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LOCAL INVARIANCE PRINCIPLE FOR INDEPENDENT AND
IDENTICALLY DISTRIBUTED RANDOM VARIABLESY

XopoIio m3BECTHO, YTO IS IOCIENOBATEILHOCTU HE3ABUCUMBIX
ONMHAKOBO PACIIPENEIEHHBIX CIyJANHBIX BEJINMYINH COOTBETCTBYIOIIIVE
HOPMUPOBaHHBIE CTYIEHYATHIE IIPOIECCHl CIIa00 CXOMSATCS K BUHEDPOB-
CKOMY Tporeccy. Boree cumbHas cXOOMMOCTB, & MMEHHO, CXOOUMOCTH
II0 Bapuallly pacupeneseHnt ¢GyHKIINOHAJIOB OT 3TUX IIPOLECCOB, ObLIA
ycTaHOBIEeHA B [4] B Ipenmonoxenn KoneanocTr nHGopManuy Oummepa
IS CIIYyYalHBIX BEIMYUH. B HACTOAIIEH CTaThe MBI INOKAa3bIBAEM Ta-
KYIO CXOOUMOCTH 6e3 KaKux-aubo yCJIOBUH, CBSI3aHHBIX C NHGOpMAaIen
Purrepa.

Kaouesvie cao6a u $pasvl: TPUHINIBI MHBAPUAHTHOCTHU, CXOMM-
MOCTB II0 Bapuallnyl, JOKaJbHbIE IIPpeNeJIbHbIE TeOPEMBI.

1. Introduction

Let {{,, n € N} be a sequence of independent and identically dis-
tributed random variables defined on a probability space (2, %#,P). Let
E¢, = 0 and E¢2 = 1. Consider the following right-continuous process:

nt]

[
S, (t) = \/1% Zg t € 0,1]. (1.1)

Let P, and P stand for the laws of S,, and the standard Wiener process W, re-
spectively. in the Skorokhod space D of cadlag functions on the interval [0, 1].
We use the symbol pf~! to denote the image of a measure pu on Borel
o-algebra Bp under a measurable application f : pf~'(A4) = u(f~'(4)),
A € Bp. It is well known from the Donsker—Prokhorov invariance principle
that, for any P-almost everywhere continuous functional f: D — R,

P.f '=Pf!, n — 0o, (1.2)

where = denotes usual weak convergence in R.
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Our goal is to strengthen the result of (1.2) by proving strong conver-
gence, in other words, convergence in variation of P, f~! to Pf~!, for a large
class of functionals f.

If the laws P,f~! and Pf~! are absolutely continuous with respect to
the Lebesgue measure A, then the strong convergence becomes equivalent to
the convergence of densities 222~ to 2L in the L'(R)-metric. In this

dx X
way, we get as a corollary the local limit theorem for the laws of function-

als f(Sn(-))-

We note at the outset that if the measures P, themselves converge in
variation to P, the answer to our question becomes obvious. This situation,
however, rarely occurs in practice. In general, like in our case, the mea-
sures P, are singular with respect to P for any n and this mutual singularity
of P, and P is the cause of difficulties in solving the problem.

A first solution of the problem above is given in [4, Theorem 20.1] where
the strong convergence

P ft 2 ppt (1.3)

is obtained assuming that the Fisher information I, = [g p~*(p')? dX of the
density p of & is finite, furthermore, assuming that the function f is an
element of a certain class of functions, class denoted by .#p. More precisely,
the following theorem holds.

Theorem A. Let{{,, n € N} be a sequence of independent and iden-
tically distributed random variables with EE, = 0, EE2 = 1. Suppose that
their common law F' has an absolutely continuous density p with I, < oo,
then we have (1.3) for any functional f belonging to the class M p.

We only note here that the class .#p is completely defined by the mea-
sure P, and for its definition and properties, we refer the reader to [4, Sec-
tion 19].

The condition I, < oo, which is equivalent to p'/p € L*(dF), seems to
be unnecessarily strong. Indeed it is more restrictive than p’/p € L'(dF)
which means [ [p’|d\ < oo, that is, the bounded variation of p, whereas it is
well known that for simple functionals such as x — sup, x(t), the condition
F < ) is sufficient to guarantee a local limit theorem (see [5]).

The goal of this work is to weaken the main condition I, < co.

We achieve this goal by narrowing slightly the class .#p to a certain one
denoted by .# 1(31) and rigorously defined in Definition 1 below. First we give
some additional notation. Since D is not separable when equipped with the
uniform topology, we introduce its subspace [E which is the uniform closure of
the set of all functions of D that have finitely many jumps at rational points
of [0,1]. When equipped with the uniform norm, E is a separable Banach
space in which the weak convergence (1.2) still holds. We recall that Hp
stands for the core of the measure P. That is, Hp is the set of admissible
directions [ € E for P (PT; ' < P, where T, is the translation of [) which
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coincides with the Cameron-Martin space: Hp = {f € C([0,1]) | £(0) =0,
f' € L*([0,1])}. Let us denote by S the unit ball of E.

Definition 1. A 1(31) is the set of locally Lipschitzian functionals f
such that for P-almost all z, there are a neighborhood V' (z) of x and | € Hp
such that

(a) the derivative D,f(z) of f at z in the direction [ exists and is not
Z€ro;

(b) denoting S, = {h € S|Dyf(y) exists} and A = U, cyiy} x Sy,
we have A 3 (y,h) — Dy, f(y) bounded and continuous.

With ¢ = sup{t € R| F(t) = 0}, t, = inf{t € R| F(t) = 1}, where as
usual, sup @ = —oo and inf @ = +o00, our main result states the following.

Theorem 1. Let {{,, n € N} be a sequence of independent and iden-
tically distributed random variables with mean 0 and variance 1. Suppose
there exists some v > 0 such that E|&|*TY < oo. Furthermore, suppose &;
has a density denoted by p, which is nonzero almost everywhere on [t_,t.].
Then the convergence (1.3) holds for any functional f € ///1(91).

In comparison with the quoted result of [4], in Theorem 1 we have
substantially weakened the hypothesis on the law F. The price we have paid
for this does not seem to be high: existence of an absolute moment greater
than 2 and a slight restriction of the functional class. This restriction on the
class can only be noticed on a formal level, since concrete functionals belong
to the class ., 1(31) under hypothesis near to those used for .#p. For example,
our class contains

(a) all not degenerated linear continuous functionals;

(b) all differentiable functionals f with Df(x) # 0 P-a.e.

The functionals of supremum type or integral type belong to the
class A é,l) under hypothesis given below.

Proposition 1. The following functionals belong to //11(31):
1) Let
g(z) = sup p(z(t)),
te[0,1]

where ¢ is convex, C* and such that ¢’ # 0 a.e.;
2) Let

) = [ ate(o)d (15)

where q is ' and such that ¢’ does not vanish a.e. in some neighborhood of 0.

Remark 1. The conditions in the preceding examples can be weak-
ened, relaxing the condition ¢ of class C! in the first case and replacing,
in the second, q of class C' by ¢ Lipschitzian on all compacts. In this
way, g and h may be not in .#Z M }(;1), but the conclusion (1.3) of Theorem 1
still holds since the proof can be carried out in a similar way (see Remarks 4, 5
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in Section 4). On the other hand, we can not weaken the convexity condition
for ¢ because the convexity of g is essential for the proof.

Moreover, we have the following proposition concerning functionals

in 75"

Proposition 2. For f € .#%, we have Pf~! < .

Proposition 2 was proved in [4] for functionals in a subclass of .#p
which is larger than ., 1(31). This proposition justifies we can derive local
limit theorem from Theorem 1.

Remark 2. In the case of the functional f(x) = (1), Theorem 1
and Proposition 2 yield a L!-local limit theorem for the densities of partial
sums of normalized random variables (§;);. In comparison with the classical
theorem by Yu. Prokhorov (see [6, Theorem 4.4.1]) our conditions on F are
more restrictive. However, it is not surprising since we are working with a
very large class of functionals.

The proof of Theorem 1 relies on the so-called superstructure method
which was introduced and used in [4]. Namely, we apply a partition of the
space to express the functional distributions as mixtures of conditional dis-
tributions. The main newness of the proof of the current paper consists in
representing initial random variables &, as transformed orthogaussian ran-
dom variables 7,,:

gn = U(nn)a

and then considering the process S,,(t) as function of analogous process Z, (t)
defined by (9,)n>1. This implies that in place of admissible translations
of S,,(t) used in the proof of Theorem A, we use now nonlinear transforma-
tions induced by admissible translations of W. The analysis of the asymp-
totic behavior of the corresponding conditional law becomes more intricate
and requires supplementary tools.

Remark also that the proof developed in the current paper can easily
be adapted so that Theorem 1 would still hold for P/, the laws of polygonal
process S, defined by

[nt]

S, (t) = \/15 Z &+ nt \—/T_[Lnt] Ent)+1 (1.6)

(compare (1.6) to (1.1)).

The paper is organized as follows. We begin by specifying in Section 2
the notation and tools we use. We prove Theorem 1 in Section 3. Examples
of functionals in ., 1(31) are discussed in Section 4. Some technical and tedious
considerations are deferred to appendices.
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2. Preliminary tools and the main idea

Let E,, = {x € E | z is constant on [k/n,(k+1)/n), k = 0,1,
and define the canonical surjection II,,: E — [E,, given by

[nt]

k
1L, (z)(t) = $<n> L /m,(va1y/my + 2(1) 11y

k=0

and the isomorphism J,: E, — R™ given by

o= (o) =+(57))
n n
Denote by F the distribution function of & and let F~'(y) =
inf{z | F(x) > y} be its inverse; let ® be the distribution function of the
standard Gaussian law, A, the Lebesgue measure on [a,b] and A the nor-
malized Lebesgue measure on a finite interval. Finally, C is a universal
constant which may differ from place to place.

The proof of Theorem 1 consists in the analysis and verification of the
conditions of the following superstructure result.

Theorem 2 ([4, Theorem 18.4]). Consider a sequence of probability
measures {P,,n € N} defined on the Borel o-algebra B of a complete
separable metric space (Z,d). Suppose that P, = P,,. Furthermore sup-
pose that, for P, -almost all x, there exist an open ball V' centered at x, a
number ¢ > 0 and also a family (G,., n € N, ¢ € (0,¢]) of measurable
transformations of Z  such that the following five conditions are satisfied:

(i) for each c € (0,¢) and each § > 0, lim,, oo Po{z||Gpc® — Gooc x| >
0} =0;

(ii) for each c € (0,¢), the mapping G . is Px-a.e. continuous; more-
over, suppose that p(S,c) = sup,cg d(z,Goc2) = 0 when ¢ — 0, for each
open ball S}

(iii) lim, o mn%oo ||PHG7:,10 - Pn” = 0;

(iv) for each § € (0,¢), suppose that

/V H>\[0,6]<P;,1z — )\[075]4,0;01&H P,(dz) — 0 when n — oo,

where @, .(c) = f(Gn.c2) withn € N and c € (0,¢;

(v) for each § € (0,¢), the mapping z — Nog¢~. . of V into Z(R),
the Banach space of signed measure on R normed with the total variation,
1s P -a.e. continuous.

Then

Pof=h == Puf7h
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Theorem B (for whose proof we refer to [4, Section 18]) needs some
explanations. Therefore, we shall now quickly go through the notation of
Theorem B in the set-up of Section 1 above, that is, in the case when P, is
the probability law of the process S,, of (1.1) in the space E.

For z in the P-full set occurring in Definition 1 of .\, let Vi(x) =
B(z,r1) be an open ball and let [ be a direction.

Since D, f(z) # 0 by the definition of .\, we can suppose D, f(z) > 0
even if we change [ into —[. Using continuity of D, f(-) at (z, [ ||l]|7*0) € A,
we get a neighborhood B(z,ry) x B(l]|l]|7*0, r5) N A with the property
B(z,ry) C B(z,r;) and such that f is Lipschitzian on B(z,7;) and fur-
thermore for every (y, h) in this neighborhood of (z, I ||I||7'0) we have

1

Drf(y) = 5 Duyey f(z) > 0. (2.1)

In what follows, we consider the open ball V(z) = B(z,r3) with r3 < r2/5
and € < ry/al|l]|. Assume P(0V (z)) = 0 (reducing V (z) if it is not the case).
Let U, = F(&,) (so that U, are uniform i.i.d. random variables), then
N, = ®1(U,,) are orthogaussian variables and we have the obvious but useful
representation &, = F~' o ®(n,).
Define

U@)=F'o®(z) and V(z)=® 'oF(x).

Furthermore, define

@ = V), . Vya)); ¥@) = U(x1),....U(xs)); Gne(@) =T+ cly,
where [, = J,, o IL,(1) = (In.i)i<n With

() (5) e

and [ € Hp given by the definition of .# 1(31).
The following commutative diagram sums up the situation:

Gn,c
E S E

| Tin
En ETL b

Tl T
R» o R»

where, for each n € N, the transformation G,, . is given by

Gpe=tinoJ, topyoG, . 0pod,oll, Geo,e = + cal, (2.3)
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a in (2.3) is defined as follows:

a= /U’(x)q(:t) dx. (2.4)

Remark. (i) Using the above definitions of G,, ., we can obtain the
following explicit expression:

Croalt) = 3 UV (v/n(z(k/n) — f/(f(zk —1)/n))) + )
k< [nt]

(ii) The function U = F~! o ® is absolutely continuous on any finite
interval [a,b]. Indeed, since the function F' has a derivative p > 0 a.e., it is
easy to see from [4, Theorem 4.2] that A, ;) F'~' < A. From the latter fact, we
easily infer that F'~! is absolutely continuous on [F(a), F'(b)]. Consequently,
the absolute continuity of U on any finite intervals follows.

In particular, U is differentiable a.e. and for any dU-integrable func-
tion f, we easily show that

/f £) dt — /f 1) dU(t

(iii) The quantity a is well defined in (2.4) since we can see the conver-
gence of the integral by using, for example, the following considerations:

/ U (2 Z n+1)U(n))<iq(n)U(n+l). (2.5)

Since & € L*(Q,#,P), statement (1.1) in Appendix A.1 ensures the con-
vergence of the sum on the right-hand side of (2.5).

(iv) Since ! is an element of the Cameron-Martin space Hp, we obtain
the following:

2= () () - B o)

< i /( (s ds = |12 (2.6)

i—1)/n

S EHC) 5 S e [ o
(2.7)
Ilngagdln,i\:\/ﬁ/(i/n I'(s)ds <</(i/n l’(s)2d8)1/2—>0, (2.8)

i—1)/n i—1)/n

where the convergence to 0 in (2.8) holds because I" € L?([0,1]). In what
follows, we shall use h to denote an upper bound of {l,,;, ¢ <n, n € N}.
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(v) Since the result of Theorem 1 concerns convergence of the proba-
bility laws (P,),, there is no restriction to apply Skorokhod’s representation
theorem (see [1 _Theorem 6. 7]) and to suppose that we work with a proba-
bility space (Q, Z.,P , ) and processes S,, W defined on this space such that
for all n € N,

S, Z Shs wZ W, S, —s W P-as. (2.9)

In the same way, we have S, = n~1/2 > i<ing] £ with independent and identi-
cally distributed random variables éy £ &; having the density p; analogously,
we have (£")i<, = (U(7))i<n, where (") are independent .4 (0,1) random
variables.

In order to not complicate notation, we will keep on writing S,, and W
for S’n, W in the sequel, keeping in mind that for each n, the family (é?)ign
changes.

3. Proof

The purpose is now to deal with conditions (i)—(v) of Theorem B. The
most difficult will be (i) and (iv).

3.1. Study of (i). In order to see, for any fixed ¢ € (0,¢) and any
a > 0, that

PAz||Gpct — G| > a} = P{|Gp S — Goo.eSn| =2} — 0, (3.1)

as n — oo, remark first that we can write:

1
Gn,cSn(') = 7 Z U(nzn +Cln,i)7 Goo,cSn() \/— Z U 771 +CCLl

i<l i<[n]

(3.2)
Since ||I([n-]/m) — I(-)|]| — 0 for n — oo, we reduce the study to see the
following:

Z U} + caly;) — UP) — calyi| — 0. (3.3)

z<[n]

Tni = U} + caly ;) = U(n}") — caln,i,

we can write

| 2 5 vt et ) ot =

k<n
i<[n] =
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As & € L*7(Q,.7,P), we easily obtain by Holder’s inequality that
/ Uz + h)*q(z) dz < oo

and we deduce 7,,; € L*(Q, #,P).
We begin with the study of max,, [n~/2> Y, Er, .
Using definition (2.4) of a, we have by Fubini’s theorem

Er,; = / (U(z+cl,,;) —U(x)) q(z) de — cal,, ;

- /( [ - ds) U'(s)ds,

where we have assumed [, ; > 0 in order to write intervals [z, x + cl,, ;] in an
easier way (which impose no restriction). Now we can derive:

1 & 1 &
max |— » E7,;|<—= /'/ (q(z) — q(s))dz|U'(s)ds. (3.5)
px | Um B < E ) s
Since by (2.4), (3.4) integrals [ U’(s) e *"/>ds, [ U'(s) e~(sI=¢M"/2 ds are con-
vergent and h is an upper bound of {l,,;, i < n, n 6 N} for any arbitrary
fixed a > 0, we can choose M > ¢h such that

/ U'(s)e*"/*ds, / U'(s) e~ (s1=eM*/2 g5 < %.
Is|>M s|>M 2 [, |I'(s)|ds
(3.6)

We then study the right-hand side of (3.5) splitting the outer integral in to

two parts: (di) = [uar (d2) = [icar-
First,

1 n
(dy) g/ — / z)dz +7 clluila(s) | U'(s)ds
|s|>M ﬁ 12::1 [s—cln,i, s] Z
Since g(z) = e /2 < e~ sI=¢M*/2 for g € [s — ¢l ;, 5], we have
1 2
x| < 5/ I'(s)| ds e~ (IsI==m"/2,
0

It follows with (2.7) and choice (3.6) of M that (d;) < «
Second, in order to study (ds), write

Clnﬂ; 2
J ~afe))da = | [ @y
[s—cln Ls] 0

R cly 2 —5%/2 h
< Ke /2 / (\sy\—i— )dy e€2lii<\s|+€ >
0 2 ’ 3

[s—cln,i,s]
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where the last but one inequality is due to boundedness of exp by K on a
finite interval when s € [—M, M], |y| < eh. Since |z| < M, estimate (2.6)
and choice (3.6) of M ensure

(ds) < % KTg (M + Z‘) 11 [ e 720 (s) ds = o(\/lﬁ) (3.7)
From (3.5), (3.7) and (d;) < o, we deduce:

The study of (3.3) is thus brought back to

E
max ZTM Toi (3.9)

k<n

Doob’s maximal inequality, applied to the positive submartingale given by
the absolute value of partial sums of independent centered variables, yields:

2 2
Tn,i — ETny ETn i Tn,i — ETny ETn i
max g = Emax g
k<n | “ k<n

=1 =1

2
n,t E n,i 4 n
4E<Z d d ) <= D BUM! A+ clng) - Um)?. (3.10)
i=1

=1

Using Fubini’s theorem, we have:
E(U (0} + cln) = U}))*
_ / U'(s / U (t) / Liosen, (@) g(z) dzdtds, (3.11)
[s—cln,i,s+cln,s]

where I(s,t,cl,;) = [s—clns, 8| N[t — cl,i,t] is of length smaller than cll,, ;.
We split once more the outer integral into two parts:

(da) = /s|§sh’ (d) = /|s>sh‘

Since [;, 1, 3(@)dz < c|l,;| and integrals over finite intervals are
bounded, there is a constant K3 < oo such that

(d3) < Kzellyil. (3.12)

Since for = € I(s,t,cl, ), we have |z| > |s| — eh, monotony of ¢ ensures

[ @ de<clinda(s - <h).
I(s,t,cln,q)
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Whence

(dy) < / (U'(s)cyznm(ysy —eh) / U(#) dt> ds
|s|>eh [s—cln,i;s+cln,i]
< / U'(s)c|lnil q(|s| —eh)(U(s+¢eh) —U(s —eh))ds. (3.13)
|s|><h

Since from Appendix A.1: U(z) = o((z/q(z))Y**), we have for any

fixed p:

Comparing [;° U’(s) exp{—s?/16} ds to a series, we obtain the convergence
of [,5,q(ls| —p)U(s + h)dU(s). We deduce from (3.13) that there is a
constant K, < oo such that

It follows from (3.10)—(3.12), (3.14), using (2.7):

3 —> < \/15 (K3+K4)5/01 I'(s)|ds.  (3.15)

We thus obtain (3.3) from (3.8), (3.15). Finally, (3.1) is satisfied and so is
point (i) of Theorem B.

3.2. Study of (ii). Mappings G, . are obviously continuous, and
doo(2, Goo c2) = cal|ll]] — 0 as ¢ — 0, so (ii) is easily justified.
3.3. Study of (iii). We aim to see
lim lim || PG, — P,|| = 0. (3.16)
c—0 n ’

For 7" = (n},...,n) with law &7, we easily have

[n]
1
Vn = ! )

From notation (2.3), we have also G,, .S, = J,,' o ¢(G,, 7"). It follows
IP.Grt = Pall <11 20Ge = Zull < Il (3.17)
where the later inequality is due to Lemma 20.1 from [4] applied to the

standard n-dimensional Gaussian law &, and to the fact that the Fisher
information of .4#°(0,1) is 1. Now (3.16) readily follows from (3.17).




Breton J.-C., Davydov Yu. A.

3.4. Study of (v). In this section, we aim at seeing for any ¢ € (0,¢)
that for P-almost all z € V(z), the convergence z, — z implies

X061z, — A8l — 0, (3.18)

where we remind that ¢ .(¢) = f(Goo,c2).

Let A, = {z, + cal, c € [0,0]} and A = {z + cal, ¢ € [0,0]}. Since
z, — z, we have the convergence of segments A, — A.

Since z,, z € B(z,r3) and ¢ < § < & < r3(alll]])™!, we have A,, A C
B(z,2r3).

Choice of neighborhood ensures f is Lipschitzian over B(z,r;)
and D. f(-) is continuous over B(z,ry) x B(l||l]|7*0, ry) N A.

With fa, , fa standing for the restrictions of f over segments A,,, A, we
have

>‘[0,5]<P<:ol,zn = Af£i7 A[O,é]@;ol,z = AfA_l
and (3.18) is a consequence of the following proposition.

Proposition 3 ([3, Corollary 2]). Let g,: [0,1] — R, n € N, be such
that
. gn is absolutely continuous for all n € N;

1) = goo(1) as n — oo

. gh(c) >0 a.e. for alln € N;
5.

then A

In our setting, points 1, 2, 3 are trivial. Point 4 follows from

0o *

(znteal, LUI7Y),  (z+cal, LUI™Y) € Bz, r2)x BT, m5) N A, (3.19)

and (2.1). Point 5 is due to the continuity of D.f(-) on B(z,73) X
B(L|IZ|I*, 5) N A the latter product neighborhood.

3.5. Study of (iv). Remind we denote, for any n € N, ¢, .: ¢
f(G,.cz). We aim now at seeing that

@/v [ M0.51%m.2 = No.6)P ozl Pu(dz) = 0. (3.20)

Write down for the sequel:
gn(wu C) - f(Gn,cSn)7 I (wa C) - f(Goo,cW)a
hn(wa C) = f(Goo,CSn)a heo = goo-

Remind we work with a probability space due to Skorokhod’s represen-
tation theorem [1, Theorem 6.7] for which (2.9) holds: S,, - W P-aus.
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3.6. Study of (h,),. The following proposition will be proved in Ap-
pendix A.3 using preceding Proposition 3.

Proposition 4. Forn € N, let f,: (2 x [0,8],.7 x %([0,9]),P®\) —
R, Q* € ., Q* C Q be such that

1) for all w € QF, there exists Ni(w), for all n > Ny(w), fu(w,-) is
absolutely continuous;

2) fn(w,0) LN foo(w,0) on Q%

3) fn(w,?) LN fool(w, d) on QF;

4) for all w € Q there exists Ny(w) for all n > Ny(w), we have
L fu(w,c) >0 A-a.e. for c € (0,6);

5) %fn(w,c) Ped % foo(w,c) on QF.

Then [ Moo fa(w, )™ = Ao, foo(w, ) 72| = 0 on Q.

(i) For w € W}(V) and ¢ < & < r3/al|l|, there is N;(w) such that
for n > Ny(w), S, + cal € B(z,3r3) C B(z,r3), where f is Lipschitzian.
Required absolute continuity in point 1 is easily derived.

(ii) We have for any ¢ € [0,0], S, + cal = W + cal € B(z,r3) a.s.
for w € W=1(V). Continuity of f ensures the a.s. convergence and thus
convergence in probability of f(S, + cal) to f(W +cal). Points 2, 3 are thus
satisfied.

(iii) For n > N;(w) and ¢ < § < r3/alll||, we have S,, + cal € B(x,ry). It
follows easily h,,(w,-) is differentiable a.e. on [0, ] and

(w7 C) = Dalf(Goo,cSn)~

ac"
B e B(x,ry) x B(L|l]7*, rh) N A, we have for all
we W V), Zh,(w,¢) > 0 ae. Similarly Z h,(w,c) > 0 and point 4 is
guaranteed.
(iv) Since S, + cal — W + cal P-a.s. and (S,, +cal,l||l||*) € B(z,rs) X
B(L||l7||7t0, r5) N A, where D. f(-) is continuous, point 5 is clear.
Proposition 4 applied to (h,),>1 yields for any o > 0,

Since (S, + cal, ||I]|~

lim P{w e W (V), [Noshn(@, )™ = Noghao(w, ) 7! > a} = 0. (3.21)
3.7. Study of (g,)n>1. For (¢,)n>1, we use another version of Propo-

sition 4 derived in the same way from a corollary of Proposition 3 (see
Appendix A.3).

Proposition 5. For n € N, let f,: (Q x [0,9], # x %([0,4)]),
P®)\) =R, Q €%, Q CQ be such that

1) for all w € QF, there exists Ni(w), for all n > Ny(w), fn(w,-) is
absolutely continuous;

2) fu(w,0) == foo(w,0) on Q%
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3) for all w € O, we have 2 fo(w,c) > 0 A-a.e. for ¢ € (0,6);

) |2 falw,0) = 2 foolw,0) s =0 on Q.

Then | Mo.sifn(@, )™ = Ao foo(w, ) 74| = 0 on Q7.

Verification of the hypotheses of this proposition for (g,),>1 requires a

preliminary study of a tangent vector L, s, . to the trajectory (G, .Sy)..

3.7.1. Study of the tangent vector. Using (3.2) and a.e. differen-
tiability of U, we have, for each ¢ € [0, 1], for fixed w € Q, n € N:

]
;C(Gn,csn(t)) \}_ZZMU’ W) ae. (3.22)

Let us show that (3.22) holds in E for almost all ¢ € [0, ]. Since [l,,;| < h,
for n fixed and almost all w the differentiability of U implies that for any
e > 0 and almost all ¢, there is a(w,n,c) such that for § < a(w,n,c)/h,
1=1,...,n

0l h

We easily derive the following inequality using again (2.7):

[n]

5 1
GrctsSn — Gp.cSn — LU (0 + clny) <£6/ U'(s)|ds.
R AL sy

Finally, for all w € Q, there is a set A(w) € %([0,4]), A(A(w)) = 0 such that
for all n € N and ¢ ¢ A(w), we have the differentiability of G, .S, at c:

0

Ln,Sn,c = I 8

(Gr.eSn) Zlm (0" + clpi). (3.23)

For n = oo, the tangent vector is obviously al.
In the sequel, we need a convergence of L, s, . to al in the following
sense:

1 §
E(5/ ILus, . —alHdc) 0. (3.24)
0

Expression (3.23) for L, s, . and the convergence ||l([n]/n) —1|] — 0 as
n — oo allow us to reduce the study to that of

[n] k
1 1
— > L (U] +cyy) —a)|| = Y L (U +clypy) —a)l.
|\/ﬁ; (U (0 + i) = a) r,glgg\/ﬁ;:l (U (0} + i) = a)
(3.25)
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To this way, we use the following additional notation:

M) = U'(e) — 0 Z,(6) = 3 Lot (U'(07 + cls) — )

Cnile) = b +clni);  Ci(e) = Cuile) Lcuueycsr 8> 0.

Note that for n an .4#7(0,1) random variable, we have E|h(n)] < oo,
Eh(n) = 0 and integrability of ¢, ;(c) follows from (3.4). Split Z,(c) as fol-
lows:

Zn(c) = (ds) + (ds) + (dr), (3.26)

In order to deal with (ds), we use Fubini’s theorem and Doob’s maximal
inequality together with (2.6):

2i(0) —E¢ () de

n,i
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let us see first that

sup |EC, ;(c) — E(,;(0)| — 0 when n — oo. (3.29)

i<n, c€[0,5]

Easy computations yield

sup [EC,(0) ~EGLO) = sup s [[lale ) ~ gla)] do
i<n, c€[0,d] i<n, c€[0,6]

ensuring (3.29) by continuity of translation in L' and integrability of q.
Next, since (¢} ;(0))i<n are identically distributed, we have by (2.7) that

n

Sl 1BG (@ < [ 1765 ds(1BC, @)1+ sup (B (0) ~ B (0)).

i=1 i<n, c€[0,d]

It follows that

1
<o [ Ws)lds(|BGL 01+ sup EG ()~ EG(0)]),

i<n, c€[0,5]

now (3.29) and E(; ;(0) — 0 when s — oo (by dominated convergence)
ensure (3.28).
We start the study of (d;) with the following considerations:

k
Zln 7.<n7, 1|(nl(c)|>s Z‘ln l| |<nz |1|(nz )>s-

k<n
Since BlG,i(e)| Lic, oroe = f ()] Lpoyis a(@ — cloi) de, we have:

sup ‘EICn,i(C)\lwcn,i(c)bs— E[Cn,i(0)[11¢, . 0)>s

i<n, c€[0,d]

< / |h(@)| Lip@)>s  sup  |g(x —cl, ;) — q(z)| de.

i<n, c€[0,d]

But obviously

sup |q(z —cl,;) —q(x)| — 0

i<n, c€[0,d]

|h(z)| Ljh@)>s  sup  |g(z — clni) — q(z)]
i<n, c€[0,4]

< [h(@)lq(@) + |h(@)| Ljoj<on + [~(2)[ Ljaj>ong(|2] — 6h).

The first two terms of the right-hand side are integrable, so is also the third
one according to the following lemma proved in Appendix A.2.
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Lemma 1. For all A > 0, we have [U'(z)q(|z| — A) dz < 0.
Thus dominated convergence ensures

sup [ElGui()| L, o155 = Bleni(0)| L, oy55| — 0 (3.30)

i<n, c€[0,d]

as n — oco. Then

) k 5 k
E/o Thax Zln,icn,i(c)1|<n,i<c>\>s = ), Bmax| > £ iGn,i(€) Lig, o1+ de

k<n
=1

<D i, |/ ‘EKM ) Lic, . >s = ElGni(0)| 1ic, . 0)>s| de

i=1

+5Z| nz‘E‘Cll |1|Cl 1(0)[>s-
=1

Since (31,1(0) is a centered and integrable variable, dominated convergence
ensures:

E(|Cl,1(0)| 1\(1,1(0)|>S) — 07 ECf,l(O) — 07 . (331)
Using (3.31) and (3.30), we obtain by (2.7):

5 ko
lim im E ax | > 1niCai(€) Lic, (0)>s| dc = 0. (3.32)

§—00 N 0
=1

[n]

1 é
g/() Z nzan ) ECS ( ))‘ dC
nzan )1\4’ i(c)|>s dC+ n,zECrsm(C) dc,

using (3.27), (3.28) and (3.32) with the decomposition (3.26), we deduce

1 g 1 5| ] R
E(5/0 ”Ln,Sn,c - alH dC> = E((SA Zln,iCn,i(C) dc) — 07 n — oo.

=1

We obtain thus convergence (3.24) of L,, g, ..
It is easy to see also that we have for each fixed ¢ € [0, §] the convergence
of L, s, . in probability to al:

Lns, . — al. (3.33)
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Indeed, it suffices to prove the convergence in probability to 0 of (3.25). To
this end we study sums corresponding to (ds), (ds), and (d7) as previously
but without integrating in ¢ € [0, d].

Since G, .S, (t) is absolutely continuous, one has:

G oSi(t) = S(t) + / Los, o(t)ds,  Ga V() = W(t) + cal.
0
It follows

|G, eSn — Goo, e W|| < ||Sn — W/ + sup / (Ly.s, s(t) —al(t)) ds
0

t€(0,1]

)
< 1S, — W +/ |Lns. o —all ds,
0

SUp [|Gr.eSn — Goo W] =50, 1 — 0. (3.34)
c€[0,4]
3.7.2. Verification of the hypotheses of Proposition 5
for (g,)n>1- o
1. Absolute continuity of gn(w,-), n € N. We use the fact that f is
locally Lipschitzian. The case of go(w, ) = hoo(w, ) is evident. To study
gn(w, ") = f(G,.S,), introduce u™: ¢ — W (), ..., u((c)), where

ugn)(c) = n_l/QU(n? + clni).

(n)

For all fixed w € Q and 7 + cl,,; remaining in a bounded domain, w; "~ is

absolutely continuous. We use the following simple fact.

Lemma 2. Let (f1,...,fp): R = V C RP be a mapping whose com-
ponents are absolutely continuous, and let F: V. — R be Lipschitzian. Then
G=F(fr,...,[p) is absolutely continuous.

Let 6,: R — [E be the following Lipschitzian function:

[nt]

0, (x)(t) = in, t €[0,1].
i=1
Note that
en(u(n) (C)) = Gn,cSn-

For fixed w, n, ¢ there is a convex open neighborhood V (G, .S,)
of G, .S, on which f is Lipschitzian. Since G, S, = G, .S, as s — ¢,
there is I.(w, n), neighborhood of ¢ in [0, 6], such that for s € I.(w,n),

Gn,sSn = gn(u(n) (8)) € V(Gnvcsn)
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Since 6, is linear and V(G,.S,) is open convex, we get u(™(s) €
0= (V(Gre5.)). So.

(a) f o6, is Lipschitzian on 6, *(V(G,, .S.));

(b) u™ takes values in 0,1 (V (G, .S,)) on I.(w,n) and has absolutely
continuous components.

Lemma 2 ensures absolute continuity of f o 6, o u™ = f(G,.S,) =
gn(w,-) on I.(w,n). Extracting a finite cover of [0,4] by open sets I, (w,n),
one obtains absolute continuity of g, (w, ) for any w,n.

2. Point 3.6 (ii) asserts exactly that g, (w,0) N Joo(w, 0).

3. In order to see g, (w, d) LN Joo(w, 9), we use already checked point (i)
of Theorem B and Skorokhod’s representation theorem to derive

P
Gn’gsn — Goo’(;W, n — Q.

We conclude this step using continuity of f at W + dal € B(x,2r3) for
we W (V).

4. We study here % gn(w,c), n € N.

From absolute continuity proved in 1 we deduce that for all fixed w, n,
derivatives 2 g,(w,c), £ goo(w,c) are defined on a set A(w) € 2([0,4]),
A(A(w))complement — () We know already from 3.6 that for all w € W=(V)
almost all ¢

0
e Joo(w, ¢) = Do f(Goo,c. W).

For fixed w, n, we show that f is differentiable in the tangent direction L,, g, .
at G5, and on a set of measure 1

0
% gn(wv C) = DLn,Sn,cf(Gnchn) (335)

Indeed since for almost all c,

f(Gn,c+hSn)h_ f(Gn,cSn) N aa gn(w7 c), h — O,
C

to prove (3.35) it suffices to establish that
f(Gn,cSn + hLmSn c) - f(Gn,cSn) f(Gn,c+hSn) - f(Gn,cSn)

N B - h ’_0'

The latter identity follows from the fact that f is locally Lipschitzian and
from almost sure existence of L,, g, . giving

Gn,cSn + th,Sn,c - Gn,c+hSn
h

— 0, h — 0.

5. Since goo = hoo, the bound £ goo(w,c) > 0 as. for w € W(V)
follows from 3.6 (iv).
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6. Verification of hypothesis 4) of Proposition 5 for (g,). The purpose
is to end checking point 4) for (g,) by proving that

d d P
Hac gn(w, ") — &gm(w, ) — 0, (3.36)

L1([0,6])

Let (n') be any subsequence; we begin with extracting a further sub-
sequence (n”) C (n') with almost sure convergences (3.24), (3.33), (3.34).
With w in this almost sure set, we have seen that for A-almost all ¢ € [0, J]

0

% gnr (w, C) = Dalf(Goo,cW)'

- D Gn" cSn” ) a Yoo
(W,C) Ln”,Sn//,cf( , ) acg
There is N(w) such that for n” > N(w) and ¢ € [0,0], Gy oSnr € B(z,73).
Then

0 0
Hac Gn (wv ) - % goo(wa )

L([0,8])

— |DLn”,Sn//,cf(Gn”’CSn”) — Dalf(Goo,cW)| dC

[0,9]

< /[;) 5] ‘DLn”,Sn//,cHLn”,Sn/,,c”ilf(Gn/,chnH) H‘Ln//7sn”76H - a”l”‘ dc

+a’ HZH /[[) 5] ‘DLH//’SHH,CHLn//,Sn,,,cHilf(GTL”,CSn”) - Dl/”l”f(GOO,CW)‘ dc‘

Since (Gn”,cSn”aLn”,Snu,c |Ln”,Snu,c ’_1) € A and (Goo,cm l”lH_lO) € A,
where A is a set on which D. f(-) is bounded, the first term on the right-hand
side of the later inequality goes to zero because of (3.24). Since, moreover,

Ln”,sn//,c l

G oSpir — Gog W, T . 1
n' ,eOn’! 00,C 9 ”Ln’,,sn/MCH ||l||7

we have
Drpis iltonns, o=+ f (G eSnr) — Dy f(Goo W), " — oo

Since the sequence is bounded, by dominated convergence, the second term
also goes to 0. Finally, we obtain (3.36) and point 4) of Proposition 5
for (gn)n>1-

3.7.3. Conclusion for sequence (g,),>1. Applying Proposition 5
yields: for any s > 0,

lim P{w e W (V)| Ao aga(w, ) = Apaigeo(w,) [ > s} = 0. (3.37)

n—oo
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3.8. Final verification of (iv) of Theorem B. First, since
hoo = oo, We obtain

[M0,519n (W5 )™ = Apo,ay P (@, ) TH < N A0,519m (W5 ) ™ = Ao,61900 (w, ) '
+ ||)\[0,5]hn(w7 ')_1 - )‘[0,5]hoo(wa ')_IH‘

We deduce from studies of h,,, g, leading to (3.21), (3.37), that for any o > 0

lim P{w € W (V)| [Nosgn(w, )" = Aoghn(w, )| > af = 0.

n—oo

Since A 5)9n(w,-) ! = )\[075]4,0;1& and A gl (w, )" = )\[075]@;1,51”, one has

P{we S (V) [ IMoaens, — Moavss, || > o}
<Plwe W (V)| [ Moaers, = Moawms, | > a}
+P(S, (V) \ W (V).

Since S,, — W and P(0V) = 0, we get P(S, € V\W € V) — 0 and it
follows
lim Pufe € V[ Posert — Nospal > al 0. (339)

Denoting A, o = {2 ||| Ajo,5)95 % — Mo,6) Pl >}, we have:
[ Poagit = dosgil Py(da)

= [ Ieserh = Moawald Palda)
VOAn o

[ eagnt — Neagill Palda)
VNAg

< 2Pz € V[ Moawit ~ Moswaiell > a} +a [ Pudo)

VﬁAfwx

Using first (3.38) with n — oo and then having @ — 0, we obtain finally
point (iv) of Theorem B.

3.9. Conclusion. Finally applying Theorem B, we prove Theorem 1
and obtain (1.3).

4. Examples of functionals in .

We prove in this section Proposition 1 and 2.

First, the property stated in Proposition 2 is clear since conditions of
Theorem 19.1 in [4] are satisfied and ensure that .Z, () is a proper subset
of .4 for which the property is known (see [4, Section 19]).

We discuss now examples cited in Proposition 1.
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4.1. Study of sup type functional.

4.1.1. Differentiability. Consider g defined by (1.4) and let Sy =
{t e R|¢'(t) # 0} € B(R), A(55) =

Let M, = {t € [0,1]|g(z) = ¢(z(t))}; since ¢ is convex, card M, €
{1,2}.

Remark 3. Moreover, since the vector (sup;c(o ) W (t), infiejo,) W (2))
has a density (see [1, Section 11]), we have even for P-almost all z,
card M, = 1.

Using [8], we can define ¢, = argmax,c(, ;;¢(z(t)), P-a.s. We can derive
from absolute continuity of sup,c(, ;) W (t) and infic(o,1) W (¢) that x(t,) € So,
P-as.

We have the following differentiability property.

Lemma 3. Forallz,l € C([0,1]), g is differentiable at x in the direc-
tion I:

Dyg(x) = inf ¢'(z())I(t), D/ g(z) = max ' (x(t))1(t), (4.1)

teM, teM,

where D; , D;" mean left and right weak derivatives along .

P roof. Using convexity of ¢, we have for t, € M, and t. € M, :
@' (z(te)) el(ts) < gz +cl) — g(z) < ¢'(2(t) + cl(te)) clte). (4.2)

It is easy to observe that for any positive sequence (c,),>1 going to 0
and t, € M,,.,;, we can extract (¢, ) such that ¢,, — t, € M,, n’ — oo.

Let (c,/) be extracted from any (c,),>1 positive going to zero; we can
extract further (c,~) with ¢, — to € M,. Since ¢’ is continuous, we derive
from (4.2) for any t, € M,:

¢ (@(t)U(t) < lim gz + D) — g(x)
< lim g(f'f—cnul)_g(m) g@/(x(to))l(to),

n'’'—oo C

Taking maximum over t, € M,, we deduce that from any (¢, ), we can
extract (c,~) with the same relative limit

lim 9(x+ enrl) = 9(2) = max ¢’ (z(t)) I(t).

n—00 cC teM,

So the second part of (4.1) holds; similar computations yield its first part.
Lemma 3 is proved.
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4.1.2. Verification of the conditions for a functional to belong
to A 1(31). Let x € By, where By is the measurable set for which ¢, =
argmaxc (o (2 (t)) is well defined (see Remark 3); in this case D;g(z) =
¢’ (x(t;)) l(t;). Consider the neighborhood B(z,1) of .

1. With M = ||z|| + 1, since ¢ is Lipschitzian on [—M, M] with some
positive constant K, we easily obtain

l9(y) — g(x)| < Sup p(2(1)) — e(y()| < Knllz =yl

2. Since t, realizes sup,(, ; ¢(%(t)), convexity of ¢ ensures ¢'(x(t)) # 0.
We thus easily find | € Hp with D;g(z) # 0.
3. Recall A= {(y,0)|||l|| =1, Dig(y) defined}.

For (y,1) € A, D,g(y) exists; thanks to Lemma 3, we have

Dig(y) = ¢ (y(t,)) l(t,), for t, e M,.

Since y € B(z,1), we have that D,;g(y) is bounded by K, ||I]|.
For (yn,l,) — (y,1) € A, since derivatives exist, we have for ¢, € M, :

Dlng(yn) - (Pl(yn(tn)) ln(tn)

For any (n'), we can extract (n”) with t,» — t, € M, and obtain for n” — oo:

O (Yo (tnrr)) L (tnrr) — @' (y(to)) Uto) = Dig(y)-

Since the limit does not depend on subsequence (n’), we have the required
continuity.

Remark 4. Asmentioned in Remark 1, we can weaken the condi-
tions on ¢ in (1.4). In this case, Lemma 3 does not hold anymore, but we can
exhibit By € A(R) with A(B§) = 0 such that for x € By and [ € C(]0,1]),
Dig(x) = ¢'(z(t;)) l(t:), t € M,. The point 3 must be revised in such a way
that for lack of being in ./Z 1(31), at least the proof of Theorem 1 still works
and conclusion (1.3) remains valid.

4.2. Study of integral type functional. We consider functional given
by (1.5), namely

where ¢ is C! and such that ¢’ does not vanish almost everywhere in some
interval (—a, ), for @« > 0. We suppose moreover (—a,«) is the biggest
such interval.
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4.2.1. Differentiability.
Lemma 4. For z,l € C([0,1]), we have:

Dyh(z) = /0 L (1) 1) dt. (4.3)

P roof. Itisnot difficult to apply the dominated convergence theorem
to obtain

e ) =) 1 ooy a6y a

_ /1 q(z(t) + cl(t)) — q(z(t))

Cc

—U(t) ¢'(x(t)) dt

which goes to zero when ¢ — 0. Lemma 4 is proved.

4.2.2. Verification of the conditions for a functional to belong
to . #. Let z be such that 2(0) = 0 and consider the neighborhood B(z, 1)
of z.

1. Let M = ||z|| + 1; we have:

pI< [ o) -aw@)ldt < Ko [ 12—yt < Kaglle—yl.

2. The derivative is given in (4.3); moreover, there is a > 0 such that
for 0 <t < a, z(t) € (—a,a) ae., ¢(x(t)) # 0 a.e. We thus find some
[ € C([0,1]) with D;h(z) # 0. The space Hp is dense in C(]0, 1]), this allows
one to derive | € Hp with D;h(x) # 0.

3. We have first ||D;h(y)|| < Ky for (y,1) € A. And if (y,,1,) — (y,1),
we have:

D1 h(g) = Dibw)] < | 0}~ S D) 01
CONCIE:
i+ /rq ,(0) = ¢ (w(t)) | + el 1],

Since dominated convergence implies that the first term of right-hand side
of the later inequality goes to zero, we obtain the required continuity.

Remark 5. Oncemore, we can weaken conditions of Proposition 1
for functionals (1.5) assuming g is Lipschitzian on all compacts with ¢’ almost
everywhere not zero. But as previously, we can check only conditions such
that the proof of Theorem 1 still works and conclusion (1.3) remain valid.
But we cannot any longer guarantee h € ., 1(31).
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A. Appendices

A.1. Asymptotic estimation for U.

Proposition 6. Let & be a random variable in LP(), %, P). Denot-
ing F its distribution, we have the following estimate for U = F~1 o ®:

U(z) = 0<(q|51))1/p> at =+ oo, (1.1)

where ® and q denotes respectively distribution and density of A(0,1).
Proof We usethe following elementary result.

Lemma 5. Let g: [0,1] — R*' be nonincreasing and such that
fo t)dt < oo, then g(t) = o(1/t) ast — 0.

First E] = |, ' FL () dt < co. Lemma 5 ensures F(t) = o(1/(1 —
t)}/P). Since U(z) = F~lo®(z), ®(z) - lasz — coand 1 — ®(x) ~ q(z)/z
at +00, we obtain (1.1) for  — +o00. Similar arguments yield also (1.1) for
x — —oo. Proposition 6 is proved.

A.2. Technical lemma. Remind g stands for the .47(0,1)’s density.
We justify Lemma 1 on page 17 useful for (d;). We have to show that, for
any A > 0,

/U q(|z] — N) dz < 0.

To do this we split the integral in the following way:

/U’ a(|z| - )da::/ + .
[z|< A [z[>[A]

We have:

_ N dz < / U'(z)dz < UQN) — U(-X) < oo,
lz|<[A]

~ N de < /M a(|z] — |\]) dU ().

Since by (1.1): U(n+1) = 0(\/(n +1)/e~(»+1)?/2) comparing integral to a
series, we obtain

/ glzl — A dU ) < 3 gln— ) Un+1) < oo
|z|> [l

n=|A|

Lemma 1 is proved.
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A.3. Key proposition. We prove Proposition 4 (see page 13) using
Proposition 3 about convergence in variation of image measure.

For any subsequence (n'), we intend to show that there exists (n”) C (n’)
such that

O (W) = H)\[O,(;]fnu (w, )" = No,6) foo (W, -)_1H — 0 when n” — oo
(1.2)
for almost all w € Q*; as soon as (A.2) is proved, classical criteria of conver-
gence in probability will ensure:

Va > 0, nh_)nolo P{w e ‘ H)\[(Ms]fn((,u7 «)71 — )\[075]foo(a), ')71H > Od} = 0.
Hypotheses 2, 3, 5 ensures there is a subsequence (n”) C (n’) with

for(w,0) — foo(w,0) for all w e Q3, P(Q;) = P(QY);
(w, ) for all w € Q3, P(Q;) = P(Q");
— 88 foo(w, ) for all (w,c) € EX C 2" ®]0,4],
c
P®NE:) = P(Q).
Let ; C Q*, P(Q;) = P(Q*), be such that for all w € Q}, and all
n > Ny(w),

0 0

afn”(wac) > Oa %

Fubini’s theorem yields that there is Qf C Q*, P(Q2}) = P(Q*), such that

foo(w,c) >0 Mae.

Vw e Qf, 9 for(w,c) — 9 foolw, ) A-a.e. for ¢ € 0,4].

Oc Jdc

Let consider
Q=N N NA: CQF, P(Q) =P((Q").

For all w € ) and n > max(N;(w), Ny(w)), the functional ¢ — f.(w,c)
satisfies hypotheses of Proposition 3, and (1.2) readily follows.
Proposition 5 can be proved from Corollary 1 of [4] in the same way.
Acknowledgments. The authors would like to thank R. Zitikis for
his careful reading of the paper and the anonymous referee for his valuable
comiments.
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