centered Hélder function on T¢ or
a centered characteristic function of a regular set. Then, if f % 0, for almost every w the
limit o(f) = lim,, \/LﬁHSn(w, Dll2 exists and is positive, and

1 n
(W ; fm(w) .o 1 (w)))n>1

converges in distribution to the normal law N (0,1) with a rate of convergence.

Proof Recall that the transformation 73 is the action on the torus defined by the trans-
posed matrice of Ay.

Let f be a centered Holder function or a centered characteristic function of a regular set
such that o(f) # 0. We have shown above that almost surely [|.S,, f]|2 is equivalent to

o(f)y/n. Tt suffices to prove convergence of N S f|| towards the normal law N (0, 1).

There exists an integer M such that, for every n, there is a trigonometric polynomial g,
of degree less than n™, such that

HSnf - SngnH2 S 7174

Therefore |E[e™ ||ssn"ff|\2] — E[e” “5:9:9%2” tends to 0 and % tends to o(f) # 0. Almost

surely for n big enough, the norm [|S,g,||» is greater than 1o (f)n'/2.

Now we use the notations introduced in Subsection 1.1. According to Proposition 2.8,

we can apply Inequality (7) of Lemma 1.4 with A, = n? (this is possible if v < ): for
1/2 1+35

12| |gnllaen” < [|Snll2 and [[[|gn || < [|Snll2
IE[e" ||sngnu2] — e—%x2|

(=38+1)

< C(llgnlloo)[2ln 7 + |2Pn G2 L jzin= "5 4 |20~ 707 + |z2n P n?]48)
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Here the sequence (||gn||s) is bounded. So, by taking 5 and 7 such that 0 < 2y < § < 1/4,

we obtain that |E[e" ”Snggn||2] - e’%xz\ tends to O for every x.

Using Esseen’s inequality it can be shown that there is at least a rate of convergence of
order n=1/4 in the CLT (cf. 3.14 in the next section).

Remarks 2.13. 1) If A reduces to a single ergodic matrix A, the system is clearly not
totally irreducible. Nevertheless, as it is well known, the CLT holds in this case.

2) Let us take two matrices A and A~! with a non uniform probability, then the system
is not totally irreducible, but we can show that the quenched CLT holds.

4) If we take two matrices A and A~! with equal probability 1/2, then the CLT does
not hold for the global system. We get a sort of T, T~ transformation and another limit
theorem (see [12]). This makes us think that CLT for a.a. sequence of matrices could not
be true.

3 Stationary products, matrices in SL(2,Z")

In this section we consider the case of a sequence (Ay) generated by a stationary process.
This is more general than the independent stationary case, but we have to assume the
rather strong Condition 3.2 below, a condition which is satisfied by matrices in SL(2,Z").
In this case some information about the non-nullity of the variance can also be obtained.
We will express the stationarity by using the formalism of skew products.

3.1 Ergodicity, decorrelation

We consider an ergodic dynamical system (€2, i, 6), where # is an invertible measure
preserving transformation on a probability space (2, ). We denote by X the torus T¢
and by 74 the automorphism of X associated to a matrix A € SL(d,Z). Let A be a finite
set of matrices in SL(d,Z).

Notations 3.1. Let w — A(w) be a measurable map from 2 to A, and 7 the map
w — T(w) = Taw). The skew product 6, is defined on the product space 2 x X equipped
with the product measure v := pu x \ by

0, :Qx X —-QxX; (w,t)— (w,7(w)t).

Let F' be a function in L?(Q2 x X) and, for p € Z¢, let F,(w) be its Fourier coefficient of
order p with respect to the variable t. I’ can be written:

F(w,t) =Y E(w)x(p.1),

pEZ?
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with 37 za [ [F,(w)[* du(w) < oco.

Let H2 be the set of a-Holder functions on the torus with null integral. This notation is
extended to functions f(w,t) on 2 x X which are a-Hélder in the variable ¢, uniformly
with respect to w.

Fork>1,7>4,weQ, fel?*X,R), we write

T(k,w) = T(Q’“{‘lw)..l.T(w), .
Al(w) = A@O'W)AOT ). . AP w),

Sa(w, () = Y flr(k,w)t).

In what follows in this subsection and in subsection 3.2, we assume the following condition
3.2 which implies an exponential decay of correlation:

Condition 3.2. There are constants C' >0, 6 > 0 and A > 1 such that
Vr > 1,YA, ..., A, € A Vp € Z4\ {0}, || Ar...A,p|| > C|lp|| °\".

Proposition 3.3. Under Condition 3.2, the system (2 x X, 0., u ® \) is mizing on the
orthogonal of the subspace of functions depending only on w. For the skew product map
the mixing property holds with an exponential rate on the space of Hélderian functions. If
(Q, 1, 0) is ergodic, then the dynamical system (2 x X, 0., 1 ® \) is ergodic.

Proof Let G be in L*(2 x X) a trigonometric polynomial with respect to ¢ for every w
and such that G(w,t) = > ,<p Gp(w)X(p, ?), for a real D > 1. We have:

©202.G) = [ [ (G @p ) Gol)(a.0) dt du(w)
= 3 [ | Gron i ) @lom@ ) dt dufe)

= Z/ Gp(0"w) G(w) 1an(wyp=q dp(w).

According to Condition 3.2, there is a constant C} not depending on D such that A} (w)p #
q, for n > CyIn D. Thus we have (Go 67, G) =0, for n > CyIn D.

With a density argument this shows that lim, (G o 67, G), = 0 for a function G' which
is orthogonal in L?(v) to functions depending only on w (with an exponential rate of
decorrelation for Holderian functions in this subspace). If the system (£, u, ) is ergodic,
this implies ergodicity of the extension. 5

We are going to prove that, for a.c. w, the sequence (n~2[|S,(w, f)||2), converges to a
limit. The norm ||.S,(w, f)]|2 is taken with respect to the variable ¢, w being fixed.
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Proposition 3.4. For every f € H2(T?), for p-a.e. w € Q, the sequence (n"2 S, (w, f)||2)
has a limit o(f) which does not depend on w.

Moreover o(f) =0, if and only if f is a coboundary: there exists h € L*(v) such that
f(t) = h(0w, 7(w)t) — h(w,t), v — a.e. (49)

Proof The convergence of the sequence of (global) variances (i.e. for the system (2 x

X,0,))
(n”! / / 1Su(w, PP dt dp(w))usy

to an asymptotic limit variance o2 is a general property of dynamical systems, for function
with a summable decorrelation. In this case, we also know that ¢ = 0 if and only if f is
a coboundary with a square integrable transfer function.

The system (Q x T? 6,, u x dt) is ergodic according to Proposition 3.3.

Denoting F(w,t) := f(t), we have S, (w, f)(t) = Sr—y F(0%(w, 1)), hence:

I
—

n—1

Z/ F (08 (w,t))F(0" (w, 1)) dt

’—(

n

S|

~ISu(w DIE =

14

Il
o
~

2
— AP+ (6w, 1)) F (644 (w, 1)) dt

>3 [
= ||f||2+ /ZFFOH’" V(0 (w, 1)) di
=

- 22 / F (0w, 1)) ZF@”T(wt))dt

l=n—r

Condition 3.2 insures, for a constant C' and for a real k < 1, the following inequality:

| [ F (0w, ) F(07 (w,t)) dt]

= | Tdf(lf) FIA@O W) AT w)t) dt] < O fllz fllar” (50)
This implies:
> [ Fetw)s Y RO @] < Ol Yo
r=1 l=n—r r=1

hence this term tends to 0 if n — +o0 and the convergence of [|S,(w, f)||3 reduces to

that of , )
n— 1 n—

1117423 [ S (RFos) @ w0t (51)
—1 I
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For p-a.e. w, for every r, by the ergodic theorem

lim — F(02(w, 1)) F (05 (w, t)) dt
n;rpmnsz (w0, ) F (057 (0, ) dt
1
= lim—z F(t) FIAO W) A0 w)t) dt = / (F.F 00") dwdt.
n N Jd QxTd
According to (50) we can take the limit for y-a.e. w in (51):

im0 ) ||2—||f||2+22/ (Ereydodi=tim [ [ 215,00 de du)

O

Remark 3.5. The previous proof shows that for a uniquely ergodic system (€2, i, 6)
defined on a compact space €2 (for instance an ergodic rotation on a torus), the convergence
of the variance given in Proposition 3.4 holds for every w € €2, if the map 7 is continuous
outside a set of p-measure 0.

3.2 Non-nullity of the variance

Now we consider more precisely the condition of coboundary. For j,p € Z¢, we denote by
D(j,p,w) the set {k > 0 : A§(w)j = p} and by c(j, p,w) = #D(j, p,w). (By convention,
Ab(w) = Id.) We will use the following simple lemma:

Lemma 3.6. Under Condition 5.2, sup;c;yeze c(J,p,w) < oo, for every finite subset J
of 7.2

Proof Let j be in J and let ky := inf{k € D(j,p,w)}. If ko belongs to D(j,p,w) with
ky > ki, then A¥(w)j = p = A¥(w)j, so that: Al,:fﬂ(w)j = j. According to Condition
3.2, this implies that the number of such integers ks is finite and bounded independently
of p. As J is finite, the result follows. 5

Proposition 3.7. Assume Condition 3.2. Let f be a trigonometric polynomial in L?(T?).
If there exists g € L*(Q x T%) such that [g dv =0 and f = g — go0,, then g is also a
trigonometric polynomaial.

Proof Let f = ijxj, where J is a finite subset of Z?. Let g be in L? such that
jed

Jgdv=0and f(t) = g(0w, T(w)t) — g(w,1).

The coboundary relation implies S p— ' (1 — E)fobk=g— 4% N gofk. As g belongs to
L?, by ergodicity we deduce the convergence in L?-norm

N—-1 ]{7
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with

2

SIERATIVIS b SIS SRR AP (52)

0 peZd k=0 j: Af(w)j=p

e
Il

Moreover it is known that the maximal function supy + | SV g0 0% is square integrable.
Therefore, by Fubini, for a.e. w, there is M(w) < oo such that

w11 Y 0=k e c e (53)

peZd k=0 j:Ak(w)j=p

If N goes to oo, the expression ZIILO [Zj:Ag(w)j:p(l — £ f;] tends to the finite sum
> jesclisp,w) fj (cf. Lemma 3.6). According to (53), by restricting first the sums to a fi-
nite set of indices p and passing to the limit with respect to Nin > | S > Al (@)yi=p(1—
L) fi]]%, we obtain finally

D 1> clpw) [P < Mw).

pezd  jedJ

For every p, as J is finite and as ¢(j,p,w) takes integral bounded values according to

Lemma 3.6, (| Z c(J, p,w) fi])peze take only a finite number of distinct values. Let V' be
jed
the set of these values and 6 > 0 a lower bound of V' \ {0}.

We have 62 #{p € Z% : >jesclip,w)f; # 0} < M(w), so that the cardinal is finite for
a.e. w. This shows that g is a trigonometric polynomial.

Corollary 3.8. If f is a coboundary and has non negative Fourier coefficients, then
f(z) =0 a.e.
Proof By using the fact that ¢(j,p,w) € N, we get:

lg(w, )3 = Z(Z c(j, p,w ) >Z(Z c(j,p,w f2)

P Jjed jeJ
JjeJ p

For 7 # 0, we have Zc(j,p,w) = 400, which implies f; = 0. 5
p

The previous results allow to obtain a "quenched" CLT (i.e. for a.e. w) in the stationary
case for positives matrices in SL(2,7Z), with (for trigonometric polynomials) a criterion of
non-nullity of the variance. Moreover, when the Fourier coefficients of f are nonnegative,
then the variance is > 0.
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3.3 AcC SL(2,Z")

We consider in this subsection a finite set A of matrices in S L(2,Zf) with positive co-
efficients. We study the asymptotical behavior of the products A! := A;...A;, where
A;, ..., Aj, i < j, is any choice of matrices in A.

Let M be a 2 x 2 matrix with > 0 coefficients and having different real eigenvalues

r=r(M),s=s(M),r>s.
=i 0) =0 )

Let
be respectively the diagonal matrix conjugate to M and the matrix such that M =
FMF~! with ad — bc = 1.

Lemma 3.9. The matriz M can be written:

M:((r—s)u+s —(r —s)v )

(r—syw —(r—su+r
with uw = ad €]0,1[, v =ab < 0, w = cd > 0.

Proof The positivity of the coefficients of M implies that v < 0, w > 0. By multiplying
the relation ad — bc = 1 by ad, we obtain u? — vw = u, thus v*> — u = vw < 0.

Lemma 3.10. There exist a constant C such that for every p in Z2, and every product
M of n matrices taking values in A, if n > C'ln||p||, then Mp € RY UR?.

Proof Let )\ := % = “T_l We have A > 0 and we can rewrite the matrix M as

M:r(u A‘l(l—u))+s(1—u —A‘l(l—u)).

A\ 1—wu —A\u U

Thus, for every vector X = (Z) , MX = T(ux+)\_1(1—u>y) (i\)‘i‘s(l‘—)\_ly) <1_;\/ZZ) .

1—wu

. 1
The eigenvectors of M are ( )\) and ( A\

), corresponding respectively to the eigen-
values r and s.
As M is a product of n matrices of A, it maps the cone R? strictly into itself:
2 2
MR c | ] ARY.
AecA
It follows that the slope A = A(M) of the positive eigenvector of M is bounded from

below and above by constants which only depend on A: there exists 6 > 0 such that
§< A<

Let us write r{ + ¢ and Ar( + ¥ the components of M X with:
Ci=ur + 21—y, ¢:=sx—XY)(1—u), ¥:=—s(x— A"y
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There exist constants C’ > 0 and > 1 such that the positive eigenvalue r(M), for M a
product of n matrices taking values in A, satisfies: r(M) > C'~".

As s(M) =r(M)™!, we have s(M) < C"" 'y ™ and, as § <A <57
max([e], [¢]) < ¢TIy X

Let X € Z? be non zero. Up to a replacement of X by —X, we can assume that ¢ > 0.
The vector M X having non zero integer coordinates, we have:

¢+ ol + Ar¢ + [ > [r¢ + | + [Ar¢+ 9| > 1.

Thus: 1 1
r¢ > T H——)\(M + [41),
and
1 1 A 1
rC+o > ————(2+N[p|+[¥]), Ar(+v > ————<Alp|+(1+2))[¢]).

1+X 14X 1+X2 14X

As max(|pl, [¢]) < Oy || X|, there exists C' > 0 such that if n > C'ln||p|| then
r(+¢ > 0and Ar( +1 > 0 that is MX € R?,.

Corollary 3.11. Let (Ag)k>1 be a sequence of matrices taking values in A. Denote by
s : © — Apx mod Z? the corresponding automorphisms of the torus. Then, for almost
every x in T?, the sequence (Ty,...T1%)k>1 18 equidistributed in T?.

Corollary 3.12. There exist constants C; > 0,y > 1, and ¢ such that for every p €

72\ {0}:
[A45pl > Oy LAY, e r > 1 o)

For vectors ¢ € Z2 belonging to some cone strictly contained in the positive cone, the
norm ||A™g|| is comparable to the norm ||A™|| and there are constants C' > 0 and A > 1
such that ||A"q|| > CA™. Therefore, S(D,A) is a consequence of (54).

Corollary 3.13. For every D > 0 there exists A such that S(D,A) holds with respect to
any products of matrices in A.

Proof Let us suppose that Z;Zl[Afjp; - Aﬁjpj] =0, i.e.
s—1 v
Vi . ?.
APpL+ Afpe ==Y [AYD; + AVp). (55)
j=1

Inequality (54) ensures inequalities such as:

& 4 - —(ts—¢;)+cln|lgs s
|AYpj|| < DAY || < O7 Dy~ =tteinliasll Al g |,
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for g5 € Z2 and ||p;|| < D. Then, using the gaps between the ¢; we will get a contradiction.
More precisely we consider two cases.

1) ¢, — ls small: 0 </, — ¢, < py, where p; will be defined later.

Write ¢, = Agé 41Ps + ps. This is a non-zero vector in Z* and its norm is less than
2D maxaeq ||A]|Pr. Let Cy :=Inmaxac 4 ||A]|. We deduce from (54):

e : ;
1A P, + Avpsl = (ATl
s—1 s—1
< C;lD[Z7_(€5_£9)+Cln“qs“ AlieqSH +Z,)/*(5575j)+01n||%|| AiquH]
j=1 j=1
s—1 s—1
< 01_1D701n||q3||||A§5q8” [va(ere;hrzv—(es—ej)]
j=1 j=1
s—1
< ACT DY [ I (| Af g
j=1
4
< D/ CCQpl—A Agsqs ,

with D' = 44D D,

We can assume that p/, # 0. Otherwise we would have ps # 0 and we would consider
| A% p|| instead of ||A€Sp’s|| Still using (54) we get:

s—1 s—1
YA _ (0 =0 Y+eln ||n gls —(0. =0 )+cln||p’ g’s
1A < AT Rl + CtDY oy~ GOl Ay | 4y 7y Gl Ay | ]
j=1 j=1
s—1 s—1
< CT Dy IPI A [y ) £ 37 A ) 1§ )
j=1 j=1

) D ,yclnD—A o
— cln D— o
S Cl Dh/ p1+2<1_7,A)] ||A1 ps”

Chose p; such that C; ' DyenP=r1 < %, then A such that

D,yclanA 1

-1

R
4

DA
Ci(1—=~72) 7

The factor in front of ||A{*q,|| on the right in the first case is < 1 and the factor in front
of ||A¥pl|| on the right in the second case is < 1. In both cases there is a contradiction.
0



Central limit theorem for products 31

Corollary 3.13 and Inequality (7) enable us to prove a CLT for the action of sequences
A?. Let g, = g be a fixed trigonometric polynomial such that g(p) = 0 if ||p|| > D. Let
us take A such that S(D,A) holds (via Corollary 3.13) and remark that in the case of

SL(2,Z%) that we are studying the numbers a,f’n are bounded by Cn®/2. Inequality (7)
of Lemma 1.4 becomes:

[E[e"TE] - ¢=3)
1 1438

-1 =6 —
< CllalllSally'n = + [alP[18allz*n ™ + |2 ]| Sl '
1-8 — —
Hal[18allz = A+ [ Sallz*n 7 A%]. (56)

If we suppose that ||S,||2 > Cn?, we get:

|]E[em|\5§TnH2] . 67%x2|
< Oflaln~ 5§ a8 4 (gl

a2 T A p P B A, (57)

Inequality of Esseen

If X,Y are two r.r.v.’s defined on the same probability space, their mutual distance in
distribution is defined by:

d(X,Y)=sup|P(X <z)-P(Y <2z).

z€eR

Let be Hyy(z) := |E(e™*) — E(e"Y)|. Take as Y a r.v. Y, with a normal law N(0, 0?).

Recall the following inequality (cf. Feller, An introduction to probability theory and its
application, p. 512): if X has a vanishing expectation and if the difference of the distri-
butions of X and Y vanishes at 00, then for every U > 0,

1 (v dr 24 1 1
d(X,Y,) < = H = —.
X< [ T Ty

Taking X = S,./||S |2, we have here that [Hxy, | < > 0 n~%|z|%, where the constants
are given by (57). Thus d(X,Y)) is bounded by

5
c 1
Z Y v
UL

In order to optimize the choice of U = U, we take U, = n” with v = min; a:jrl. This
gives the bound
S

d _”7
P

Y1) <Cn™7.
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We have to compute
B—-1420 —280—-1430 —30—1+40 f—-1+20 ﬁ—1+25)
4 ’ 4 ’ 8 ’ 6 ’ 3
—20—-1+30 =30—1+40 B—1+4+20
R A & (59)

v = min(

= min(

—4B41 —3B+1 . —4B+1 . 3 :
%, §+ ,%) = min( §+ ,%). Taking 3 = {5, we obtain

L 1
v = % This gives a rate of convergence of order n~32.

For § = 1 we get: v = min(

Theorem 3.14. Let (Ag)k>1 be a sequence of matrices taking values in a finite set A of
matrices in SL(2,Z,) with > 0 coefficients. If, for a constant C; > 0 and a rank ny,
1S, || > Cinz, for n > ng, then for a constant C' we have:

d(i,iﬁ) < Cn™%,Yn > ny. (59)
1502

The previous results can be applied if the limit of 72 ||S,||» exists and is non zero: the
sequence (n"2 Sy, )1 then tends in distribution towards the normal law N(0,1) with a
rate given by (59).

We can also obtain a rate of convergence of order n=?, for some § > 0, for subsequences
provided that the variance ||S,, ||2 is large enough:

Along a subsequence (ny) such that |[Sy, |2 > Cing, with § > 3/7, the subsequence of
normalized sums (||S,, [|5 'Sy, ) converges in distribution towards the normal law N(0, 1).

Indeed, in (58), to obtain a strictly positive 7, we have to check the inequalities:
—20—-1+30>0, —=33—14+46>0, B —14+26 > 0.

that is:
30 —1 46 -1 _35—1

2’3)2

1 —26 < < min(

For(5>%andﬁ:%,wehave’y>0.

Remarks 3.15. 1) In the previous statements, we have considered the case of trigono-
metric polynomials. Using some approximation, it can be extended to Holder continuous
functions or characteristic functions of a regular set.

2) If the sequence (A,) is generated by a dynamical system (2,6, u), we have shown
that in the case of SL(2,Z7")-matrices, that either for p-almost w € Q, (||Sn(w, f)|l2) is
bounded or, p-almost w € €, the sequence (n=2||S,(w, f)||2) has a limit o(f) > 0 not
depending on w. In the later case, the CLT holds.

For instance (cf. Remark 3.5), if the sequence (A,,) is generated by an ergodic rotation on
the circle, with A(w) = A on an interval and = B on the complementary, then we obtain
the CLT for every such sequence.
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3) If the dynamical system (£2,6, ) is weakly mixing, then the characteristic function of
a regular set is never a coboundary for the extended system. Thus we necessarily have
o(f) > 0. That is to say that, if (2,0, 1) is weakly mixing, the CLT holds almost surely
for centered characteristic functions of regular sets.

4 Appendix
Proof of Lemma 1.1 1) Setting ¢/(y) = (1+iy)e 2% e~ and writing ¢ (y) = p(y)e?®,
where p(y) = [¢(y)], we have

y — tany

I ply) = 5In(1+7) =37 <0, tan(o(y) = Ll

An elementary computation gives the following upper bounds for some constant C':

1
[np(y)l < Zll* 6()] < Cilyl®, vy € [-1,1]. (60)
. Lo 1T o
Let us write: Z(z) = Q(x) exp(—ﬁx Y) [H Y(x¢;)] . Using the fact that In p(z() <0,
k=0

we have:

12()  Q(a) exp(—a V)| = |2() ~ Z(x) [[ )] = 1~ [] 0(a)

IN

1 — Zronpat)| 4|1 — ¢ Tio 0ate)]

u—1 u—1
> I p(aG)| + > 102G
k=0 k=0

IN

If |z[6 <1, where § = maxy ||(x||c0, We can apply the bound (60). Using the inequality
1=l <(e—=1)ls| <2ls],¥s € [-1,1] (61)

we obtain for a constant C':

u—1
12(x) ~ Q(a) exp(—5a V)| < Claf* 3 |G < Culaf's®

k=0

2) Since Y is a positive random variable, we have also:

1 1 x?
exp(—éxQY) - exp(—éa )| < ) Y —al.
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If |z[6 <1 we get:
22
12(2) — exp(—a Q)

2 ZL‘2

< 12() - Q) exp(~ V)| + Q@) exp(~2¥) — exp(~a )]
ClQ@) 1Y

hence, under the condition |z|d < 1, we obtain the upper bound (2):

< Culz&® +

E[Z(z)] — exp(—a )| = [E[Z(z) — e 2" Q(x) + e 2" (Q(z) — 1)]|
E[Z(z) — e 227" Q()]] + e 29" [E[Q(x) — 1)]|
< Cula's® + SEIQ@)Y — af] + ¢ 2" [1 - E[Q()]

IN

2
< Culz[6’ + %HQ(%)HzHY — a2 +[1 = E[Q(2)]].

3) The bound that we obtain is large in general, because the integral of Q(z) is of order
e27"" and the bound for Q(z) is very large if « is big. If e=2" ||Q(z)| is bounded, we
can obtain a more accurate upper bound.

For 0 <e <1, let A (z) = {w: 2?|Y(w) — a|] < e}. We have the following bounds:

EfLa. (2 (x) = exp(—a )]
Culal's + Ellae () exp(=5Y) — 37

+ e 1 BQ(@)] + E(Lig 1 - Q@))]
2
< Culofs + e Q) ol La lexp(— (Y — a)) = 1]

+ e 2|1 - E(Q(x))] + E(Lag(n) |1 — Q(2)))].

IA

From (61) we have
2

x
A lexp(== (Y —a)) = 1|2 < 2e,
and using Cauchy-Schwarz inequality, we get
E(Laz@)|1 — Q2)])] < P(AL(2)) + [|Q(2)[|2(P(AL()))>,

which implies:
2

ElL. o) (Z(2) = exp(—a )]

< Culzfs® + e 37| Qx) 2
+ e 371 - E(Q(2))| + P(AX(x)) + [Q()]|2(P ( (93)))%]
< Culas® + e 297 |Qx)|z [e + (P(A()))2] + €729 [|1 — E(Q(x))] + P(AL(x))].
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1
Choosing € = |z|||Y — al|3, we get
P(A(x)) < eV —all; < 27]Y — al.

This yields:

ElL. o) (Z () = exp(—a )]

L 3 —Llax
< CulaPs® + 20z e 2 Q)| |V — all3 +e72*" [|1 = E(Q(x))| + 2|V — al|a],

1
Thus, assuming |z|d < 1 and |z|||Y — al|3 < 1, we obtain (3):

ElZ(2)] ~ expl(—3a5%)| < [ElLa, o (Z(x) — exp(—a 5] + 2B(AS(0))

1 3 —lag
< Culal*s® + 2]l e 2" Q@) |2 1Y = allf + 2™ [[1 = E(Q(x))[] + 3|z |V — al..

O
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