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Хорошо известно, что для последовательности независимых
одинаково распределенных случайных величин соответствующие
нормированные ступенчатые процессы слабо сходятся к винеров-
скому процессу. Более сильная сходимость, а именно, сходимость
по вариации распределений функционалов от этих процессов, была
установлена в [4] в предположении конечности информации Фишера
для случайных величин. В настоящей статье мы доказываем та-
кую сходимость без каких-либо условий, связанных с информацией
Фишера.

Ключевые слова и фразы: принципы инвариантности, сходи-
мость по вариации, локальные предельные теоремы.

1. Introduction

Let {ξn, n ∈ N} be a sequence of independent and identically dis-
tributed random variables defined on a probability space (Ω,F ,P). Let
Eξn = 0 and Eξ2

n = 1. Consider the following right-continuous process:

Sn(t) =
1√
n

[nt]∑
i=1

ξi, t ∈ [0, 1]. (1.1)

Let Pn and P stand for the laws of Sn and the standard Wiener process W , re-
spectively. in the Skorokhod space D of cadlag functions on the interval [0, 1].
We use the symbol µf−1 to denote the image of a measure µ on Borel
σ-algebra BD under a measurable application f : µf−1(A) = µ(f−1(A)),
A ∈ BD. It is well known from the Donsker–Prokhorov invariance principle
that, for any P -almost everywhere continuous functional f : D→ R,

Pnf
−1 =⇒Pf−1, n→∞, (1.2)

where ⇒ denotes usual weak convergence in R.
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Our goal is to strengthen the result of (1.2) by proving strong conver-
gence, in other words, convergence in variation of Pnf

−1 to Pf−1, for a large
class of functionals f .

If the laws Pnf
−1 and Pf−1 are absolutely continuous with respect to

the Lebesgue measure λ, then the strong convergence becomes equivalent to
the convergence of densities dPnf

−1

dλ
to dPf−1

dλ
in the L1(R)-metric. In this

way, we get as a corollary the local limit theorem for the laws of function-
als f(Sn(·)).

We note at the outset that if the measures Pn themselves converge in
variation to P , the answer to our question becomes obvious. This situation,
however, rarely occurs in practice. In general, like in our case, the mea-
sures Pn are singular with respect to P for any n and this mutual singularity
of Pn and P is the cause of difficulties in solving the problem.

A first solution of the problem above is given in [4, Theorem 20.1] where
the strong convergence

Pnf
−1 var−→ Pf−1 (1.3)

is obtained assuming that the Fisher information Ip =
∫
R p−1(p′)2 dλ of the

density p of ξ1 is finite, furthermore, assuming that the function f is an
element of a certain class of functions, class denoted by MP . More precisely,
the following theorem holds.

Theorem A. Let {ξn, n ∈ N} be a sequence of independent and iden-
tically distributed random variables with Eξn = 0, Eξ2

n = 1. Suppose that
their common law F has an absolutely continuous density p with Ip < ∞,
then we have (1.3) for any functional f belonging to the class MP .

We only note here that the class MP is completely defined by the mea-
sure P , and for its definition and properties, we refer the reader to [4, Sec-
tion 19].

The condition Ip < ∞, which is equivalent to p′/p ∈ L2(dF ), seems to
be unnecessarily strong. Indeed it is more restrictive than p′/p ∈ L1(dF )
which means

∫ |p′| dλ <∞, that is, the bounded variation of p, whereas it is
well known that for simple functionals such as x 7→ supt x(t), the condition
F � λ is sufficient to guarantee a local limit theorem (see [5]).

The goal of this work is to weaken the main condition Ip <∞.

We achieve this goal by narrowing slightly the class MP to a certain one
denoted by M (1)

P and rigorously defined in Definition 1 below. First we give
some additional notation. Since D is not separable when equipped with the
uniform topology, we introduce its subspace E which is the uniform closure of
the set of all functions of D that have finitely many jumps at rational points
of [0, 1]. When equipped with the uniform norm, E is a separable Banach
space in which the weak convergence (1.2) still holds. We recall that HP

stands for the core of the measure P . That is, HP is the set of admissible
directions l ∈ E for P (PT−1

l � P , where Tl is the translation of l) which
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coincides with the Cameron–Martin space: HP = {f ∈ C([0, 1]) | f(0) = 0,
f ′ ∈ L2([0, 1])}. Let us denote by S the unit ball of E.

D e f i n i t i o n 1. M (1)
P is the set of locally Lipschitzian functionals f

such that for P -almost all x, there are a neighborhood V (x) of x and l ∈ HP

such that

(a) the derivative Dlf(x) of f at x in the direction l exists and is not
zero;

(b) denoting Sy = {h ∈ S |Dhf(y) exists} and A =
⋃
y∈V (x){y} × Sy,

we have A 3 (y, h)→ Dhf(y) bounded and continuous.

With t− = sup{t ∈ R |F (t) = 0}, t+ = inf{t ∈ R |F (t) = 1}, where as
usual, sup∅ = −∞ and inf ∅ = +∞, our main result states the following.

Theorem 1. Let {ξn, n ∈ N} be a sequence of independent and iden-
tically distributed random variables with mean 0 and variance 1. Suppose
there exists some γ > 0 such that E|ξ1|2+γ < ∞. Furthermore, suppose ξ1

has a density denoted by p, which is nonzero almost everywhere on [t−, t+].
Then the convergence (1.3) holds for any functional f ∈M (1)

P .

In comparison with the quoted result of [4], in Theorem 1 we have
substantially weakened the hypothesis on the law F . The price we have paid
for this does not seem to be high: existence of an absolute moment greater
than 2 and a slight restriction of the functional class. This restriction on the
class can only be noticed on a formal level, since concrete functionals belong
to the class M (1)

P under hypothesis near to those used for MP . For example,
our class contains

(a) all not degenerated linear continuous functionals;

(b) all differentiable functionals f with Df(x) 6= 0 P -a.e.

The functionals of supremum type or integral type belong to the
class M (1)

P under hypothesis given below.

Proposition 1. The following functionals belong to M (1)
P :

1) Let

g(x) = sup
t∈[0,1]

ϕ(x(t)), (1.4)

where ϕ is convex, C1 and such that ϕ′ 6= 0 a.e.;

2) Let

h(x) =

∫ 1

0

q(x(t)) dt (1.5)

where q is C1 and such that q′ does not vanish a.e. in some neighborhood of 0.

R e m a r k 1. The conditions in the preceding examples can be weak-
ened, relaxing the condition ϕ of class C1 in the first case and replacing,
in the second, q of class C1 by q Lipschitzian on all compacts. In this
way, g and h may be not in MM

(1)
P , but the conclusion (1.3) of Theorem 1

still holds since the proof can be carried out in a similar way (see Remarks 4, 5



4 Breton J.-C., Davydov Yu. A.

in Section 4). On the other hand, we can not weaken the convexity condition
for ϕ because the convexity of g is essential for the proof.

Moreover, we have the following proposition concerning functionals
in M (1)

P .

Proposition 2. For f ∈M (1)
P , we have Pf−1 � λ.

Proposition 2 was proved in [4] for functionals in a subclass of MP

which is larger than M (1)
P . This proposition justifies we can derive local

limit theorem from Theorem 1.

R e m a r k 2. In the case of the functional f(x) = x(1), Theorem 1
and Proposition 2 yield a L1-local limit theorem for the densities of partial
sums of normalized random variables (ξi)i. In comparison with the classical
theorem by Yu. Prokhorov (see [6, Theorem 4.4.1]) our conditions on F are
more restrictive. However, it is not surprising since we are working with a
very large class of functionals.

The proof of Theorem 1 relies on the so-called superstructure method
which was introduced and used in [4]. Namely, we apply a partition of the
space to express the functional distributions as mixtures of conditional dis-
tributions. The main newness of the proof of the current paper consists in
representing initial random variables ξn as transformed orthogaussian ran-
dom variables ηn:

ξn = U(ηn),

and then considering the process Sn(t) as function of analogous process Zn(t)
defined by (ηn)n>1. This implies that in place of admissible translations
of Sn(t) used in the proof of Theorem A, we use now nonlinear transforma-
tions induced by admissible translations of W . The analysis of the asymp-
totic behavior of the corresponding conditional law becomes more intricate
and requires supplementary tools.

Remark also that the proof developed in the current paper can easily
be adapted so that Theorem 1 would still hold for P ′n, the laws of polygonal
process S′n defined by

S′n(t) =
1√
n

[nt]∑
i=1

ξi +
nt− [nt]√

n
ξ[nt]+1 (1.6)

(compare (1.6) to (1.1)).

The paper is organized as follows. We begin by specifying in Section 2
the notation and tools we use. We prove Theorem 1 in Section 3. Examples
of functionals in M (1)

P are discussed in Section 4. Some technical and tedious
considerations are deferred to appendices.
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2. Preliminary tools and the main idea

Let En = {x ∈ E | x is constant on [k/n, (k+ 1)/n), k = 0, 1, . . . , n− 1}
and define the canonical surjection Πn: E→ En given by

Πn(x)(t) =
[nt]∑
k=0

x

(
k

n

)
1[k/n,(k+1)/n) + x(1) 1{1}

and the isomorphism Jn: En → Rn given by

Jn(x)k =
√
n

(
x

(
k

n

)
− x

(
k − 1

n

))
.

Denote by F the distribution function of ξ1 and let F−1(y) =
inf{x |F (x) > y} be its inverse; let Φ be the distribution function of the
standard Gaussian law, λ[a,b] the Lebesgue measure on [a, b] and λ̄ the nor-
malized Lebesgue measure on a finite interval. Finally, C is a universal
constant which may differ from place to place.

The proof of Theorem 1 consists in the analysis and verification of the
conditions of the following superstructure result.

Theorem 2 ([4, Theorem 18.4]). Consider a sequence of probability
measures {Pn, n ∈ N} defined on the Borel σ-algebra BX of a complete
separable metric space (X , d). Suppose that Pn ⇒ P∞. Furthermore sup-
pose that, for P∞-almost all x, there exist an open ball V centered at x, a
number ε > 0 and also a family (Gn,c, n ∈ N, c ∈ (0, ε]) of measurable
transformations of X such that the following five conditions are satisfied :

(i) for each c ∈ (0, ε) and each δ > 0, limn→∞ Pn{x | |Gn,c x−G∞,c x| >
δ} = 0;

(ii) for each c ∈ (0, ε), the mapping G∞,c is P∞-a.e. continuous ; more-
over, suppose that ρ(S, c) = supz∈S d(z,G∞,cz) → 0 when c → 0, for each
open ball S;

(iii) limc→0 limn→∞ ‖PnG−1
n,c − Pn‖ = 0;

(iv) for each δ ∈ (0, ε), suppose that∫
V

‖λ[0,δ]ϕ
−1
n,z − λ[0,δ]ϕ

−1
∞,z‖Pn(dz) −→ 0 when n→∞,

where ϕn,z(c) = f(Gn,cz) with n ∈ N and c ∈ (0, ε];

(v) for each δ ∈ (0, ε), the mapping z 7−→ λ[0,δ]ϕ
−1
∞,z of V into Z (R),

the Banach space of signed measure on R normed with the total variation,
is P∞-a.e. continuous.

Then

Pnf
−1 var−→ P∞f−1.
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Theorem B (for whose proof we refer to [4, Section 18]) needs some
explanations. Therefore, we shall now quickly go through the notation of
Theorem B in the set-up of Section 1 above, that is, in the case when Pn is
the probability law of the process Sn of (1.1) in the space E.

For x in the P -full set occurring in Definition 1 of M (1)
P , let V1(x) =

B(x, r1) be an open ball and let l be a direction.
Since Dlf(x) 6= 0 by the definition of M (1)

P , we can suppose Dlf(x) > 0
even if we change l into −l. Using continuity of D•f(·) at (x, l ‖l‖−10) ∈ A,
we get a neighborhood B(x, r2) × B(l ‖l‖−10, r′2) ∩ A with the property
B(x, r2) ⊂ B(x, r1) and such that f is Lipschitzian on B(x, r2) and fur-
thermore for every (y, h) in this neighborhood of (x, l ‖l‖−10) we have

Dhf(y) >
1

2
Dl/‖l‖f(x) > 0. (2.1)

In what follows, we consider the open ball V (x) = B(x, r3) with r3 6 r2/5
and ε < r2/a‖l‖. Assume P (∂V (x)) = 0 (reducing V (x) if it is not the case).

Let Un = F (ξn) (so that Un are uniform i.i.d. random variables), then
ηn = Φ−1(Un) are orthogaussian variables and we have the obvious but useful
representation ξn = F−1 ◦ Φ(ηn).

Define

U(x) = F−1 ◦ Φ(x) and V (x) = Φ−1 ◦ F (x).

Furthermore, define

ϕ(y) = (V (y1), . . . , V (yn)); ψ(x) = (U(x1), . . . , U (xn)); Gn,c(x) = x+ cl̄n,

where l̄n = Jn ◦Πn(l) = (ln,i)i6n with

ln,i =
√
n

(
l

(
i

n

)
− l
(
i− 1

n

))
(2.2)

and l ∈ HP given by the definition of M (1)
P .

The following commutative diagram sums up the situation:

E
Gn,c−−−→ E

Πn↓ ↑in
En En ,

Jn↓ ↑J−1
n

Rn
ϕ−−→ Rn

Gn,c−−−→ Rn
ψ−−→ Rn

where, for each n ∈ N, the transformation Gn,c is given by

Gn,c = in ◦ J−1
n ◦ ψ ◦Gn,c ◦ ϕ ◦ Jn ◦Πn, G∞,c = x+ cal, (2.3)
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a in (2.3) is defined as follows:

a =

∫
U ′(x) q(x) dx. (2.4)

R e m a r k. (i) Using the above definitions of Gn,c, we can obtain the
following explicit expression:

Gn,cx(t) =
∑
k6[nt]

U(V (
√
n(x(k/n)− x((k − 1)/n))) + cln,k)√

n
.

(ii) The function U = F−1 ◦ Φ is absolutely continuous on any finite
interval [a, b]. Indeed, since the function F has a derivative p > 0 a.e., it is
easy to see from [4, Theorem 4.2] that λ[a,b]F

−1 � λ. From the latter fact, we
easily infer that F−1 is absolutely continuous on [F (a), F (b)]. Consequently,
the absolute continuity of U on any finite intervals follows.

In particular, U is differentiable a.e. and for any dU -integrable func-
tion f , we easily show that∫

f(t)U ′(t) dt =

∫
f(t) dU(t).

(iii) The quantity a is well defined in (2.4) since we can see the conver-
gence of the integral by using, for example, the following considerations:∫ ∞

0

U ′(x) q(x) dx 6
∞∑
n=0

q(n) (U(n+ 1)− U(n)) 6
∞∑
n=0

q(n)U(n+ 1). (2.5)

Since ξ1 ∈ L2(Ω,F ,P), statement (1.1) in Appendix A.1 ensures the con-
vergence of the sum on the right-hand side of (2.5).

(iv) Since l is an element of the Cameron–Martin space HP , we obtain
the following:

n∑
i=1

l2n,i = n
n∑
i=1

(
l

(
i

n

)
− l
(
i− 1

n

))2

=
1

n

n∑
i=1

(
n

∫ i/n

(i−1)/n

l′(s) ds
)2

6
n∑
i=1

∫ i/n

(i−1)/n

l′(s)2 ds = ‖l′‖22 ; (2.6)

1√
n

n∑
i=1

|ln,i| 6
n∑
i=1

∣∣∣∣l( in
)
− l
(
i− 1

n

)∣∣∣∣ 6 n∑
i=1

∫ i/n

(i−1)/n

|l′(s)| ds 6
∫ 1

0

|l′(s)| ds;

(2.7)

max
i6n
|ln,i| =

√
n

∣∣∣∣ ∫ i/n

(i−1)/n

l′(s) ds
∣∣∣∣ 6 (∫ i/n

(i−1)/n

l′(s)2 ds

)1/2

−→ 0, (2.8)

where the convergence to 0 in (2.8) holds because l′ ∈ L2([0, 1]). In what
follows, we shall use h to denote an upper bound of {ln,i, i 6 n, n ∈ N}.
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(v) Since the result of Theorem 1 concerns convergence of the proba-
bility laws (Pn)n, there is no restriction to apply Skorokhod’s representation
theorem (see [1, Theorem 6.7]) and to suppose that we work with a proba-
bility space (Ω̃, F̃ , P̃) and processes S̃n, W̃ defined on this space such that
for all n ∈ N,

S̃n
L
= Sn, W̃

L
= W, S̃n −→ W̃ P̃-a.s. (2.9)

In the same way, we have S̃n = n−1/2
∑
i6[nt] ξ̃

n
i with independent and identi-

cally distributed random variables ξ̃ni
L
= ξi having the density p; analogously,

we have (ξ̃ni )i6n = (U(η̃ni ))i6n, where (η̃ni ) are independent N (0, 1) random
variables.

In order to not complicate notation, we will keep on writing Sn and W
for S̃n, W̃ in the sequel, keeping in mind that for each n, the family (ξ̃ni )i6n
changes.

3. Proof

The purpose is now to deal with conditions (i)–(v) of Theorem B. The
most difficult will be (i) and (iv).

3.1. Study of (i). In order to see, for any fixed c ∈ (0, ε) and any
α > 0, that

Pn{x | |Gn,cx−G∞,cx| > α} = P{|Gn,cSn −G∞,cSn| > α} −→ 0, (3.1)

as n→∞, remark first that we can write:

Gn,cSn(·) =
1√
n

∑
i6[n·]

U(ηni + cln,i), G∞,cSn(·) =
1√
n

∑
i6[n·]

U(ηni ) + cal.

(3.2)
Since ‖l([n·]/n) − l(·)‖ → 0 for n → ∞, we reduce the study to see the
following: ∥∥∥∥ 1√

n

∑
i6[n·]

U(ηni + caln,i)− U(ηni )− caln,i
∥∥∥∥ P−→ 0. (3.3)

With

τn,i = U(ηni + caln,i)− U(ηni )− caln,i, Sn,k =
k∑
i=1

τn,i√
n
,

we can write∥∥∥∥ 1√
n

∑
i6[n·]

U(ηni + caln,i)− U(ηni )− caln,i
∥∥∥∥ = max

k6n

∣∣∣∣ 1√
n

∑
i6k

τn,i

∣∣∣∣ = max
k6n
|Sn,k|.
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As ξ1 ∈ L2+γ(Ω,F ,P), we easily obtain by Hölder’s inequality that∫
U(x+ h)2q(x) dx <∞ (3.4)

and we deduce τn,i ∈ L2(Ω,F ,P).
We begin with the study of maxk6n |n−1/2

∑k
i=1 Eτn,i|.

Using definition (2.4) of a, we have by Fubini’s theorem

Eτn,i =

∫
(U(x+ cln,i)− U(x)) q(x) dx− caln,i

=

∫ ( ∫
[s−cln,i,s]

(q(x)− q(s)) dx
)
U ′(s) ds,

where we have assumed ln,i > 0 in order to write intervals [x, x+ cln,i] in an
easier way (which impose no restriction). Now we can derive:

max
k6n

∣∣∣∣∣ 1√
n

k∑
i=1

Eτn,i

∣∣∣∣∣ 6 1√
n

n∑
i=1

∫ ∣∣∣∣ ∫
[s−cln,i,s]

(q(x)− q(s)) dx
∣∣∣∣U ′(s) ds. (3.5)

Since by (2.4), (3.4) integrals
∫
U ′(s) e−s

2/2 ds,
∫
U ′(s) e−(|s|−εh)2/2 ds are con-

vergent and h is an upper bound of {ln,i, i 6 n, n ∈ N}, for any arbitrary
fixed α > 0, we can choose M > εh such that∫

|s|>M
U ′(s) e−s

2/2 ds,

∫
|s|>M

U ′(s) e−(|s|−εh)2/2 ds 6
α

2ε
∫ 1

0 |l′(s)| ds
.

(3.6)
We then study the right-hand side of (3.5) splitting the outer integral in to
two parts: (d1) =

∫
|s|>M , (d2) =

∫
|s|6M .

First,

(d1) 6
∫
|s|>M

(
1√
n

n∑
i=1

∣∣∣∣ ∫
[s−cln,i,s]

q(x) dx

∣∣∣∣+
1√
n

n∑
i=1

c|ln,i| q(s)
)
U ′(s) ds.

Since q(x) = e−x
2/2 6 e−(|s|−εh)2/2 for x ∈ [s− cln,i, s], we have

1√
n

n∑
i=1

∣∣∣∣ ∫
[s−cln,i,s]

q(x) dx

∣∣∣∣ 6 ε ∫ 1

0

|l′(s)| ds e−(|s|−εh)2/2.

It follows with (2.7) and choice (3.6) of M that (d1) 6 α.
Second, in order to study (d2), write∣∣∣∣ ∫

[s−cln,i,s]
(q(x)− q(s)) dx

∣∣∣∣ =

∣∣∣∣e−s2/2 ∫ cln,i

0

(esy−y
2/2 − 1) dy

∣∣∣∣
6 Ke−s

2/2

∣∣∣∣ ∫ cln,i

0

(
|sy|+ y2

2

)
dy

∣∣∣∣ 6 Ke−s
2/2

2
ε2l2n,i

(
|s|+ εh

3

)
,
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where the last but one inequality is due to boundedness of exp by K on a
finite interval when s ∈ [−M,M ], |y| 6 εh. Since |x| 6 M , estimate (2.6)
and choice (3.6) of M ensure

(d2) 6
1√
n

Kε2

2

(
M +

εh

3

)
‖l′‖22

∫
e−s

2/2U ′(s) ds = O

(
1√
n

)
. (3.7)

From (3.5), (3.7) and (d1) 6 α, we deduce:

lim
n

max
k6n

∣∣∣∣∣ 1√
n

k∑
i=1

Eτn,i

∣∣∣∣∣ = 0. (3.8)

The study of (3.3) is thus brought back to

max
k6n

∣∣∣∣∣
k∑
i=1

τn,i −Eτn,i√
n

∣∣∣∣∣. (3.9)

Doob’s maximal inequality, applied to the positive submartingale given by
the absolute value of partial sums of independent centered variables, yields:

E

(
max
k6n

∣∣∣∣∣
k∑
i=1

τn,i −Eτn,i√
n

∣∣∣∣∣
)2

= E max
k6n

(
k∑
i=1

τn,i −Eτn,i√
n

)2

6 4 E

(
n∑
i=1

τn,i −Eτn,i√
n

)2

6
4

n

n∑
i=1

E(U(ηni + cln,i)− U(ηni ))
2
. (3.10)

Using Fubini’s theorem, we have:

E(U(ηni + cln,i)− U(ηni ))
2

=

∫
R
U ′(s)

∫
[s−cln,i,s+cln,i]

U ′(t)
∫

1I(s,t,cln,i)(x) q(x) dx dt ds, (3.11)

where I(s, t, cln,i) = [s− cln,i, s]∩ [t− cln,i, t] is of length smaller than c|ln,i|.
We split once more the outer integral into two parts:

(d3) =

∫
|s|6εh

, (d4) =

∫
|s|>εh

.

Since
∫
I(s,t,cln,i)

q(x) dx 6 c|ln,i| and integrals over finite intervals are
bounded, there is a constant K3 <∞ such that

(d3) 6 K3 ε|ln,i|. (3.12)

Since for x ∈ I(s, t, cln,i), we have |x| > |s| − εh, monotony of q ensures∫
I(s,t,cln,i)

q(x) dx 6 c|ln,i| q(|s| − εh).
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Whence

(d4) 6
∫
|s|>εh

(
U ′(s) c|ln,i| q(|s| − εh)

∫
[s−cln,i,s+cln,i]

U ′(t) dt
)
ds

6
∫
|s|>εh

U ′(s) c|ln,i| q(|s| − εh)(U(s+ εh)− U(s− εh)) ds. (3.13)

Since from Appendix A.1: U(x) = o((x/q(x))1/(2+γ)), we have for any
fixed µ:

q(|s| − µ)

(
s+ h

q(s+ h)

)1/(2+γ)

= o

(
exp

{
− s2

16

})
.

Comparing
∫∞

0 U ′(s) exp{−s2/16} ds to a series, we obtain the convergence
of
∫
|s|>µ q(|s| − µ)U(s + h) dU(s). We deduce from (3.13) that there is a

constant K4 <∞ such that

(d4) 6 K4 ε|ln,i|. (3.14)

It follows from (3.10)–(3.12), (3.14), using (2.7):

E

(
max
k6n

∣∣∣∣∣
k∑
i=1

τn,i −Eτn,i√
n

∣∣∣∣∣
)2

6
1√
n

(K3 +K4) ε

∫ 1

0

|l′(s)| ds. (3.15)

We thus obtain (3.3) from (3.8), (3.15). Finally, (3.1) is satisfied and so is
point (i) of Theorem B.

3.2. Study of (ii). Mappings G∞,c are obviously continuous, and
d∞(z,G∞,cz) = ca‖l‖ → 0 as c→ 0, so (ii) is easily justified.

3.3. Study of (iii). We aim to see

lim
c→0

lim
n
‖PnG−1

n,c − Pn‖ = 0. (3.16)

For ηn = (ηn1 , . . . , η
n
n) with law Pn, we easily have

Sn =
1√
n

[n·]∑
i=1

ξni = J−1
n (ξn1 , . . . , ξ

n
n).

From notation (2.3), we have also Gn,cSn = J−1
n ◦ ψ(Gn,cη

n). It follows

‖PnG−1
n,c − Pn‖ 6 ‖PnG

−1

n,c −Pn‖ 6 c ‖l′‖2 , (3.17)

where the later inequality is due to Lemma 20.1 from [4] applied to the
standard n-dimensional Gaussian law Pn, and to the fact that the Fisher
information of N (0, 1) is 1. Now (3.16) readily follows from (3.17).
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3.4. Study of (v). In this section, we aim at seeing for any δ ∈ (0, ε)
that for P -almost all z ∈ V (x), the convergence zn → z implies

‖λ[0,δ]ϕ
−1
∞,zn − λ[0,δ]ϕ

−1
∞,z‖ −→ 0, (3.18)

where we remind that ϕ∞,z(c) = f(G∞,cz).

Let ∆n = {zn + cal, c ∈ [0, δ]} and ∆ = {z + cal, c ∈ [0, δ]}. Since
zn → z, we have the convergence of segments ∆n → ∆.

Since zn, z ∈ B(x, r3) and c 6 δ 6 ε 6 r3(a‖l‖)−1, we have ∆n,∆ ⊂
B(x, 2r3).

Choice of neighborhood ensures f is Lipschitzian over B(x, r2)
and D•f(·) is continuous over B(x, r2)×B(l ‖l‖−10, r′2) ∩A.

With f∆n
, f∆ standing for the restrictions of f over segments ∆n,∆, we

have

λ[0,δ]ϕ
−1
∞,zn = λf−1

∆n
, λ[0,δ]ϕ

−1
∞,z = λf−1

∆

and (3.18) is a consequence of the following proposition.

Proposition 3 ([3, Corollary 2]). Let gn: [0, 1] → R, n ∈ N, be such
that

1. gn is absolutely continuous for all n ∈ N;

2. gn(0)→ g∞(0) as n→∞;

3. gn(1)→ g∞(1) as n→∞;

4. g′n(c) > 0 a.e. for all n ∈ N;

5. g′n(c)→ g′∞(c) a.e. as n→∞;

then λg−1
n

var→ λg−1
∞ .

In our setting, points 1, 2, 3 are trivial. Point 4 follows from

(zn+cal, l ‖l‖−1), (z+cal, l ‖l‖−1) ∈ B(x, r2)×B(l ‖l‖−1, r′2)
⋂
A, (3.19)

and (2.1). Point 5 is due to the continuity of D•f(·) on B(x, r2) ×
B(l ‖l‖−1, r′2) ∩A the latter product neighborhood.

3.5. Study of (iv). Remind we denote, for any n ∈ N, ϕn,z: c 7→
f(Gn,cz). We aim now at seeing that

lim
n

∫
V

‖λ[0,δ]ϕ
−1
n,z − λ[0,δ]ϕ

−1
∞,z‖Pn(dz) = 0. (3.20)

Write down for the sequel:

gn(ω, c) = f(Gn,cSn), g∞(ω, c) = f(G∞,cW );

hn(ω, c) = f(G∞,cSn), h∞ = g∞.

Remind we work with a probability space due to Skorokhod’s represen-
tation theorem [1, Theorem 6.7] for which (2.9) holds: Sn →W P-a.s.
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3.6. Study of (hn)n. The following proposition will be proved in Ap-
pendix A.3 using preceding Proposition 3.

Proposition 4. For n ∈ N, let fn: (Ω× [0, δ],F ×B([0, δ]),P⊗ λ̄)→
R, Ω∗ ∈ F , Ω∗ ⊂ Ω be such that

1) for all ω ∈ Ω∗, there exists N1(ω), for all n > N1(ω), fn(ω, ·) is
absolutely continuous ;

2) fn(ω, 0)
P−→ f∞(ω, 0) on Ω∗;

3) fn(ω, δ)
P−→ f∞(ω, δ) on Ω∗;

4) for all ω ∈ Ω∗ there exists N4(ω) for all n > N4(ω), we have
∂
∂c
fn(ω, c) > 0 λ-a.e. for c ∈ (0, δ);

5) ∂
∂c
fn(ω, c)

P⊗λ̄−→ ∂
∂c
f∞(ω, c) on Ω∗.

Then ‖λ[0,δ]fn(ω, ·)−1 − λ[0,δ]f∞(ω, ·)−1‖ P−→ 0 on Ω∗.

(i) For ω ∈ W−1(V ) and c 6 δ 6 r3/a‖l‖, there is N1(ω) such that
for n > N1(ω), Sn + cal ∈ B(x, 3r3) ⊂ B(x, r2), where f is Lipschitzian.
Required absolute continuity in point 1 is easily derived.

(ii) We have for any c ∈ [0, δ], Sn + cal → W + cal ∈ B(x, r2) a.s.
for ω ∈ W−1(V ). Continuity of f ensures the a.s. convergence and thus
convergence in probability of f(Sn+ cal) to f(W + cal). Points 2, 3 are thus
satisfied.

(iii) For n > N1(ω) and c 6 δ 6 r3/a‖l‖, we have Sn + cal ∈ B(x, r2). It
follows easily hn(ω, ·) is differentiable a.e. on [0, δ] and

∂

∂c
hn(ω, c) = Dalf(G∞,cSn).

Since (Sn + cal, l ‖l‖−1) ∈ B(x, r2) × B(l ‖l‖−1, r′2) ∩ A, we have for all
ω ∈ W−1(V ), ∂

∂c
hn(ω, c) > 0 a.e. Similarly ∂

∂c
h∞(ω, c) > 0 and point 4 is

guaranteed.
(iv) Since Sn+ cal→W + cal P-a.s. and (Sn+ cal, l ‖l‖−1) ∈ B(x, r2)×

B(l ‖l‖−10, r′2) ∩A, where D•f(·) is continuous, point 5 is clear.
Proposition 4 applied to (hn)n>1 yields for any α > 0,

lim
n→∞P

{
ω ∈W−1(V ), ‖λ[0,δ]hn(ω, ·)−1 − λ[0,δ]h∞(ω, ·)−1‖ > α

}
= 0. (3.21)

3.7. Study of (gn)n>1. For (gn)n>1, we use another version of Propo-
sition 4 derived in the same way from a corollary of Proposition 3 (see
Appendix A.3).

Proposition 5. For n ∈ N, let fn: (Ω × [0, δ], F × B([0, δ]),
P⊗ λ̄)→ R, Ω∗ ∈ F , Ω∗ ⊂ Ω be such that

1) for all ω ∈ Ω∗, there exists N1(ω), for all n > N1(ω), fn(ω, ·) is
absolutely continuous ;

2) fn(ω, 0)
P−→ f∞(ω, 0) on Ω∗;
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3) for all ω ∈ Ω∗, we have ∂
∂c
f∞(ω, c) > 0 λ-a.e. for c ∈ (0, δ);

4) ‖ ∂
∂c
fn(ω, c)− ∂

∂c
f∞(ω, c)‖L1

P−→ 0 on Ω∗.

Then ‖λ[0,δ]fn(ω, ·)−1 − λ[0,δ]f∞(ω, ·)−1‖ P−→ 0 on Ω∗.

Verification of the hypotheses of this proposition for (gn)n>1 requires a
preliminary study of a tangent vector Ln,Sn,c to the trajectory (Gn,cSn)c.

3.7.1 . Study of the tangent vector. Using (3.2) and a.e. differen-
tiability of U , we have, for each t ∈ [0, 1], for fixed ω ∈ Ω, n ∈ N:

∂

∂c
(Gn,cSn(t)) =

1√
n

[nt]∑
i=1

ln,i U
′(ηni + cln,i) a.e. (3.22)

Let us show that (3.22) holds in E for almost all c ∈ [0, δ]. Since |ln,i| 6 h,
for n fixed and almost all ω the differentiability of U implies that for any
ε > 0 and almost all c, there is α(ω, n, c) such that for δ 6 α(ω, n, c)/h,
i = 1, . . . , n:∣∣∣∣U(ηni + (c+ δ) ln,i)− U(ηni + cln,i)− δln,iU ′(ηni + cln,i)

δln,i

∣∣∣∣ 6 ε.
We easily derive the following inequality using again (2.7):

∥∥∥∥∥Gn,c+δSn −Gn,cSn − δ√
n

[n]∑
i=1

ln,iU
′(ηni + cln,i)

∥∥∥∥∥ 6 εδ
∫ 1

0

|l′(s)| ds.

Finally, for all ω ∈ Ω, there is a set A(ω) ∈ B([0, δ]), λ(A(ω)) = 0 such that
for all n ∈ N and c /∈ A(w), we have the differentiability of Gn,cSn at c:

Ln,Sn,c :=
∂

∂c
(Gn,cSn)(c) =

1√
n

[n]∑
i=1

ln,i U
′(ηni + cln,i). (3.23)

For n =∞, the tangent vector is obviously al.

In the sequel, we need a convergence of Ln,Sn,c to al in the following
sense:

E

(
1

δ

∫ δ

0

‖Ln,Sn,c − al‖ dc
)
−→ 0. (3.24)

Expression (3.23) for Ln,Sn,c and the convergence ‖l([n]/n) − l‖ → 0 as
n→∞ allow us to reduce the study to that of∥∥∥∥∥ 1√

n

[n·]∑
i=1

ln,i (U ′(ηni + cln,i)− a)

∥∥∥∥∥ = max
k6n

∣∣∣∣∣ 1√
n

k∑
i=1

ln,i (U ′(ηni + cln,i)− a)

∣∣∣∣∣.
(3.25)
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To this way, we use the following additional notation:

l̂n,i =
ln,i√
n

; h(x) = U ′(x)− a; Zn(c) =
[n·]∑
i=1

l̂n,i (U ′(ηni + cln,i)− a);

ζn,i(c) = h(ηni + cln,i); ζsn,i(c) = ζn,i(c) 1|ζn,i(c)|6s, s > 0.

Note that for η an N (0, 1) random variable, we have E|h(η)| < ∞,
Eh(η) = 0 and integrability of ζn,i(c) follows from (3.4). Split Zn(c) as fol-
lows:

Zn(c) = (d5) + (d6) + (d7), (3.26)

where

(d5) =
[n·]∑
i=1

l̂n,i (ζsn,i(c)−Eζsn,i(c)), (d6) =
[n·]∑
i=1

l̂n,i Eζ
s
n,i(c),

(d7) =
[n·]∑
i=1

l̂n,i ζn,i(c) 1|ζn,i(c)|>s.

In order to deal with (d5), we use Fubini’s theorem and Doob’s maximal
inequality together with (2.6):

E

(
1

δ

∫ δ

0

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,i(ζ
s
n,i(c)−Eζsn,i(c))

∣∣∣∣∣ dc
)2

6
1

δ

∫ δ

0

E max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,i(ζ
s
n,i(c)−Eζsn,i(c))

∣∣∣∣∣
2

dc

6
1

δ

∫ δ

0

E

(
n∑
i=1

l̂n,i(ζ
s
n,i(c)−Eζsn,i(c))

)2

dc

6
1

δ

∫ δ

0

n∑
i=1

l̂ 2
n,iE(ζsn,i(c)−Eζsn,i(c))

2 dc

6 s2
n∑
i=1

l̂ 2
n,i −→ 0 as n→∞. (3.27)

In order to study (d6), we show:

lim
s→∞ lim

n

∫ δ

0

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iEζ
s
n,i(c)

∣∣∣∣∣ dc = 0. (3.28)

Since

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iEζ
s
n,i(c)

∣∣∣∣∣ 6
n∑
i=1

|l̂n,i| |Eζsn,i(c)|,
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let us see first that

sup
i6n, c∈[0,δ]

|Eζsn,i(c)−Eζsn,i(0)| −→ 0 when n→∞. (3.29)

Easy computations yield

sup
i6n, c∈[0,δ]

|Eζsn,i(c)−Eζsn,i(0)| = sup
i6n, c∈[0,δ]

s

∫
|q(x− cln,i)− q(x)| dx

ensuring (3.29) by continuity of translation in L1 and integrability of q.
Next, since (ζsn,i(0))i6n are identically distributed, we have by (2.7) that

n∑
i=1

|l̂n,i| |Eζsn,i(c)| 6
∫ 1

0

|l′(s)| ds
(
|Eζsn,1(0)|+ sup

i6n, c∈[0,δ]

|Eζsn,i(c)−Eζsn,i(0)|
)
.

It follows that∫ δ

0

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iEζ
s
n,i(c)

∣∣∣∣∣ dc
6 δ

∫ 1

0

|l′(s)| ds
(
|Eζsn,1(0)|+ sup

i6n, c∈[0,δ]

|Eζsn,i(c)−Eζsn,i(0)|
)
,

now (3.29) and Eζsn,1(0) → 0 when s → ∞ (by dominated convergence)
ensure (3.28).

We start the study of (d7) with the following considerations:

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iζn,i(c) 1|ζn,i(c)|>s
∣∣∣ 6 n∑

i=1

|l̂n,i| |ζn,i(c)|1|ζn,i(c)|>s.

Since E|ζn,i(c)|1|ζn,i(c)|>s =
∫ |h(x)|1|h(x)|>s q(x− cln,i) dx, we have:

sup
i6n, c∈[0,δ]

∣∣∣E|ζn,i(c)|1|ζn,i(c)|>s − E|ζn,i(0)|1|ζn,i(0)|>s
∣∣∣

6
∫
|h(x)|1|h(x)|>s sup

i6n, c∈[0,δ]

|q(x− cln,i)− q(x)| dx.

But obviously

sup
i6n, c∈[0,δ]

|q(x− cln,i)− q(x)| −→ 0 as n→∞

and

|h(x)|1|h(x)|>s sup
i6n, c∈[0,δ]

|q(x− cln,i)− q(x)|
6 |h(x)|q(x) + |h(x)|1|x|6δh + |h(x)|1|x|>δhq(|x| − δh).

The first two terms of the right-hand side are integrable, so is also the third
one according to the following lemma proved in Appendix A.2.
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Lemma 1. For all λ > 0, we have
∫
U ′(x) q(|x| − λ) dx <∞.

Thus dominated convergence ensures

sup
i6n, c∈[0,δ]

∣∣∣E|ζn,i(c)|1|ζn,i(c)|>s −E|ζn,i(0)|1|ζn,i(0)|>s
∣∣∣ −→ 0 (3.30)

as n→∞. Then

E

∫ δ

0

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iζn,i(c) 1|ζn,i(c)|>s

∣∣∣∣∣ =

∫ δ

0

E max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iζn,i(c) 1|ζn,i(c)|>s

∣∣∣∣∣ dc
6

n∑
i=1

|l̂n,i|
∫ δ

0

∣∣∣E|ζn,i(c)|1|ζn,i(c)|>s −E|ζn,i(0)|1|ζn,i(0)|>s

∣∣∣∣∣ dc
+ δ

n∑
i=1

|l̂n,i|E|ζ1,1(0)|1|ζ1,1(0)|>s.

Since ζ1,1(0) is a centered and integrable variable, dominated convergence
ensures:

E(|ζ1,1(0)|1|ζ1,1(0)|>s) −→ 0, Eζs1,1(0) −→ 0, s→∞. (3.31)

Using (3.31) and (3.30), we obtain by (2.7):

lim
s→∞ lim

n
E

∫ δ

0

max
k6n

∣∣∣∣∣
k∑
i=1

l̂n,iζn,i(c) 1|ζn,i(c)>s

∣∣∣∣∣ dc = 0. (3.32)

Since

1

δ

∫ δ

0

∥∥∥∥∥
[n·]∑
i=1

l̂n,iζn,i(c)

∥∥∥∥∥ dc 6 1

δ

∫ δ

0

∥∥∥∥∥
[n·]∑
i=1

l̂n,i(ζ
s
n,i(c)−Eζsn,i(c))

∥∥∥∥∥ dc
+

1

δ

∫ δ

0

∥∥∥∥∥
[n·]∑
i=1

l̂n,iζn,i(c) 1|ζn,i(c)|>s

∥∥∥∥∥ dc+
1

δ

∫ δ

0

∥∥∥∥∥
[n·]∑
i=1

l̂n,iEζ
s
n,i(c)

∥∥∥∥∥ dc,
using (3.27), (3.28) and (3.32) with the decomposition (3.26), we deduce

E

(
1

δ

∫ δ

0

‖Ln,Sn,c − al‖ dc
)

= E

(
1

δ

∫ δ

0

∥∥∥∥∥
[n·]∑
i=1

l̂n,iζn,i(c)

∥∥∥∥∥ dc
)
−→ 0, n→∞.

We obtain thus convergence (3.24) of Ln,Sn,c.

It is easy to see also that we have for each fixed c ∈ [0, δ] the convergence
of Ln,Sn,c in probability to al:

Ln,Sn,c
P−→ al. (3.33)
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Indeed, it suffices to prove the convergence in probability to 0 of (3.25). To
this end we study sums corresponding to (d5), (d6), and (d7) as previously
but without integrating in c ∈ [0, δ].

Since Gn,cSn(t) is absolutely continuous, one has:

Gn,cSn(t) = Sn(t) +

∫ c

0

Ln,Sn,s(t) ds, G∞,cW (t) = W (t) + cal.

It follows

‖Gn,cSn −G∞,cW‖ 6 ‖Sn −W‖+ sup
t∈[0,1]

∣∣∣∣ ∫ c

0

(Ln,Sn,s(t)− al(t)) ds
∣∣∣∣

6 ‖Sn −W‖+

∫ δ

0

‖Ln,Sn,s − al‖ ds,

and so

sup
c∈[0,δ]

‖Gn,cSn −G∞,cW‖ P−→ 0, n→∞. (3.34)

3.7.2 . Verification of the hypotheses of Proposition 5
for (gn)n>1.

1. Absolute continuity of gn(ω, ·), n ∈ N. We use the fact that f is
locally Lipschitzian. The case of g∞(ω, ·) = h∞(ω, ·) is evident. To study
gn(ω, ·) = f(Gn,·Sn), introduce u(n): c 7−→ (u

(n)
1 (c), . . . , u(n)

n (c)), where

u
(n)
i (c) = n−1/2U(ηni + cln,i).

For all fixed ω ∈ Ω and ηni + cln,i remaining in a bounded domain, u
(n)
i is

absolutely continuous. We use the following simple fact.

Lemma 2. Let (f1, . . . , fp): R → V ⊂ Rp be a mapping whose com-
ponents are absolutely continuous, and let F : V → R be Lipschitzian. Then
G = F (f1, . . . , fp) is absolutely continuous.

Let θn: Rn → E be the following Lipschitzian function:

θn(x)(t) =
[nt]∑
i=1

xi, t ∈ [0, 1].

Note that

θn(u(n)(c)) = Gn,cSn.

For fixed ω, n, c there is a convex open neighborhood V (Gn,cSn)
of Gn,cSn on which f is Lipschitzian. Since Gn,sSn → Gn,cSn as s → c,
there is Ic(ω, n), neighborhood of c in [0, δ], such that for s ∈ Ic(ω, n),

Gn,sSn = θn(u(n)(s)) ∈ V (Gn,cSn).
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Since θn is linear and V (Gn,cSn) is open convex, we get u(n)(s) ∈
θ−1
n (V (Gn,cSn)). So,

(a) f ◦ θn is Lipschitzian on θ−1
n (V (Gn,cSn));

(b) u(n) takes values in θ−1
n (V (Gn,cSn)) on Ic(ω, n) and has absolutely

continuous components.
Lemma 2 ensures absolute continuity of f ◦ θn ◦ u(n) = f(Gn,•Sn) =

gn(ω, ·) on Ic(ω, n). Extracting a finite cover of [0, δ] by open sets Ick(ω, n),
one obtains absolute continuity of gn(ω, ·) for any ω, n.

2. Point 3.6 (ii) asserts exactly that gn(ω, 0)
P−→ g∞(ω, 0).

3. In order to see gn(ω, δ)
P−→ g∞(ω, δ), we use already checked point (i)

of Theorem B and Skorokhod’s representation theorem to derive

Gn,δSn
P−→ G∞,δW, n→∞.

We conclude this step using continuity of f at W + δal ∈ B(x, 2r3) for
ω ∈W−1(V ).

4. We study here ∂
∂c
gn(ω, c), n ∈ N.

From absolute continuity proved in 1 we deduce that for all fixed ω, n,
derivatives ∂

∂c
gn(ω, c), ∂

∂c
g∞(ω, c) are defined on a set A(ω) ∈ B([0, δ]),

λ(A(ω))complement = 0. We know already from 3.6 that for all ω ∈ W−1(V )
almost all c

∂

∂c
g∞(ω, c) = Dalf(G∞,cW ).

For fixed ω, n, we show that f is differentiable in the tangent direction Ln,Sn,c
at Gn,cSn and on a set of measure 1

∂

∂c
gn(ω, c) = DLn,Sn,c

f(Gn,cSn) (3.35)

Indeed since for almost all c,

f(Gn,c+hSn)− f(Gn,cSn)

h
−→ ∂

∂c
gn(ω, c), h→ 0,

to prove (3.35) it suffices to establish that

lim
h→0

∥∥∥∥f(Gn,cSn + hLn,Sn,c)− f(Gn,cSn)

h
− f(Gn,c+hSn)− f(Gn,cSn)

h

∥∥∥∥ = 0.

The latter identity follows from the fact that f is locally Lipschitzian and
from almost sure existence of Ln,Sn,c giving

Gn,cSn + hLn,Sn,c −Gn,c+hSn

h
−→ 0, h→ 0.

5. Since g∞ = h∞, the bound ∂
∂c
g∞(ω, c) > 0 a.s. for ω ∈ W−1(V )

follows from 3.6 (iv).
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6. Verification of hypothesis 4) of Proposition 5 for (gn). The purpose
is to end checking point 4) for (gn) by proving that∥∥∥∥ ∂∂c gn(ω, ·)− ∂

∂c
g∞(ω, ·)

∥∥∥∥
L1([0,δ])

P−→ 0, n→∞. (3.36)

Let (n′) be any subsequence; we begin with extracting a further sub-
sequence (n′′) ⊂ (n′) with almost sure convergences (3.24), (3.33), (3.34).
With ω in this almost sure set, we have seen that for λ̄-almost all c ∈ [0, δ]

∂

∂c
gn′′(ω, c) = DLn′′,S

n′′ ,c
f(Gn′′,cSn′′),

∂

∂c
g∞(ω, c) = Dalf(G∞,cW ).

There is N(ω) such that for n′′ > N(ω) and c ∈ [0, δ], Gn′′,cSn′′ ∈ B(x, r2).
Then∥∥∥∥ ∂∂c gn′′(ω, ·)− ∂

∂c
g∞(ω, ·)

∥∥∥∥
L1([0,δ])

=

∫
[0,δ]

|DLn′′,S
n′′ ,c

f(Gn′′,cSn′′)−Dalf(G∞,cW )| dc

6
∫

[0,δ]

∣∣∣DLn′′,S
n′′ ,c‖Ln′′,Sn′′ ,c‖

−1f(Gn′′,cSn′′)
∣∣∣ |‖Ln′′,Sn′′ ,c‖ − a‖l‖| dc

+a ‖l‖
∫

[0,δ]

∣∣∣DLn′′,S
n′′ ,c‖Ln′′,Sn′′ ,c‖

−1f(Gn′′,cSn′′)−Dl/‖l‖f(G∞,cW )
∣∣∣ dc.

Since (Gn′′,cSn′′ , Ln′′,Sn′′ ,c‖Ln′′,Sn′′ ,c‖−1) ∈ A and (G∞,cW, l ‖l‖−10) ∈ A,
where A is a set on which D•f(·) is bounded, the first term on the right-hand
side of the later inequality goes to zero because of (3.24). Since, moreover,

Gn′′,cSn′′ −→ G∞,cW,
Ln′′,Sn′′ ,c

‖Ln′′,Sn′′ ,c‖
−→ l

‖l‖ ,

we have

DLn′′,S
n′′ ,c‖Ln′′,Sn′′ ,c‖

−1f(Gn′′,cSn′′) −→ Dl/‖l‖f(G∞,cW ), n′′ →∞.

Since the sequence is bounded, by dominated convergence, the second term
also goes to 0. Finally, we obtain (3.36) and point 4) of Proposition 5
for (gn)n>1.

3.7.3 . Conclusion for sequence (gn)n>1. Applying Proposition 5
yields: for any s > 0,

lim
n→∞P

{
ω ∈W−1(V ) | ‖λ[0,δ]gn(ω, ·)−1 − λ[0,δ]g∞(ω, ·)−1‖ > s

}
= 0. (3.37)
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3.8. Final verification of (iv) of Theorem B. First, since
h∞ = g∞, we obtain

‖λ[0,δ]gn(ω, ·)−1 − λ[0,δ]hn(ω, ·)−1‖ 6 ‖λ[0,δ]gn(ω, ·)−1 − λ[0,δ]g∞(ω, ·)−1‖
+ ‖λ[0,δ]hn(ω, ·)−1 − λ[0,δ]h∞(ω, ·)−1‖.

We deduce from studies of hn, gn leading to (3.21), (3.37), that for any α > 0

lim
n→∞P

{
ω ∈W−1(V ) | ‖λ[0,δ]gn(ω, ·)−1 − λ[0,δ]hn(ω, ·)−1‖ > α

}
= 0.

Since λ[0,δ]gn(ω, ·)−1 = λ[0,δ]ϕ
−1
n,Sn

and λ[0,δ]hn(ω, ·)−1 = λ[0,δ]ϕ
−1
∞,Sn , one has

P
{
ω ∈ S−1

n (V ) | ‖λ[0,δ]ϕ
−1
n,Sn
− λ[0,δ]ϕ

−1
∞,Sn‖ > α

}
6 P

{
ω ∈W−1(V ) | ‖λ[0,δ]ϕ

−1
n,Sn
− λ[0,δ]ϕ

−1
∞,Sn‖ > α

}
+ P(S−1

n (V ) \W−1(V )).

Since Sn → W and P (∂V ) = 0, we get P(Sn ∈ V \W ∈ V ) → 0 and it
follows

lim
n→∞Pn{x ∈ V | ‖λ[0,δ]ϕ

−1
n,x − λ[0,δ]ϕ

−1
∞,x‖ > α} = 0. (3.38)

Denoting An,α = {x | ‖λ[0,δ]ϕ
−1
n,x − λ[0,δ]ϕ

−1
∞,x‖ > α}, we have:∫

V

‖λ[0,δ]ϕ
−1
n,x − λ[0,δ]ϕ

−1
∞,x‖Pn(dx)

=

∫
V ∩An,α

‖λ[0,δ]ϕ
−1
n,x − λ[0,δ]ϕ

−1
∞,x‖Pn(dx)

+

∫
V ∩Acn,α

‖λ[0,δ]ϕ
−1
n,x − λ[0,δ]ϕ

−1
∞,x‖Pn(dx)

6 2Pn{x ∈ V | ‖λ[0,δ]ϕ
−1
n,x − λ[0,δ]ϕ

−1
∞,x‖ > α}+ α

∫
V ∩Acn,α

Pn(dx).

Using first (3.38) with n → ∞ and then having α → 0, we obtain finally
point (iv) of Theorem B.

3.9. Conclusion. Finally applying Theorem B, we prove Theorem 1
and obtain (1.3).

4. Examples of functionals in M (1)
P

We prove in this section Proposition 1 and 2.
First, the property stated in Proposition 2 is clear since conditions of

Theorem 19.1 in [4] are satisfied and ensure that M (1)
P is a proper subset

of M (a)
P for which the property is known (see [4, Section 19]).
We discuss now examples cited in Proposition 1.
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4.1. Study of sup type functional.

4.1.1 . Differentiability. Consider g defined by (1.4) and let S0 =
{t ∈ R |ϕ′(t) 6= 0} ∈ B(R), λ(Sc0) = 0.

Let Mx = {t ∈ [0, 1] | g(x) = ϕ(x(t))}; since ϕ is convex, cardMx ∈
{1, 2}.

R e m a r k 3. Moreover, since the vector (supt∈[0,1]W (t), inft∈[0,1]W (t))
has a density (see [1, Section 11]), we have even for P -almost all x,
card Mx = 1.

Using [8], we can define tx = argmaxt∈[0,1]ϕ(x(t)), P -a.s. We can derive
from absolute continuity of supt∈[0,1]W (t) and inft∈[0,1]W (t) that x(tx) ∈ S0,
P -a.s.

We have the following differentiability property.

Lemma 3. For all x, l ∈ C([0, 1]), g is differentiable at x in the direc-
tion l:

D−l g(x) = inf
t∈Mx

ϕ′(x(t)) l(t), D+
l g(x) = max

t∈Mx

ϕ′(x(t)) l(t), (4.1)

where D−l , D+
l mean left and right weak derivatives along l.

P r o o f. Using convexity of ϕ, we have for tx ∈Mx and tc ∈Mx+cl:

ϕ′(x(tx)) c l(tx) 6 g(x+ cl)− g(x) 6 ϕ′(x(tc) + cl(tc)) c l(tc). (4.2)

It is easy to observe that for any positive sequence (cn)n>1 going to 0
and tn ∈Mx+cnl, we can extract (cn′) such that tn′ → t0 ∈Mx, n

′ →∞.

Let (cn′) be extracted from any (cn)n>1 positive going to zero; we can
extract further (cn′′) with tn′′ → t0 ∈ Mx. Since ϕ′ is continuous, we derive
from (4.2) for any tx ∈Mx:

ϕ′(x(tx)) l(tx) 6 lim
n′′→∞

g(x+ cn′′ l)− g(x)

c

6 lim
n′′→∞

g(x+ cn′′ l)− g(x)

c
6 ϕ′(x(t0)) l(t0).

Taking maximum over tx ∈ Mx, we deduce that from any (cn′), we can
extract (cn′′) with the same relative limit

lim
n→∞

g(x+ cn′′ l)− g(x)

c
= max

t∈Mx

ϕ′(x(t)) l(t).

So the second part of (4.1) holds; similar computations yield its first part.
Lemma 3 is proved.
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4.1.2 . Verification of the conditions for a functional to belong
to M (1)

P . Let x ∈ B0, where B0 is the measurable set for which tx =
argmaxt∈[0,1]ϕ(x(t)) is well defined (see Remark 3); in this case Dlg(x) =
ϕ′(x(tx)) l(tx). Consider the neighborhood B(x, 1) of x.

1. With M = ‖x‖ + 1, since ϕ is Lipschitzian on [−M,M ] with some
positive constant KM , we easily obtain

|g(y)− g(x)| 6 sup
t∈[0,1]

|ϕ(x(t))− ϕ(y(t))| 6 KM‖x− y‖.

2. Since tx realizes supt∈[0,1] ϕ(x(t)), convexity of ϕ ensures ϕ′(x(t)) 6= 0.
We thus easily find l ∈ HP with Dlg(x) 6= 0.

3. Recall A = {(y, l) | ‖l‖ = 1, Dlg(y) defined}.
For (y, l) ∈ A, Dlg(y) exists; thanks to Lemma 3, we have

Dlg(y) = ϕ′(y(ty)) l(ty), for ty ∈My.

Since y ∈ B(x, 1), we have that Dlg(y) is bounded by KM ‖l‖.
For (yn, ln)→ (y, l) ∈ A, since derivatives exist, we have for tn ∈Myn :

Dlng(yn) = ϕ′(yn(tn)) ln(tn).

For any (n′), we can extract (n′′) with tn′′ → t0 ∈My and obtain for n′′ →∞:

ϕ′(yn′′(tn′′)) ln′′(tn′′) −→ ϕ′(y(t0)) l(t0) = Dlg(y).

Since the limit does not depend on subsequence (n′), we have the required
continuity.

R e m a r k 4. As mentioned in Remark 1, we can weaken the condi-
tions on ϕ in (1.4). In this case, Lemma 3 does not hold anymore, but we can
exhibit B0 ∈ B(R) with λ(Bc

0) = 0 such that for x ∈ B0 and l ∈ C([0, 1]),
Dlg(x) = ϕ′(x(tx)) l(tx), tx ∈Mx. The point 3 must be revised in such a way
that for lack of being in M (1)

P , at least the proof of Theorem 1 still works
and conclusion (1.3) remains valid.

4.2. Study of integral type functional. We consider functional given
by (1.5), namely

h(x) =

∫ 1

0

q(x(t)) dt,

where q is C1 and such that q′ does not vanish almost everywhere in some
interval (−α, α), for α > 0. We suppose moreover (−α, α) is the biggest
such interval.
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4.2.1 . Differentiability.

Lemma 4. For x, l ∈ C([0, 1]), we have:

Dlh(x) =

∫ 1

0

q′(x(t)) l(t) dt. (4.3)

P r o o f. It is not difficult to apply the dominated convergence theorem
to obtain

h(x+ cl)− h(x)

c
−
∫ 1

0

q′(x(t)) l(t) dt

=

∫ 1

0

q(x(t) + cl(t))− q(x(t))

c
− l(t) q′(x(t)) dt

which goes to zero when c→ 0. Lemma 4 is proved.

4.2.2 . Verification of the conditions for a functional to belong
to M (1)

P . Let x be such that x(0) = 0 and consider the neighborhood B(x, 1)
of x.

1. Let M = ‖x‖+ 1; we have:

|h(x)−h(y)| 6
∫ 1

0

|q(x(t))−q(y(t))| dt 6 KM

∫ 1

0

|x(t)−y(t)| dt 6 KM‖x−y‖.

2. The derivative is given in (4.3); moreover, there is a > 0 such that
for 0 6 t < a, x(t) ∈ (−α, α) a.e., q′(x(t)) 6= 0 a.e. We thus find some
l ∈ C([0, 1]) with Dlh(x) 6= 0. The space HP is dense in C([0, 1]), this allows
one to derive l ∈ HP with Dlh(x) 6= 0.

3. We have first ‖Dlh(y)‖ 6 KM for (y, l) ∈ A. And if (yn, ln)→ (y, l),
we have:

|Dlnh(yn)−Dlh(y)| 6
∫ 1

0

|q′(yn(t)) ln(t)− q′(y(t)) ln(t)| dt

+

∫ 1

0

|q′(y(t)) ln(t)− q′(y(t)) l(t)| dt

6 (‖l‖+ 1)

∫
|q′(yn(t))− q′(y(t))| dt+KM‖ln − l‖.

Since dominated convergence implies that the first term of right-hand side
of the later inequality goes to zero, we obtain the required continuity.

R e m a r k 5. Once more, we can weaken conditions of Proposition 1
for functionals (1.5) assuming q is Lipschitzian on all compacts with q′ almost
everywhere not zero. But as previously, we can check only conditions such
that the proof of Theorem 1 still works and conclusion (1.3) remain valid.
But we cannot any longer guarantee h ∈M (1)

P .
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A. Appendices

A.1. Asymptotic estimation for U .

Proposition 6. Let ξ be a random variable in Lp(Ω,F ,P). Denot-
ing F its distribution, we have the following estimate for U = F−1 ◦ Φ:

U(x) = o

(( |x|
q(x)

)1/p)
at ±∞, (1.1)

where Φ and q denotes respectively distribution and density of N (0, 1).

P r o o f. We use the following elementary result.

Lemma 5. Let g: [0, 1] → R+ be nonincreasing and such that∫ 1

0 g(t) dt <∞, then g(t) = o(1/t) as t→ 0.

First Eξp1 =
∫ 1

0 F
−1(t)p dt < ∞. Lemma 5 ensures F−1(t) = o(1/(1 −

t)1/p). Since U(x) = F−1 ◦Φ(x), Φ(x)→ 1 as x→∞ and 1−Φ(x) ∼ q(x)/x
at +∞, we obtain (1.1) for x→ +∞. Similar arguments yield also (1.1) for
x→ −∞. Proposition 6 is proved.

A.2. Technical lemma. Remind q stands for the N (0, 1)’s density.
We justify Lemma 1 on page 17 useful for (d7). We have to show that, for
any λ > 0, ∫

U ′(x) q(|x| − λ) dx <∞.

To do this we split the integral in the following way:∫
U ′(x) q(|x| − λ) dx =

∫
|x|6|λ|

+

∫
|x|>|λ|

.

We have:∫
|x|6|λ|

U ′(x) q(|x| − λ) dx 6
∫
|x|6|λ|

U ′(x) dx 6 U(λ)− U(−λ) <∞,∫
|x|>|λ|

U ′(x) q(|x| − λ) dx 6
∫
|x|>|λ|

q(|x| − |λ|) dU(x).

Since by (1.1): U(n + 1) = o(
√

(n+ 1)/e−(n+1)2/2), comparing integral to a
series, we obtain∫

|x|>|λ|
q(|x| − |λ|) dU(x) 6

∑
n>|λ|

q(n− |λ|)U(n+ 1) <∞.

Lemma 1 is proved.
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A.3. Key proposition. We prove Proposition 4 (see page 13) using
Proposition 3 about convergence in variation of image measure.

For any subsequence (n′), we intend to show that there exists (n′′) ⊂ (n′)
such that

δn′′(ω) =
∥∥∥λ[0,δ]fn′′(ω, ·)−1 − λ[0,δ]f∞(ω, ·)−1

∥∥∥ −→ 0 when n′′ →∞
(1.2)

for almost all ω ∈ Ω∗; as soon as (A.2) is proved, classical criteria of conver-
gence in probability will ensure:

∀α > 0, lim
n→∞P

{
ω ∈ Ω∗ | ‖λ[0,δ]fn(ω, ·)−1 − λ[0,δ]f∞(ω, ·)−1‖ > α

}
= 0.

Hypotheses 2, 3, 5 ensures there is a subsequence (n′′) ⊂ (n′) with

fn′′(ω, 0) −→ f∞(ω, 0) for all ω ∈ Ω∗2, P(Ω∗2) = P(Ω∗);

fn′′(ω, δ) −→ f∞(ω, δ) for all ω ∈ Ω∗3, P(Ω∗3) = P(Ω∗);
∂

∂c
fn′′(ω, c) −→ ∂

∂c
f∞(ω, c) for all (ω, c) ∈ E∗5 ⊂ Ω∗ ⊗ [0, δ],

P ⊗ λ̄(E∗5) = P (Ω∗).

Let Ω∗4 ⊂ Ω∗, P(Ω∗4) = P(Ω∗), be such that for all ω ∈ Ω∗4, and all
n > N4(ω),

∂

∂c
fn′′(ω, c) > 0,

∂

∂c
f∞(ω, c) > 0 λ̄-a.e.

Fubini’s theorem yields that there is Ω∗5 ⊂ Ω∗, P(Ω∗5) = P(Ω∗), such that

∀ω ∈ Ω∗5,
∂

∂c
fn′′(ω, c) −→ ∂

∂c
f∞(ω, c) λ̄-a.e. for c ∈ [0, δ].

Let consider

Ω∗0 = Ω∗2 ∩ Ω∗3 ∩ Ω∗4 ∩ Ω∗5 ⊂ Ω∗, P(Ω∗0) = P(Ω∗).

For all ω ∈ Ω∗0 and n > max(N1(ω), N4(ω)), the functional c 7−→ fn′′(ω, c)
satisfies hypotheses of Proposition 3, and (1.2) readily follows.

Proposition 5 can be proved from Corollary 1 of [4] in the same way.
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