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Introduction

Our framework will be Zd-dynamical systems, in the sense of ergodic

theory, that is: probability spaces (E,F , µ) (µ can be sometimes

P) with d commuting measure preserving maps T1, ..., Td. The Zd-
action generated by T1, ..., Td will be denoted Θ. For x ∈ E, we

write: T kx = T
k1
1 ...T

kd
d x, with the notation k = (k1, ..., kd).

Some classes of Zd-dynamical systems:

1) A class of models can be described with a �local� structure by

the following data:

S a set of �local states�, Ω = SZd the con�guration space, Xk :

ω → ωk the coordinate maps, F the σ-�eld on Ω generated by the

cylindric sets. The shift on coordinates is a natural Zd-action Θ on

Ω. If a probability measure µ on (Ω,F) is invariant under the shift,

(Ω,F , µ,Θ) is Zd-dynamical system.

The simplest examples are the Zd-Bernoulli schemes de�ned as the

shift action on Ω = SZd endowed with a product probability measure

p⊗Z
d
, where p is some probability vector on S. The method of

speci�cation given by a potential in statistical mechanics gives a

way to construct invariant measures of Markovian type.
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For a real f ∈ L2(Ω,F , µ) with µ(f) = 0, the family (T kf)k∈Zd,

where (T kf)(x) = f(T kx), is a strictly stationary real random �eld

indexed by Z2 with �nite second moments and zero mean.

2) Another class of Zd-dynamical system is given by algebraic mod-

els. Examples:

- commuting endomorphisms on compact abelian groups;

- translations and �ows on homogeneous spaces.

In the �rst case, the space is a compact abelian group G endowed

with its Haar measure µ and the maps T1, ..., Td are commuting

surjective algebraic endomorphisms on G. If they are not invertible,

we can extend them to a bigger group to get an invertible Zd-action.

In the algebraic examples, there is no �local� structure. We get

such a local structure by taking �nite partitions of the space, like a

Markov partition in the case of a single hyperbolic automorphism on

a torus, but for a multi-dimensional action this seems less easy. As

above, for a real �observable� f ∈ L2(µ) with µ(f) = 0, (T kf)k∈Zk is
a strictly stationary real random �eld with �nite second moments

and zero mean.
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In general, we need a regularity assumption on the observables: in

terms of dependence on far coordinates for the model with a local

structure, in terms of Hölder regularity for the smooth models.

Notation: The set of �nite subsets of Zd is denoted by V. For D

in V, |D| is the cardinal of D and SDf is

SDf(x) =
∑
`∈D

f(T `x). (1)

In what follows, (Dn) is an increasing sequence in V, with boundary

∂Dn such that limn→∞ |∂Dn|/|Dn| = 0. (a condition equivalent to

the Følner property).

A question is to investigate if a Central Limit Theorem (CLT) holds

for the normalized sums SDnf(x)/‖SDnf‖2. In some cases a stronger

result, the functional CLT, can be expected.

The results are often given for an increasing sequence of rectangles.

But triangular domains or balls are also natural. Another method

is the summation along the trajectories of a random walk on Zd.

Our goal in the talk is to mention some models and examples and

to describe methods which can be applied to the CLT or the FCLT.
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For d = 1, an important tool is the martingale property which can

be used in many models. For d > 1, in some cases, a martingale

method can still be used, but even in very simple models like the ac-

tion of commuting endomorphisms or automorphisms on the torus,

this may be impossible. Another di�culty in the study of some

algebraic multidimensional models is the possible lack of mixing,

even for an action with a strong stochasticity.

After recalling some properties for multidimensional dynamical sys-

tems, I will describe some examples belonging to two classes men-

tioned above: 1) from statistical mechanics, 2) from algebraic ori-

gin. The goal is not to give general conditions implying a limit

theorem, but to look at explicit examples.

In the last part, I will describe some methods of proof for the CLT

and the FCLT.

Remark: Methods of martingale and mixing methods are adequate

sometimes to dynamical systems which have property K and they

have been used in some models in statistical mechanics. But other

methods are to be used for systems like the algebraic ones.
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1. Some properties

1.1 Spectral properties and variance

If for every f ∈ L2
0(E, µ) the spectral measure of f for the Θ-action

has a density (denoted by ϕf), then we have the Lebesgue spectrum.

Equivalently, there is a family (ψj)j∈J such that the collection of

functions {T kψj, k ∈ Zd, j ∈ J} is an orthonormal basis in L2
0(µ).

The set of indices J is countable in the standard case.

For �observables� satisfying an assumption of absolute summability

of the decorrelations:∑
k∈Zd

|
∫
E
T kf f dµ| <∞, (2)

the spectral density of f is continuous, i.e., there is ϕf ∈ C(Td)
(even in the space AC(Td)) such that∫

E
T kf f dµ =

∫
Td
e2πi〈k,t〉ϕf dt, ∀k ∈ Zd. (3)

Summation on sets (Dn) ⊂ Zd, Variance. The computation of the

variance is based on the normalized non-negative kernel

K(Dn)(t) = |Dn|−1 |
∑
`∈Dn

e2πi〈`,t〉|2. (4)
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The Følner property, i.e.,

lim
n

|Dn ∩ (Dn − p)|
|Dn|

= 1, ∀p ∈ Zd

is equivalent to∫
Td
K(Dn)(t)ϕf(t) dt = |Dn|−1

∫
|SDnf(x)|2 dµ →

n→∞ ϕf(0). (5)

Therefore, if ϕf(0) 6= 0, the sums SDnf must be normalised by

dividing by a quantity of order |Dn|
1
2.

Non-degeneracy? In some cases, it can be shown that it occurs i�

the observable is a�mixed coboundary�.

Sets of summation: a way to construct a natural family of Følner

sequences of sets.

The Lebesgue measure in Rd is denoted by λ. Let ∆ be a set in

[0,1]d. The set Zd
⋂
n∆ of integral points in n∆ is denoted by ∆n.

If ∆ is Jordan-measurable, then limn
|∆n|
nd

= λ(∆). Moreover, the

sequence (∆n)n≥1 satis�es the Følner property.
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We need to de�ne what means �functional CLT� (or �invariance

principle�). First we have to embed the sums in a continuous time

model:

Let J+ be the class of Jordan-measurable set such that (t∆)t∈[0,1]
is an increasing family. We consider the sums depending on the

parameter t ∈ [0,1];

S∆
n,tf =

∑
`∈tn∆

T `f,

or the �smoothed� sums (where for ` ∈ Zd, R(`) is the unit cube

{t : `1 ≤ t1 ≤ `1 + 1, ..., kd ≤ td ≤ `d + 1}):

S̃∆
n,tf :=

∑
`

λ(nt∆ ∩R(`))T `f. (6)

They are r.v.s with values in the space of continuous functions on

[0,1]. For the smoothed sums, one says that a functional limit

theorem holds if, after normalisation, convergence in distribution

holds in the space of continuous functions on [0,1] endowed with

the uniform norm to (Wt)t∈[0,1] the standard Brownian.

Note that we can also embed the sums in a process with a multi-

dimensional continuous time model.
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1.2 K-systems

For simplicity take d = 2 and consider an action Θ of Z2 de�ned

by two commuting automorphisms T1 and T2 of a probability space

(E,F , µ). The entropy of Θ can be de�ned. The Pinsker factor is

the largest factor with zero entropy. The action Θ has a completely

positive entropy if its Pinsker factor is trivial.

The notion of K-systems can be de�ned for a Z2-action in the

following way: For a sub σ-algebra B of F, we denote by BTi,
i = 1,2, the σ-algebra generated by (

⋃N
n=−N T

n
i B, N ≥ 1). Let us

choose the lexicographic order on Z2 given by:

(p, n) ≤ (p′, n′)⇔ [(p = p′ and n ≤ n′) or (p < p′)].

A sub-σ-algebra F0 is a K-σ-algebra if

(i) F0 is increasing in the sense of the lexicographic order for the

Z2-action : (p, n) ≤ (0,0)⇒ T
−p
1 T−n2 F0 ⊂ F0;

(ii) F0 is generating: the σ-algebra generated by ∪p,nT
−p
1 T−n2 F0 is F;

(iii) the remote past of F0 is trivial, i.e.,⋂
p
T
p
2F0 = T1F

T2
0 and

⋂
p
T
p
1F

T2
0 is trivial.
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A system is K if there is a K-σ-algebra in F.

Due to the choice of the lexicographic order, there is a dissymmetry

in the de�nition. But it can be shown that the property itself

doesn't depend on the choice of the order between the coordinates.

The existence of such a sub σ-algebra implies completely positive

entropy and conversely Kami«ski (1981) proved the existence of a

K-sub σ-algebra, when the action has completely positive entropy.

If α0 is a �nite partition, denoting by V0 the set of all k ∈ Z2

smaller than 0 in the lexicographic order. Then F0 = ∨k∈V0
T kα0 is

the sub-σ-algebra of the past generated by α0 under the action of

T1, T2.

In the model Ω = SZd, α0 can be taken as the partition associated

to the �rst coordinate X0.

Taking an orthonormal basis (ψj)j∈J of L2
0(F0, µ) \ L2

0(T−1
2 F0, µ),

the collection of functions {T kψj, k ∈ Z2, j ∈ J} is an orthonormal

basis of L2
0(µ) (hence Lebesgue spectrum, mixing of all orders).
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If µ is trivial on the tail �eld F∞ :=
⋂
V ∈V FV c, then the K-property

holds. This is a stronger property than the non-symmetric anal-

ogous K-property. In dimension 1, it corresponds to the 2-sided

K-property.

The simplest examples of K-systems for a Z2-action are the Z2-

Bernoulli schemes. Observe that, on a manifold, commuting ac-

tions by d measure preserving smooth maps generate d-dimensional

systems of d-dimensional entropy zero if d ≥ 2.

Now we give examples from statistical mechanics.
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2. Examples 2.1 from statistical mechanics

We recall brie�y the notation for a Gibbs measure on Ω = SZd

associated to a speci�cation. For V ⊂ Zd, FV is the sub σ-algebra

of events depending only on the sites in V , and XV the projection

on the set of con�gurations in V .

A speci�cation is a family Λ of conditional probabilities indexed by

V ∈ V and interpreted as the probability to have ω inside V given η

outside V :

Λ = (λV (ω|η), ω ∈ ΩV , η ∈ Ω)V ∈V ,

with λV (ω|.) FV c-measurable and λV (.|η) a probability on ΩV .

A probability measure µ on Ω is speci�ed by Λ if, for all V ∈ V,

µ
(
XV = ω |FV c

)
= λV (ω| .), µ− a.s., ∀ω ∈ ΩV .

If Λ is stationary (λV (ω|η) = λV+k(ω|T−kη), ∀k), we denote by

GΘ(Λ) the set of stationary Gibbs measures speci�ed by Λ.

Each positive continuous speci�cation Λ s.t. G(Λ) 6= ∅ coincides

with the system of Gibbs distribution associated to an interaction

potential U .
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Two probability measures µ and ν in G(Λ) coincide i� they coincide

on the remote σ-�eld F∞. Thus, when it holds, an uniqueness the-

orem for a given model in statistical mechanics provides an example

of multidimensional K-system.

Example: Ising model: The speci�cation ΛT,h associated to

U = UT,h depending on two parameters de�ned by

U(A,ω) = −βωs ωt, if A = {s, t}, diamA = 1,

= −hωs, if A = {s},= 0 otherwise.

β > 0 corresponds to the ferromagnetic and β < 0 to the anti-

ferromagnetic model, h is the external magnetic �eld and |β|−1 is

proportional to the temperature T .

1) if Λ is de�ned by the d-dimensional Ising ferromagnet for large

β and h = 0, d ≥ 2, then: the extremal points of GΘ(Λ) consist

in two distinct measures µ+, µ− describing the pure phases of the

ferromagnet. This gives two K-systems (Ω,F , µ+,Θ), (Ω,F , µ−,Θ)

isomorphic via the spin �ip ω → −ω.
2) If Λ is de�ned by the d-dimensional Ising ferromagnet with h 6= 0,

then G(Λ) = {µ} is reduced to a single measure and (Ω,F , µ,Θ) is

a K-system.
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2.2 Examples from algebraic origin

As mention in the introduction, we will discuss examples given by

commuting endomorphisms on compact abelian groups. Other ex-

amples are given by �ows on homogeneous spaces, with recent

results on the CLT obtained by M. Björklund and A. Gorodnik.

Let G be a compact abelian group G endowed with its Haar measure

µ and commuting surjective algebraic endomorphisms T1, ..., Td. Call

Θ the action generated by T1, ..., Td viewed as a Zd- or Nd-action.

In case for example of commuting matrices on tori, the entropy is

0, therefore even if there is a strong stochasticity like mixing of all

orders, for d > 1, they do not generate K-systems.

K. Schmidt and T. Ward (1993) proved that

If the group G is zero-dimensional, Θ has completely positive en-

tropy i� Θ is r-mixing for every r ≥ 2.

If the group G is connected, then Θ is r-mixing for every r ≥ 2.
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As shown by F. Ledrappier (1978), there are non-connected groups

G with 2-mixing algebraic actions Θ which are not 3-mixing.

Ledrappier's example is a special case of a general construction of

Zd-actions by automorphisms on shift invariant subgroups of FZdp .

These Zd-actions are examples of mixing actions which are not mix-

ing of all orders. Nevertheless for a special class of such actions,

it is possible to show that the non-mixing r-con�gurations (or pat-

terns) in (Zd)r are rare in some sense, and deduce a CLT for these

Zd-actions (JP C., G Cohen (2016)).
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3. Martingale-like methods for the CLT

3.1 K-systems and CLT under Z2-actions for rotated sums

Of course the K-property does not su�ce to provide for free a

CLT, even if it is a favorable framework. Nevertheless, if we make

a rotation on the action in the ergodic sums over cubes, the CLT

is satis�ed, without assumption on the observable, for almost all

rotations. This surprising result was obtained by M. Peligrad and

W. B. Wu (2010) in dimension 1. With Guy Cohen, we gave a

simpli�ed proof and its extension for multidimensional processes.

Let us brie�y explain how to obtain a CLT for rotated sums of

L0
2-functions on Zd-systems, d > 1, which have the K-property.

Take d = 2. The ergodic sums of the rotated process over the

square RN = [0, N − 1]× [0, N − 1] (like a periodogram) are

S
θ1,θ2
N f =

∑
(k,`)∈RN

e2πi〈kθ1+`θ2〉T k1T
`
2f.

Let F0 be a K-sub-σ-algebra. As already mention, if K0 is the sub-

space in L2(F0) orthogonal of L2
0(T2F0) and (ψj)j∈J an orthonormal

basis of K0, then (T kψj)j∈J,k∈Z2 is an orthonormal basis of L2
0(Ω, µ).
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For f ∈ L0
2, setting aj, n := 〈f, Tnψj〉, for j ∈ J, let γj be an ev-

erywhere �nite square integrable function on T2 with Fourier co-

e�cients aj, n. The spectral measure of f for the Z2 action has a

density given by ϕf =
∑
j∈J |γj|2. Since∫

T2

∑
j∈J
|γj(θ1, θ2)|2 dθ1dθ2 =

∑
j∈J

∑
n∈Z2

|aj,n|2

=
∫
ϕf(θ1, θ2) dθ1dθ2 = ‖f‖2 <∞,

the set Λ0 := {θ ∈ T2 :
∑
j∈J |γj(θ)|2 <∞} has full measure.

For θ ∈ Λ0, let Mθf :=
∑
j

γj(θ)ψj ∈ K0. (7)

Using that, if ϕ is integrable, then lim
N→∞

FN,N ∗ ϕ = ϕ a.e., where

FN,N is the bi-dimensional Fejèr's kernel. one can show that the

set

Λ(f) = {θ : lim
N

1

|RN |

∥∥∥∥∥ ∑
k∈RN

e2πi(k1θ1+k2θ2) T
k1
1 T

k2
2 (f −Mθf)

∥∥∥∥∥
2

2
= 0}.(8)

has full measure in T2.
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Martingale approximation: Let f be in L2
0(µ) and M(θ1,θ2) ∈ K0 be

associated to f for a.e. (θ1, θ2) by (7). The martingale property is

satis�ed by M(θ1,θ2)f :

E(M(θ1,θ2)f ◦ T
k1
1 T

k2
2 |T

−k′1
1 T

−k′2
2 A0) = 0, ∀ k > k′, (9)

Using a CLT for martingales, we obtain:

1

n

∑
k∈Rn

Mθ(T
k1
1 T

k2
2 ω)

distr−→ N (0,Γ(θ))

with respect to µ, where Γ(θ) is the covariance matrix

Γ(θ) =

(
1
2ϕf(θ1, θ2) 0

0 1
2ϕf(θ1, θ2)

)
. (10)

Now by the martingale approximation given by (8) it follows:

Theorem 1. Let (Ω,F , µ, (T1, T2)) be a 2-dimensional K-system.

Let f be in L2
0(µ) with spectral density ϕf . Then for Lebesgue-a.e.

θ the asymptotic distribution (with respect to µ) of(
1

n

∑
k∈Rn

cos 2π(k1θ1+k2θ2)T k1
1 T

k2
2 f,

1

n

∑
k∈Rn

sin 2π(k1θ1+k2θ2)T k1
1 T

k2
2 f)

)

is the centered normal law in R2 with covariance matrix (10).
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3.2 Method of mixing, Dedecker's results

Let us mention brie�y E. Bolthausen (1982) who has a simple proof

for a CLT under mixing assumptions, which should apply to models

in statistical mechanics, although this is not stated clearly in his

paper.

Mention also the results of B.S. Nahapetian (1980) and B.S. Na-

hapetian and A.N. Petrosian (1992): �Martingale di�erence, Gibbs

random �elds and Central Limit Theorem� with ad-hoc hypotheses

on their model.

All these results could probably be extended to a FCLT.

Now I describe some of the results of J. Dedecker (1998, 2001) on

the CLT and FCLT with an application to Gibbs measures.
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Dedecker's results

Let (Xi)i∈Zd be a strictly stationary �eld of real-valued random

variables with mean zero and �nite variance.

For k ≥ 1 and i ∈ Zd, let

V 1
i := {j ∈ Zd : j < i},
V ki := V 1

i ∩ {j ∈ Zd : max
1≤t≤d

|it − jt| ≥ k}

F|k| := σ{Xi, i ≤ 0, max
1≤t≤d

|it| ≥ max
1≤t≤d

|kt|}.

Condition used for the FCLT

(conditioning by σ-algebras generated over lower-left quadrants):∑
k∈V 1

0

‖Xk E(X0|F|k|)‖p <∞. (11)

If A is a collection of Borel subsets of [0,1]d, the smoothed partial

sums {Sn(A), A ∈ A} are

Sn(A) =
∑
i∈Zd

λ(nA ∩R(i))Xi.
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We say that the sequence n−d/2 Sn(A) satis�es a functional central

limit theorem if it converges in distribution to a mixture of set-

indexed Brownian motions in the space C(A) (that is: the limiting

process is of the form ηW , where W is a standard Brownian motion

and η is a nonnegative random variable independent of W ).

For any t ∈ [0,1]d, the lower-left quadrant [0, t] with upper corner

at t is [0, t] := [0, t1] × ... × [0, td]. Denote by Qd the collection of

lower-left quadrants in [0,1]d.

If (11) holds with p = 1, the �nite-dimensional convergence of

{n−d/2 Sn(A)} is a consequence of a central limit theorem estab-

lished in Dedecker (1998).

Theorem 2. (Dedecker (2001)) Let (Xi)i∈Zd be a strictly stationary
�eld of centered random variables. Assume that there exists p > 1

such that ‖X2
0‖p is �nite and the Lp criterion (11) is satis�ed. Then

(a)
∑
k∈Zd ‖E(X0Xk|I)‖p < ∞. Let η =

∑
k∈Zd E(X0Xk|I), where I

is the σ-algebra of invariant sets;

(b) the sequence {n−d/2 Sn(t) : t ∈ [0,1]d} converges in distribution

in C(Qd) to
√
ηW , where W is a standard Brownian motion indexed

by Qd and independent of I.
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Gibbs example (Dedecker (2001)) Application to spin systems

Assume that the random variable X0 is bounded and that the dis-

tribution of the random �eld is a Gibbs measure associated to a

speci�cation Λ given by a �nite-range potential.

Suppose that the family the Gibbs speci�cations Λ satis�es the

weak mixing condition (Dobrushin and Shlosman (1985), Martinelli

and Olivieri (1994)). This condition implies that, if in a �nite V

we consider the Gibbs state with boundary condition τ , then a local

modi�cation of the boundary condition τ has an in�uence on the

corresponding Gibbs measure which decays exponentially fast inside

V with the distance from the boundary of V .

Under this assumption there is ergodicity and uniqueness. More-

over, there exist two positive constants C1 and C2 such that

‖E(X0 | FV ki
)− E(X0)‖∞ ≤ C1 exp(−C2 k). (12)

Set Y = (Xi − E(Xi))i∈Zd. From inequality (12) it follows that the

L1 criterion is satis�ed. Consequently the theorem applies to the

stationary random �eld Y , with η = σ2 =
∑
k∈Zd Cov(X0, Xk).
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Example: Ω = {−1,1}Zd, Ising model with parameters h, T .

As recalled previously, there exists a critical temperature Tc and a

uniqueness region U

U = {(h, T ) ∈ R× [0,∞[: h 6= 0 or T > Tc}.

The family ΛT,h is weak mixing in the following regions of U:
(a) for any temperature T > Tc (Higuchi (1993)),

b) for low temperature and arbitrarily small (not vanishing) �eld h

provided that h/T is large enough (Martinelli and Olivieri (1994));

(c) for any (h, T ) in U if d = 2 (Schonmann and Shlosman (1995).

Therefore, we get the FCLT for this model when the parameters

belong to the uniqueness region U.
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4. Methods for algebraic examples

4.1 Mixing of order r for Nd-actions

A word about the question of mixing of order r which is crucial in

the study of limit theorems for Nd or Zd algebraic actions.

For a general Nd-action, ` → T `, preserving a probability measure

µ, the property of mixing of order r ≥ 2 is that, for any r-tuple of

bounded measurable functions f1, ..., fr with 0 integral, every ε > 0,

there is M such that

‖`j − `j′‖ ≥M, ∀j 6= j′ ⇒ |
∫
T `1f1...T

`rfr dµ| < ε. (13)

For the action by endomorphisms on G, mixing of order r is equiv-

alent to: for every set K = {χ1, ..., χr} of r characters 6= χ0, there is

M > 0 such that ‖`j− `j′‖ ≥M for j 6= j′ implies T `1χ1...T
`rχr 6= χ0.

An r-tuple (`1, ..., `r) is said to be mixing for K if

T `1χ1...T
`rχr 6= χ0. (14)

r-mixing for an Nd-action by endomorphisms is equivalent to: for

every set K of r non trivial characters, there is M s.t. ‖`j − `j′‖ ≥
M, ∀j 6= j′ ⇒ (`1, ..., `r) is mixing for K.

24



As already mention, by K. Schmidt and T. Ward (1992) we know

that every 2-mixing Zd-action by automorphisms or semi-group of

endomorphisms on a compact connected abelian group G is mixing

of all orders.

Let us see on an example how this is related to a certain type of

Diophantine equations.

An example: action by ×2, ×3 mod 1 on T1

A set K of non zero characters on T1 is given by an r-tuple {k1, ..., kr}
of non zero integers. Equation (14) reads k12a13b1 + ...+kr2ar3br =

0. Hence we consider equations written in the form:

k12a13b1 + ...+ kr2
ar3br = 1, ((a1, b1), ..., (ar, br)) ∈ (Z2)r. (15)

It is known that, for a given set k1, ..., kr, there is only a �nite num-

ber of r-tuples ((a1, b1), ..., (ar, br)) solutions of (15), if no proper

subsum vanishes. This implies that the (invertible extension) 2-

dimensional action generated by ×2,×3 is mixing of all orders.

This fact on solutions of (15) is a special case of a theorem on

S-units:
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Theorem 3. (Evertse, Schlickewei, W. Schmidt) Let K be an al-

gebraically closed �eld of characteristic 0 and let r ∈ N. Let Γr
be a subgroup of the multiplicative group (K∗)r of �nite rank ρ.

For any (a1, ..., ar) ∈ (K∗)r, the number A(a1, ..., ar,Γr) of solutions

x = (x1, ..., xr) ∈ Γr of the equation

a1x1 + ...+ arxr = 1, (16)

such that no proper subsum of a1x1 + ... + arxr vanishes, satis�es

the estimate A(a1, ..., ar,Γ) ≤ exp((6r)3r(ρ+ 1)).

In the above example, we have xi = 2ai3bi and we are looking at

the number of solutions in Equation (16) where the unknown is

x = (x1, ..., xr) and ai = ki are �xed integers.

Corollary 4. For any �nite subset E of Γr the number N(E, r) of

solutions x = (x1, ..., xr) of (16) such that xi ∈ E, ∀i, is ≤ C|E|r′, if
r = 2r′+ 1 is odd or r = 2r′ is even.

At the opposite, in the non connected case (for example for endo-

morphisms of shift-invariant subgroups of FZdp ), there are in�nitely

many non-mixing r-tuples, for r ≥ 3.
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4.2 Matrices and automorphisms of the torus

Finally, for the algebraic models, we will present the special case of

matrices acting of the torus G = Tρ.

Every B in the semi-group M∗(ρ,Z) of non singular ρ× ρ matrices

with coe�cients in Z de�nes a surjective endomorphism of Tρ and
a measure preserving transformation on (Tρ, µ). It de�nes also a

dual endomorphism of the group of characters T̂ρ identi�ed with Zρ

(action by the transposed of B). When B is in the group GL(ρ,Z)

of matrices with coe�cients in Z and determinant ±1, it de�nes an

automorphism of Tρ.

It is well known that A ∈M∗(ρ,Z) acts ergodically on (Tρ, µ) if and

only if A has no eigenvalue root of unity.

Let A1, ..., Ad be d commuting matrices in M∗(ρ,Z). Let us write

Tjx = Ajx mod 1, for x ∈ Tρ

With the notation T `x = A
`1
1 ...A

`d
d x mod 1, we get a Zd-action

(T `, ` ∈ Zd) on (Tρ, µ), which is totally ergodic if A` has no eigen-

value root of unity for ` 6= 0.
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Regularity assumption for a function f on Tρ (with α > d):

‖f(.+ τ1, · · · , .+ τρ)− f‖2 ≤ C(f) (ln
1

δ
)−α, for |τ1|, ..., |τρ| ≤ δ, ∀δ > 0.

Proposition 5. Let f be in L2
0(Tρ) satisfying the previous regularity

condition for some α > d. Then there are �nite constants B1, B2

such that |〈T `f, f〉| ≤ B1‖f‖2‖`‖−α, ∀` 6= 0, the spectral density ϕf
is continuous,

∑
`∈Zd |〈T

`f, f〉| <∞ and ‖ϕf‖∞ ≤ B2‖f‖2.

For a compact abelian group, either connected or for a special

family of non connected groups, with G. Cohen, we have shown

a central limit theorem for summation of (T kf)k∈Zd either over

sets or along a random walk. I would like to describe brie�y an

improvement giving a FCLT obtained in collaboration G. Cohen.

Let us mention that a FCLT has been proved by a martingale

method for the action generated by commuting exact algebraic

endomorphisms (like ×2, ×3). for sums on rectangles by C. Cuny,

J. Dedecker and D. Volný. But for the case of general matrices and

more complicated sets, an algebraic method seems necessary.
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4.3 Moments, FCLT for commuting matrices on the torus

Let (Aj)j ∈S be a �nite family of d commuting non singular matrices

in Gl(ρ,Z).

Let D be a �nite set in Zd. First we establish a bound on the

moments of order r for the function f(x) = 2 cos(〈γ, x〉), for γ ∈
Zρ \ {0}, i.e.,

mr(D) :=
∫ (∑

`∈D
(e2πi〈A`γ,x〉+ e−2πi〈A`γ,x〉)

)r
dµ. (17)

By applying Corollary 4 to the multiplicative group generated by

the eigenvalues of Aj, we get:

|m2r′+1(D)| = o(|D|r
′
), m2r′(D) = O(|D|r

′
). (18)

For every r, f → ‖f‖r,D := ‖SDf‖r = ‖
∑
Dn T

kf‖ is a semi-norm.

Therefore we can use the sub-additivity.
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Let Nr(n, f) := |Dn|−1/2 ‖SDnf‖r. For every r ≥ 2, by (18) there is

a constant Cr:

Nr(n, f) ≤
∑
χ∈Ĝ
|f̂(χ)|Nr(n, χ) ≤ Cr

∑
|f̂(χ)|. (19)

Proposition 6. (convergence of the moments) For f ∈ AC0(Tρ),
for every p ≥ 2, there is Cp such that, for every D ⊂ Zd:

|
∫

(SDf)p dµ| ≤ Cp|D|p/2, ∀p ≥ 1. (20)

Moreover, we have, for any increasing Følner sequence (Dn) of sets

in Zd:

lim
n
|Dn|−1

∫
(SDnf)2 dµ = σ2

f = ϕf(0),

and, if σ2
f = ϕf(0) 6= 0, convergence toward the moments cp of the

normal distribution:

lim
n

∫
(SDnf)p dµ

|Dn|p/2
= cp σ

p
f , if p is even, = 0 if p is odd. (21)

30



A standard method of proof for a FCLT for a process (Yn(t)) is

1) Convergence of the �nite dimensional distributions:

∀(tk ∈ [0,1])1≤k≤r, (Yn(t1), ..., Yn(tr)) =⇒
n→∞ (Wt1, ...,Wtr).

2) Tightness of (Yn(t)): i.e., for a sequence of random variables

(Yn(t)) indexed by t ∈ [0,1].

∀ε > 0, lim
δ→0

lim sup
n

P( sup
|t−s|≤δ

|Yn(t)− Yn(s)| ≥ ε) = 0. (22)

Lemma 7.The family (n−d/2 S∆
t,nf) is tight, for ∆ in J+, for every

f such that, for a constant C

m4(SDf) =
∫
|SDf |4 dµ ≤ C|D|2, ∀D ⊂ Zd.

Theorem 8. (FCLT for the torus) Let (X`) = (T `f) = (f(A`.))

be a random �eld de�ned by a totally ergodic d-dimensional action

(T `)`∈Nd on the torus Tρ by commuting endomorphisms A1, ..., Ad
and a real function f in AC0(Tρ).
For every set ∆ in J+, the process

(
n−d/2 S∆

n,tf
)
n≥1

satis�es a

functional CLT.
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Thank you for your attention!
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