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Saint-Martin d’Hères, 38402 Cedex, France
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Abstract. We analyze the problem of vesicle migration in haptotaxis (a motion directed by an adhesion
gradient), though most of the reasoning applies to chemotaxis as well as to a variety of driving forces.
A brief account has been published on this topic [6]. We present an extensive analysis of this problem
and provide a basic discussion of most of the relevant processes of migration. The problem allows for
an arbitrary shape evolution which is compatible with the full hydrodynamical flow in the Stokes limit.
The problem is solved within the boundary integral formulation based on the Oseen tensor. For the sake
of simplicity we confine ourselves to 2D flows in the numerical analysis. There are basically two regimes
(i) the tense regime where the vesicle behaves as a “droplet” with an effective contact angle. In that case
the migration velocity is given by the Stokes law. (ii) The flask regime where the vesicle has a significant
(on the scale of the vesicle size) contact curvature. In that case we obtain a new migration law which
substantially differs from the Stokes law. We develop general arguments in order to extract analytical laws
of migration. These are in good agreement with the full numerical analysis. Finally we mention several
important future issues and open questions.

PACS. 87.17.Jj Cell locomotion; chemotaxis and related directed motion – 87.16.Dg Membranes, bilayers,
and vesicles – 47.55.Dz Drops and bubbles

1 Introduction

Vesicles are closed membranes suspended in an aqueous
solution (Fig. 1). These membranes serve as an efficient
permeability barrier. Vesicles mimic one of the most prim-
itive and mechanically flexible dividing interface between
the interior and the exterior of a cell. In general, the en-
closed fluid is incompressible so that the vesicle evolves at
a constant volume. In addition, the membrane exchanges
no phospholipid molecules with the solution, so that its
area remains constant as time elapses. In its equilibrium
state the vesicle is described by a bending energy due
to Helfrich [1], which is compatible with the above con-
straints (constant volume and constant area). Despite its
relative simplicity, this model produces a variety of equi-
librium shapes, such as stomatocytes, discocytes (bearing
resemblance with red blood cells), as well as shapes with
higher topology (such as n-genus torus) that have also
been observed experimentally [2].

One of the new emerging field of research concerns the
elucidation of non-equilibrium features of vesicles. These
questions have recently known an increasing interest.
Works have been directed towards out-equilibrium fluc-
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Fig. 1. A schematic view of a vesicle showing the microscopic
structure: a bilayer of phospholipidic molecules. The membrane
is adhered on the area π (Ladh/2)2.

tuations [3], vesicle alignments in a shear flow [4], vesicle
migration close to a substrate [5,6] or in a gravity field [7],
lift force [8–10], and vesicle tumbling [11]. Several experi-
ments have dealt recently with vesicle migration [12–15].
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Vesicle migration involves hydrodynamical dissipation
in the surrounding fluid as well as inside the vesicle, and,
in principle, between the two monolayers which may slide
with respect to each other. In addition, during motion on
a substrate the vesicle dynamics may be limited not only
by hydrodynamical flow but also by a breaking and restor-
ing of bonds on the substrate. The slowest mechanism will
limit the motion. In this paper we concentrate on the sit-
uation where hydrodynamics are the limiting factors and
we shall assign no dissipation associated with bonds on the
substrate. Of course this is a question of great importance
and it will constitute the topic of a future work.

In this paper we shall present an extensive discussion
on the problem of haptotaxis (a motion induced by an ad-
hesion gradient), but it will become clear that the model-
ing will work perfectly well with any other driving force.
We determine the main ingredients (adhesion area, etc.)
that play a role in the process by which motion takes place.
We derive scaling laws on the basis of general dimensional
considerations, and compare our results with the full nu-
merical calculation based on the boundary integral formu-
lation. The scheme of the paper is as follows. In Section 2
we introduce the main vesicle properties which are rele-
vant in the present model. In Section 3 we shall first an-
alyze the adhesion properties at equilibrium. Section 4 is
devoted to the dynamical model equations and to the inte-
gral boundary formulation based on the Green’s function
techniques. In Section 5 we briefly sketch the numerical
scheme. Section 6 deals with the full migration law both
analytically and numerically. The results and perspectives
are presented in Section 7.

2 Vesicle properties

We consider a vesicle which is initially adhering on a flat
surface. An adhesion gradient is prescribed along the sub-
strate. The vesicle moves in the direction of increasing
adhesion energy (see Fig. 2). Before dealing with the full
dynamical problem, we first discuss the main equilibrium
features which are relevant for the model.

2.1 Curvature energy

As stated before, our numerical simulations have been per-
formed in 2D, for the sake of simplicity and of comput-
ing time. In a recent work [10], it has been shown that
vesicles under shear flow close to a substrate behave in
very much the same way as that found in two dimensional
simulations, on which we have reported briefly in refer-
ence [8]. Thus we believe that the 2D assumption captures
the essential features of the 3D vesicle. The 2D assump-
tion means that the vesicle is assumed to be invariant in
the z direction, and its shape is simply represented by a
closed curve C in the (x, y) plane. The well known Helfrich
curvature energy [1] has then the dimension of an energy
per unit length and is written as

Ec =
κ

2

∫
C

c2 ds , (1)

Fig. 2. Stationary vesicle profiles, moving from the left
(smaller adhesion) to the right (stronger adhesion); a few dis-
cretisation points are represented and the arrow allows to fol-
low one of these at three successive times. This illustrates the
rolling and sliding components of the motion.

with κ the membrane rigidity and c the vesicle curvature
(counted as positive for a convex shape; e.g. for a circle).

The curvature force experienced by a piece of the mem-
brane having an extent ds is obtained upon a functional
differentiation. We obtain, with n being the outward nor-
mal vector, the following expression [16]:

fc = −δEc/δr(s) = κ

(
∂2c

∂s2
+

c3

2

)
n . (2)

That the force has only a normal component is not a
surprise. Indeed this is due to the fact that the cur-
vature energy only depends on geometrical properties,
which remain unchanged under a purely tangential dis-
placement [17].

2.2 Adhesion energy

The membrane/substrate interaction is characterized by
a short range adhesion potential (see Fig. 3). Any form of
the potential can be accounted for here. For definiteness
we choose the following expression:

w(r) = w̄(x)
(

d0

y

)2
[(

d0

y

)2

− 2

]
, (3)

where d0 is the interaction range of the order of 50 nm [18].
w̄ is the local adhesion energy, which depends on x for
an inhomogeneous substrate. Typically, we shall set w̄ =
w0 + (x− xm)δw. The quantity w0 is the typical adhesion
energy, xm is the center of the adhesion contact, δw repre-
sents the difference in the adhesion potential on both sides
of the vesicles (the adhesion gradient). The magnitude of
the interaction potential depends on the physical nature
of the interaction. We will focus on the so-called weak
adhesion range, between 102 and 104 kT/µm2. For exam-
ple, an adhesion potential of the order of 4 000 kT/µm2 is
observed for physical interactions between neutral mem-
branes [18–21]. Of considerable interest is also the specific
interactions due to protein/protein bounds, which prevail
in biological situations. In that case, binding/unbinding
transitions give rise to specific dissipation, which is not
taken into account in the present work. Indeed our wish is
to keep the model in its minimal version in order to iden-
tify the role of each process. The study of specific adhesion
is the topic of a future work.
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Fig. 3. Vesicle/substrate interaction profile.

Note that we are at liberty to choose an adhesion po-
tential per unit length (in a 2D language) or per unit mass.
However, the expression of the force will assume a differ-
ent form depending on the definition. As this question is
somewhat subtle, it deserves a special attention as pre-
sented in the following section.

2.3 Local length conservation of the membrane

As stated before, the membrane is composed of insoluble
phopholipids in their fluid phase. The bilayer is a 2D in-
compressible fluid. As is the case with bulk fluids, this
constraint implies a vanishing velocity divergence. Ex-
pressed on a curved surface, this condition not only in-
volves the velocity derivatives, but also the membrane cur-
vature, since the condition is imposed on a curved space.
In 2D, the demand of membrane incompressibility implies
a local arc-length conservation. The constraint equation
couples the normal and tangential membrane velocities,
vn and vt, to the curvature c, through the following rela-
tion (see [17,22]):

t.
∂v
∂s

= vnc +
∂vt

∂s
= 0 . (4)

The left hand side clearly shows that this is a diver-
gence along the curve (t is the tangent unit vector). The
right hand side can be obtained by decomposing v along
the normal and the tangent and by using the fact that
∂n/∂s = ct and ∂t/∂s = −cn. In order to fulfill at each
point of the membrane the incompressibility condition, we
introduce a local Lagrange multiplier ζ(s). As this con-
dition ensures the local length conservation (which is a
physical constraint), we must supplement the energy of
the membrane by a contribution of the form

El =
∫
C

ζ(s)ds , (5)

from which we get the forces which ensure local incom-
pressibility, upon a functional differentiation:

fl =
∂ζ

∂s
t − cζn . (6)

The function ζ plays the role of an “effective” surface ten-
sion. However, care must be taken when making this anal-
ogy. In contrast to surface tension at a fluid/fluid inter-
face, the membrane tension is not an intrinsic property of
the membrane. It adapts itself to the other forces in order
to ensure the local arc-length conservation. As external
forces (the adhesion and hydrodynamical forces) depend
on time and on space, the effective tension is space and
time dependent as well. A local force field tending to ex-
tend the membrane leads to a positive tension, whereas if
it tends to compress the bilayer, the tension will be neg-
ative. Moreover, the tension depends on the precise def-
inition chosen for the other forces. In order to illustrate
this subtle question, we find it worthwhile to discuss this
point more precisely.

As mentioned above, we are at liberty to choose a po-
tential per unit mass wm(r) or per unit surface ws(r). The
adhesion forces fam and fas associated to both potentials
are [16]:

fam = −ρ∇wm(r) = −∇ws(r) , (7)

fas = −
(

c ws(r) +
∂ws(r)

∂n

)
n , (8)

with ρ being the membrane density assumed to be homo-
geneous and ρwm = ws. The first functional derivative is
performed with respect to a mass variation. We recover
here the expected result of a force being proportional
to the opposite of the potential gradient. In the second
case, a tangential displacement produces no energy change
and the tangential forces vanish. On the other hand, once
the incompressibility condition is expressed, both models
should be completely equivalent. The self-consistency is
ensured by the Lagrange multiplier, which takes different
values ζm and ζs in each situation, but they are related to
each other by the equation:

ζm = ζs + ws . (9)

The force experienced by a piece of the membrane is thus
an invariant –in that it does not depend on the definition–,
as it should be. This can easily be checked from equa-
tions (6, 7) and (8). Anyway, the problem of the definition
and of the unicity of the “tension” remains.

In principle we can first define the adhesion force
before evoking the local length conservation. The adhe-
sion potential is obviously proportional to the number
of molecules in interaction: in this spirit this is a poten-
tial per unit mass. This potential would be different from
the one per unit surface. Both potentials are equivalent
only under the condition of local incompressibility. The
potential per unit mass seems to be a natural one, since it
leads to the conventional definition, f = −∇w. We adopt
the second convention (per unit surface). This avoids any
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mass consideration and leads to a uniform tension under
equilibrium. From now on, ζ denotes the Lagrange mul-
tiplier corresponding to the model where the potential is
defined per unit surface. The correspondence between the
two models is straightforward using equation (9).

Summing up (2), (6) and (8) we obtain the total force,
with n and t the outward normal and tangential vectors,
respectively:

fmemb = κ

(
∂2c

∂s2
+

c3

2

)
n +

∂ζ

∂s
t − cζn

−
(

c w(r) +
∂w(r)

∂n

)
n . (10)

2.4 Conservation of the enclosed area

The second conserved quantity is the volume (area in
2D) enclosed by the vesicle. The admitted value for the
membrane water permeability is Pw = 10−4 cm/s [23,24],
which is small but not completely negligible. The perme-
abilities for the solute molecules (sugar, ions, polymer)
are much smaller. So, the membrane behaves as a semi-
permeable boundary; it allows for osmosis. An area (vol-
ume in 3D) variation of, say, ∆A/A ∼ 1%, produces an
osmotic pressure Posm ∼ RGTc|∆A/A| ∼ 1 000 Pa for a
physiologic osmolarity c ∼ 50 mMol/L, with RG the uni-
versal gas constant and T the temperature. On the other
hand, a typical pressure difference produced by curvature
forces is Pmeca ∼ κ/R3 ∼ 10−1 Pa, with R ∼ 1 µm the
typical size of the vesicle. This is too small in order to
counterbalance the above osmotic force. Thus there is no
resistance to in or out-flow from bending forces.

The impermeability and the area conservation induced
by osmotic forces are nevertheless two notions which are
distinct, to some extent. Impermeability is a local con-
straint, whereas the volume conservation is global. A
highly permeable vesicle can be pulled in a fluid with-
out any resistance (and without an inner area change),
whereas an impermeable one would feel a drag force. The
solvent flux through the membrane, dA/dt, as a function
of the pressure difference ∆p (in an Onsager-like picture),
is given by

dA

dt
∼ Pw L ∆p × Vmol

RGT
, (11)

with L the vesicle perimeter and Vmol the water molar
volume. The time scale for permeability depends thus on
the driving force. The order of magnitude can vary quite
significantly depending on whether an osmotic shock is
present or not. For example, the time needed for signif-
icantly emptying a vesicle in the presence of an osmotic
chock is obtained from equation (11) (with ∆p ∼ 1 000 Pa)
to be of order τosm ∼ 103 s. This time scale is usu-
ally observed for osmotic swelling or de-swelling. On the
other hand, the response to a typical pressure differ-
ence produced by curvature forces κ/R3 ∼ 10−1 Pa is
τperm ∼ 107 s. The latter process can be referred to as
the natural permeability. This estimate shows that once
the osmolarity is fixed and the swelling factor reached,

the vesicle will then evolve without water flux through
the membrane on time scales of motions of interest. The
assumption of local impermeability is legitimate. This en-
tails that the fluid velocity at the membrane is equal that
of the membrane itself.

3 Adhesion length and tension

The adhesion length (or adhesion area in 3D) and the ten-
sion are related to the vesicle parameters (swelling, size)
in a non trivial way in general, even at equilibrium. A
liquid droplet is characterized by its contact angle via
the Young relation. On a membrane, such an angle dis-
continuity would produce a huge curvature energy. Thus,
an elastic membrane should meet the substrate tangen-
tially. The analogue of the Young condition concerns here
the contact curvature, though in some limits this con-
dition has a similar form (see below). For a vesicle at
equilibrium on a homogeneous substrate with an adhe-
sion energy w̄(x) = w0 the contact curvature is given by
Rc = 1/c0 =

√
κ/2w0 [25,26]. This length scale must be

compared with the geometrical length scales (e.g. the size
of the vesicle). There are two extreme regimes: (i) the tense
regime in which the adhesion is strong enough so that the
contact radius of curvature Rc is small in comparison to
the vesicle size, and (ii) the flask regime where Rc is large.
More precisely, the first regime corresponds to R � Rc

and the second to R ∼ Rc. In the first case, it is possible
to define an effective contact angle, in a manner which is
similar to the contact angle for a droplet [17,27].

3.1 Adhesion length

This section deals with the derivation of the relation be-
tween the adhesion length and other parameters. This
length constitutes an essential quantity for the study of
dynamics. The adhesion length, Ladh, is defined in Fig-
ure 1. This quantity is well defined as long as the range of
the adhesion potential is small in comparison to the vesi-
cle size, d0 � R. There are two interesting regimes that
will be discussed separately.

3.1.1 The tense regime: Rc � R

This regime is achieved for strong adhesion, or a small
rigidity, or giant vesicles. In some sense, the contact cur-
vature radius is so small that it scales out of the prob-
lem, and we are thus left with geometrical lengths only.
Due to strong adhesion, for example, the vesicle spreads
out on the substrate as much as is allowed by the geo-
metrical constraints which fix the enclosed area and the
perimeter. Two length scales are involved: the vesicle size
defined by R = L/2π, where L is the perimeter, and
Rs =

√
A/π which is related to the enclosed area A. The

ratio Rs/R can be referred to as the swelling factor: for a
circle its value is unity, and it is smaller than unity other-
wise. A more common definition of the swelling factor is
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Fig. 4. The adhesion length as a function of the swelling factor.

τ ≡ A/πR2 (or V/(4πR3/3) in three dimensions), τ = 1
for a circle and τ < 1 otherwise. We shall however refer to
Rs/R =

√
A/πR2 (which is the square root of the usual

swelling factor) as the swelling factor in this paper.
Equilibrium (see Eq. (10)) imposes the following

relation

κ

(
∂2c

∂s2
+

c3

2

)
n+

∂ζ

∂s
t−cζn−

(
c w(r) +

∂w(r)
∂n

)
n = pn .

(12)
Here p is the uniform hydrostatic pressure and the l.h.s.
is the membrane force obtained from equation (10). In
the limit where rigidity is small, curvature forces can be
ignored to leading order. Additionally, for the free part
of the vesicle (the part which is not in contact with the
substrate) the adhesion potential can be neglected. For
this part equation (12) simplifies to p + cζ = 0 (for the
normal component) and ∂ζ/∂s = 0 (for the tangential
one). As the membrane is stretched by the adhesion forces,
the uniform tension ζ is non zero, and it fixes the radius
of curvature of the free part which is a truncated circle.
The vesicle morphology is thus entirely determined by R
and Rs, and in the limit Rs/R → 1 and d0 → 0, Ladh

obeys the following law:

Ladh ∼ R (1 − Rs/R)
1
3 . (13)

There is a good agreement with the full numerical results
(see Figs. 4, 5).

3.1.2 The flask regime, Rc ∼ R

This regime is achieved for a very weak adhesion, large
rigidity or a small vesicle. Of course the swelling factor
must not be too close to 1. We expect the effect of rigidity
to cause a decrease of the adhesion length for a given value
of R and Rs. On the substrate, a vesicle gains adhesion
energy at the price of curvature energy (see Fig. 6). The
adhesion length follows then from a compromise between
these two antagonist effects.

The adhesion energy gain is given obviously by

∆Ew ∼ w0Ladh . (14)

Fig. 5. Vesicle shapes corresponding to the swelling factor
range shown in Figure 4.

3δ

3
|   A| ~ Ladh /Rδ

|   c| ~ Ladh /R

increase

4

Mean curvature
decrease

Local curvature

Fig. 6. During transformation between its free state (dashed
line) and its adhering state (full line) the vesicle adhesion en-
ergy decreases, whereas its curvature energy increases. The
liquid represented by the grey area must be redistributed
elsewhere.

The curvature energy variation ∆Ec is, with δc(s) the cur-
vature difference between the final state (adhered) and the
initial one (free):

∆Ec =
κ

2

(∫
(c + δc)2 ds −

∫
c2 ds

)

=
κ

2

(∫
2cδc ds +

∫
δc2 ds

)
. (15)

For vesicles that have swelled by a large enough amount
(Rs ∼ R) the free curvature remains close to the constant
value c = 1/R and

∫
cδc ds ∼ c

∫
δc ds. The length con-

servation implies
∫

δc ds = 0, making this term negligible.
The energy variation is thus quadratic with δc:

∆Ec ∼ κ

2

∫
δc2 ds. (16)

The area conservation provides us with δc. The liquid
represented by the grey area in Figure 6, must be redis-
tributed elsewhere in the adhesion process. This area, δA,
is computed as a small part of a disc with a basis Ladh and
a radius R. With θ the angle so that sin(θ/2) = Ladh/2R,
we get, for a small adhesion length:

δA ∼ θR2/2 − LadhR cos(θ/2) ∼ L3
adh/R . (17)

The area redistribution produces a mean radius increase
of the order of δR ∼ δA/R ∼ L3

adh/R2. The decrease of
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Fig. 7. Adhesion length variation with the vesicle size. Rigid-
ity, swelling and adhesion are kept fixed.

curvature in the free part of the curve, δc = −δR/R2 ∼
−L3

adh/R4, is compensated by a strong curvature in-
crease around the contact point, ensuring

∫
δc ∼ 0. Equa-

tion (16) thus entails

∆Ec ∼ κRδc2 ∼ κ L6
adh/R7 . (18)

Equating the two variations (14) and (18), we obtain

Ladh ∼
(w0

κ

) 1
5

R
7
5 . (19)

The full numerical result provides a good agreement
with the above law (see Fig. 7).

Note that in this regime, the adhesion length in-
creases faster than the size, with an effective power law
Ladh ∼ R(R/Rc)2/5.

3.1.3 Extension of the analytical results to 3D

The above analysis can be extended to 3D in a straight-
forward manner. The area variation δA becomes a volume
δv ∼ L4

adh/R from which we get the curvature variation
δc ∼ L4

adh/R5, with Ladh the radius of the adhered part.
The loss of curvature energy, δE3D

c ∼ κδc2R2, counter-
balances the gain due to adhesion, δE3D

w ∼ L2
adhw0, lead-

ing to:

κ

(
L4

adh

R5

)2

R2 ∼ L2
adhw0 , (20)

implying that

L3D
adh ∼ R4/3

(w0

κ

)1/6

· (21)

3.2 The Lagrange multiplier

We complete the equilibrium analysis by addressing the
question of the Lagrange multiplier ζ. We shall distinguish
between a strong enough adhesion (the tense regime) and
a weak adhesion.

3.2.1 The strong adhesion regime

As we have seen before this regime corresponds to a shape
which is a truncated circle and the total energy can be
approximately written as

E ∼ ζL + pA − w0Ladh . (22)

Here the variational parameters are L and A. The pres-
sure p is the hydrostatic pressure, so E is rather an en-
thalpy than an energy. A large perimeter for a given en-
closed surface would favor spreading thanks to adhesion.
This leads thus to a positive tension, acting against the
membrane extension. The Lagrange multiplier ζ and the
hydrostatic pressure p ensure that the desired perimeter
and area act in a way to render minimum the energy,
so that: (

∂E

∂L

)
A

= −w0

(
∂Ladh

∂L

)
A

+ ζ = 0(
∂E

∂A

)
L

= −w0

(
∂Ladh

∂A

)
L

+ p = 0 .

To first order in the small parameter 1−Rs/R, we get,
by using equation (13):

ζ ∼ w0

(
1 − Rs

R

)−2/3

, p ∼ −ζ/R . (23)

3.2.2 The weak adhesion regime

This limit means that curvature forces are large enough. In
contrast to adhesion forces, these forces tend to decrease
the perimeter (and increase the area) causing the shape
to tend towards a circular shape. In the limit of small
vesicles, the tension is dominated by the rigidity contri-
bution and is therefore negative. For an intermediate size
of the vesicle, the rigidity and the adhesion compete and
one must find the tension from an interplay between these
effects. The full expression for the energy is:

E = pA + ζL − w0Ladh +
κ

2

∫
c2ds . (24)

The rigidity enters here both in the adhesion length
(see Eq. (19)) and explicitly in the Helfrich energy.

Minimization, with a constant swelling factor τ , yields

(
∂E

∂L

)
τ

= −w0

(
∂Ladh

∂L

)
τ

+ ζ + p

(
∂A

∂L

)
τ

+
κ

2
∂

∂L

∫
c2ds

)
τ

= 0 . (25)

Assuming again p ∼ −ζ/R, which is here an approxi-
mated value, we get

ζ ∼
[
w0

(
∂Ladh

∂L

)
τ

− κ

2
∂

∂L

∫
c2ds

)
τ

]
(1 − Rs/R)−1.

(26)
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Fig. 8. Membrane tension as a function of the vesicle size.
numerical values: R = 0.5 → 10, Rs/R = 0.96, Rc = 0.4,
d0 = 0.06, w0 = 2.5.

Both adhesion and curvature energy increase more
rapidly than linearly with R in the weak adhesion regime
(see (19) and its determination), while they scale linearly
with the size in the tense regime. Thus the tension in-
creases with R and saturates to a limiting value for large
vesicles (see Fig. 8).

4 Dynamics: hydrodynamics dissipation

On the vesicle scale (R ∼ 10 µm) and for the expected
velocities (V ∼ 1 µm/s), dynamics are completely domi-
nated by dissipative processes. The energy injected is in-
stantaneously dissipated in the various degrees of freedom.
Local dissipation due to molecular reorganization, charac-
terized by the Leslie coefficient, is negligible in comparison
to hydrodynamics modes [29]. Additionally, as specified
above, we restrict ourselves to non-dissipative adhesion.
Hydrodynamics dissipation is therefore taken to be as the
dominant process. Hydrodynamics dissipation occurs in
the bulk fluid as well as within the membrane. We provide
below an estimate on the conditions under which dissipa-
tion within the membrane may be disregarded.

Let us first consider the dissipation arising from a ve-
locity gradient along the membrane. The velocity conti-
nuity implies that these gradients are of the same order of
magnitude as the bulk velocity gradients. So, the internal
and external dissipations, given by η (or ηm)

∫
(∇v)2dτ ,

are given respectively by:

Dint ∼ ηm(V/R)2hR2 ∼ ηmV 2h , (27)

Dext ∼ η(V/R)2R3 ∼ ηV 2R , (28)

with ηm the membrane viscosity and h its thickness. As
long as ηR/ηmh � 1 the condition Dext � Dint is sat-
isfied. Yeung and Evans measured a ratio ηm/η ∼ 100
leading to a critical radius of the order of 100 h ∼ 1 µm
for the cross-over [31,32].

In the same way, we can check the influence of the
dissipation due to a relative sliding of the two monolayers.
The tangential stress continuity at the membrane/liquid

interface implies

η
V

R
∼ ηm

δV

h
, (29)

with δV the relative velocity of the two monolayers. From
these, we deduce the internal and external dissipations:

Dint ∼ ηm(δV/h)2hR2 ∼ (ηV 2R)
η

ηm

h

R
, (30)

Dext ∼ η(V/R)2R3 ∼ ηV 2R , (31)

leading to the condition ηh/ηmR � 1, which is always
fulfilled.

That is to say, as long as the vesicle size is large in com-
parison to 1 µm (a situation encountered for most practi-
cal purposes in experiments with liposomes), dissipation
due to the membrane viscosity is negligible. Additionally,
the velocity discontinuity δV across the membrane is neg-
ligible (see Eq. (29)).

Having shown that dissipation is dominated by bulk
effects, we are in a position to write down the basic govern-
ing equations. Inertia are small (the small Reynolds num-
ber limit). The velocity field obeys the Stokes equations:

η∆v −∇p = 0
∇.v = 0 . (32)

The main difficulty arises from the fact that the boundary
is unknown a priori (free boundary). Thanks to the linear-
ity of the Stokes equations, the velocity field in the bulk
can be integrated out by means of the Green’s function.
We thus end up with an evolution equation of the contour
only, at the price of nonlocality.

4.1 Boundary conditions

Let v−, v+ designate the fluid velocities close to the mem-
brane, but outside the vesicle, and inside, respectively.
Let vm be the membrane velocity. We assume that the
two monolayers form a unique entity. As we saw above,
the sliding motion between the monolayers is negligible
(see Eq. (29)). The non slip condition implies the equality
between the tangential components of the above defined
three velocities,

v−t = v+
t = vm

t . (33)
On the other hand, mass conservation across the bilayer
leads to

v−n = v+
n = vf

n (34)
with vf

n the fluid normal velocity. The vesicle impermeabil-
ity provides the last relation vf

n = vm
n . The fluid velocity

is thus continuous across the membrane, and is equal to
the membrane velocity.

Finally, the non slip condition entails that v vanishes
at the substrate. Nevertheless a sliding motion of the vesi-
cle is allowed due to the fact that the distance between the
vesicle and the substrate is not exactly zero. That is to say,
we allow for a thin fluid layer between the substrate and
the membrane. Experimental studies on vesicles have re-
ported that under a weak enough adhesion, there is always
a gap (of the order of 50−100 nm) between the substrate
and the vesicle [33].
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4.2 Green’s function

The Stokes equations are linear and can be rewritten in
an integral form over the boundaries (the vesicle and the
substrate) by using Green’s function techniques. The main
idea is to express the velocity field as the superposition of
elementary fields, each one being the response to an exter-
nal point force f applied on the fluid (see Fig. 10). We shall
assume that there is no viscosity contrast between inside
and outside. The same hydrodynamical equations thus
hold in the whole aqueous medium and the expected ex-
pression for the velocity is formally given by v =

∫
Gfds.

The membrane is a location of forces fmemb, that counter-
balances the forces associated with the velocity field.

The Green’s function for the velocities, denoted by G,
has been introduced by Oseen and is often referred to as
the Oseen tensor [34]. Note that because G is the response
function to a vector field, it is a tensor (the shear and the
normal stresses are different). G is a solution of the follow-
ing system (with the summation convention on repeated
indices):

η ∂kkGij(r, r′) − ∂iPj(r, r′) + δ(r − r′)uj = 0

∂iGij(r, r′) = 0 . (35)

The vector P is the Green’s function for the pressure field,
which plays no role in the final integral formulation, so
that we have not felt it worthwhile to specify it. Note that
the above Green’s function is the free space one (that is
no boundary condition has to be specified if the velocity
vanish at infinity). A Green’s function for a half space
is known [35], and we could make use of it. In that case
the boundary condition at the substrate would have been
satisfied automatically. A particular advantage for using
the free space propagator lies in the fact that it can be
adopted to any wall geometry (e.g. a roughness which is
always present in real situations...), or simply if one wishes
to introduce a second wall (vesicles in a channel). The di-
rect calculation of the Green’s function and the derivation
of the integral equation can be found in [16]. We shall thus
only give the results here. Let us set for brevity r ≡ |r−r′|
and ri the ith component of the vector r − r′, G is given
in 2D by:

Gij =
1

4πη

(
−δij ln(r) +

rirj

r2

)
· (36)

Figure 9 illustrates the behavior of the Green’s func-
tion. This function diverges logarithmically for r = 0 and
r → ∞. The first divergence is integrable. The divergence
at long distance deserves a special attention, as it will
be dealt with later in this paper. Additionally, G must
contain a special cut-off. Another way of saying the same
thing is that the argument of ln must be dimensionless.
Let the spatial cut-off be denoted by Ur. We must then
have log(r/Ur) = log(r) − log(Ur). As shown below, the
Oseen tensor only enters the expression

∫
Gfds. The total

force
∫

f on a fluid element is zero in the Stokes limit; the
additive constant does not matter.

Fig. 9. Green’s function associated to a point force oriented
along x̂.

4.3 Integral equation

The velocity field at a given point in the fluid obeys the
following equation [16]:

v(r) =
∫

Γ

dτ G(r − r′) f(r′) . (37)

Here r′ corresponds to the force sources localized on two
boundaries: the vesicle boundary Γv and the substrate
one, Γs. From the very definition of the stress tensor,
σij = −pδij + η(∂jvi + ∂ivj), it is a simple matter to
see that the total force (per unit area) from the substrate
(the reaction force) is given by

fsub = p ŷ − η
∂vx

∂y
x̂ . (38)

The reaction force of the membrane is given by (10). The
velocity field takes the following final form

v(r) =
∫

Γv

G(r − r′)f(r′)memb ds′

+
∫

Γs

G(r − x′)
(

p(x′) ŷ − η
∂vx

∂y
(x′) x̂

)
dx′.

(39)

The various terms involved in fmemb depend only on the
membrane geometry, except the “tension”, which will be
discussed later. The second force, arising from the wall,
is a priori unknown, and must be evaluated self consis-
tently, using the condition that the velocity vanishes on
the substrate.

Equation (39) is valid everywhere in the fluid. Taking
the limit r = rm where rm is the membrane position we
obtain the membrane velocity, and thus dynamics can be
determined starting from some initial condition. As men-
tioned before, the fluid velocity field is integrated out, and
dynamics is described by the knowledge of the contours
contribution; this is done at the price of nonlocality.
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Fig. 10. The Oseen tensor G is here defined as the velocity field
response to a point force in an infinite fluid at rest at infinity. It
provides a relation, between two vectors, the velocity and the
force; and two locations r, where the velocity is observed, r′,
where the force is applied.

4.4 The 2D logarithmic divergence

The logarithmic divergence at long distance is a problem
which is specific to the 2D character. For this reason the
evaluation of the Stokes law (the drag force), for example,
is ill-posed and one has to resort to the Oseen approxima-
tion [36] in order to cure this pathological behavior. The
crux of the Oseen approximation is based on the fact that
though inertia effects are small in principle, they play a
role at long distance. Nevertheless, for an adhering vesicle,
it turns out that the local viscous dissipation due to the
small distance between vesicle and substrate dominates
the dynamics, and this sets a short length cut-off. Let
us be more specific and estimate the viscous and inertial
forces acting on a cylinder, as a function of the distance
to a wall. This will allow us to specify the validity of the
Stokes equations in 2D.

The purely viscous friction acting on a cylinder which
is moving at velocity V at distance d from the wall and
having a radius R is given by [37]:

Fvisq = 4πηV
1

ln(1 + d/R +
√

(d/R)2 + 2d/R)
∼ 4πηV√

2d/R
·

(40)
The second equality in equation (40) corresponds to the
asymptotic case of interest, d → 0. As expected, this force
becomes logarithmically small as d increases, and thus in-
ertia may become important.

The inertial force acting on a cylinder moving with
velocity V in an unbounded fluid is, to leading order in Re,

Finer = 4πηV
1

1/2 − C − ln Re
∼ −4πηV

ln Re
· (41)

Finer goes to zero when the Reynolds number vanishes,
and is thus intrinsically related to fluid inertia. Assuming
this expression to hold (in an order of magnitude sense)
close enough to a substrate, we find that the validity for
the Stokes equation, Fvisq � Finer, becomes:√

d/R � |ln Re| . (42)

Typically, Re is at most of the order of Re ∼ 10−3 and
d/R < 0.1. Therefore, disregarding inertia is justified be-
yond any doubt, despite the 2D specificity of the problem.

This means, as anticipated above, that a short distance
cut-off prevails over the Oseen correction which usually
cures the ill-posedness of the Stokes problem. It must be
mentioned, however, that the behavior of the velocity field
at long distances should need a special treatment, a ques-
tion in which we are not interested in this paper.

5 The numerical scheme

In principle, given an initial condition, we can determine
the velocity field. Then each point is moved in the normal
direction by a quantity vnδt, and so on. By this procedure
we can study vesicle dynamics in the course of time. The
initial condition can be specified in terms of the coordi-
nates (x, y)i, i being the index associated to the N ∼ 100
discretisation points along the membrane. The numerical
code will provide the evolution law for these N points. Of
course the mesh size on the membrane must remain small
in comparison to the distance d0 from the substrate. We
use an inhomogeneous discretisation, which is taken to be
finer close to the substrate.

The substrate discretisation is typically performed
with N2 ∼ 100 points indexed by j. Under the vesicle
the mesh is chosen to be smaller but close to d0, whereas
far away from the adhered part, we have used a mesh size
on the substrate which varies as j2. We explored domains
of typical sizes equal to 10R on both sides of the vesicle.

The procedure can be summarized in the follow-
ing three main steps: (a) computation of the membrane
forces fi, using equation (10) (the determination of ζ is
discussed below); (b) evaluation of the wall reaction, by
taking advantage of the non slip condition on the sub-
strate. This information, coupled with the velocity expres-
sion (39), amount to inverting the integral equation. This
means that we invert a 2N2 × 2N2 matrix. The 2N2 un-
known parameters are pj′ and ∂vx/∂y)j′ . The discretized
version of the integral equation to be inverted is

vj = 0 =
∑

i

G(xj − ri) fi dsi

+
∑
j′

G(xj − xj′ )
(

p(xj′ ) ŷ − η
∂vx

∂y
(xj′ ) x̂

)
dxj′ .

(43)

The inversion yields the pj′ and ∂vx/∂y)j′ values; the third
step, (c) consists of computing the membrane velocity by
using (39). Once the velocity is obtained, the displacement
of each membrane point is, in principle, straightforward.
The time discretisation used in this last step is such that
dt < dsn, with n the highest order of the spatial deriva-
tive. This is set by the Helfrich force, which contains a
fourth order derivative, and in principle, n = 4. This im-
poses a rather drastic small time step dt ∼ 10−4 for a rea-
sonable mesh size of 10−1 [38]. It will be an important task
for future investigations to make use of more sophisticated
temporal schemes with the aim of reducing the comput-
ing time. In fact in 2D the vesicle acquires a permanent
regime within 10 to 30 minutes on the fastest commercial
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PC’s. In 3D there is a strong need for optimizing the code
if one wishes to access to a full quantitative study, as it
has been done for similar situations in [7,10]. These codes
should allow for an extensive future simulation.

5.1 Dealing with the constraints

The Lagrange multiplier (ζ is the Lagrange multiplier)
formalism is the traditional way for fixing constraints.
Once the velocity field expression has been obtained for-
mally (39), the value of ζ can be determined from the
constraint equation of incompressibility vnc + ∂vt/∂s = 0.
This set of equations involves ζ through the veloci-
ties (39), expressed as integral functions of the membrane
forces (10), which themselves depend on ζ. ζ can then be
obtained by inverting an integral equation. We found it
more convenient to treat this part in a different manner,
which is more straightforward. We imagine that two neigh-
boring material points (which are taken to be identical to
the discretisation points) on the membrane are coupled to
each other by a “stiff spring”. In other words, we penal-
ize any deviation dsi between two discretisation points on
the membrane, by adding in the forces a spring-like term
ζs = K (dsi −ds0,i), with ds0,i a reference value, and K is
taken large enough in order to keep dsi as close as possi-
ble to ds0,i. With this prescription the length is conserved
within less than 1%. Note that in this formulation, the
tension is explicitly expressed in terms of the membrane
geometry. In some sense, with the “Lagrange multiplier
approach”, ζ adapts itself instantaneously to other forces
in order to keep the local length dsi unchanged, whereas
with the “spring model”, ζs adapts itself adiabatically, al-
beit with an internal time scale (but short in comparison
to the relaxation time towards the desired dynamics).

The volume constraint (area constraint in 2D) is
a priori ensured by the dynamical equation “div v = 0”,
implicitly involved in the Green’s function expression. At
long enough time a “drift” of the enclosed area may be
noticed, due to numerical errors. In order to circumvent
this difficulty, we have introduced an effective external
pressure p = K ′(A−A0) in the numerical code, enforcing
the area to the desired value A0. Once the value of the
constant K ′ is adjusted, the area is practically constant.

6 Out of equilibrium scaling laws

The computation method proposed above is quite general
and may be used for diverse situations. We shall confine
ourselves here to the case where motion is due to an ad-
hesion gradient (haptotaxis). In principle, as the vesicle
moves the adhesion potential increases in absolute value,
and this should lead to a continuous flattening of the vesi-
cle. In biological situations the potential is regulated so
that on the average it remains constant in the frame of
the cells. We shall thus assume that the adhesion energy
is constant in the vesicle frame and write the adhesion
potential as in (3). Because w̄ = w0 + (x − xm)δw, the
adhesion under the vesicle, where x = xm, is permanently

equal w0. However, the vesicle evolves permanently in a
gradient. The driving force F (per unit length in the z di-
rection) is the adhesion difference δw0 between upstream
and downstream contact points

F = δw0 = Ladh ∇w̄ . (44)

After transients have decayed, the vesicle adopts a station-
ary behavior that will be discussed in the next sections.
We shall develop an analytical theory based on heuristic
arguments which capture the essential features found in
the full numerical analysis.

6.1 Membrane morphology

6.1.1 Characteristic times

It will be interesting to compare the time associated with
the driving force, with that involved in the relaxation of
the shape of the vesicle as if it were free. The first time is
obtained by combining the viscosity with the energy (per
unit length) causing the vesicle motion. That energy is
typically of order E = F R = δw0R. The energy per unit
volume is thus Evol = δw0/R. The corresponding time
scale τ1, is

τ1 ∼ ηR/δw0 ∼ 10−2 s . (45)

The other time scale corresponds to relaxation at equi-
librium and may be estimated as [29] (which is a purely
dimensional consequence):

τ2 ∼ η R3/κ ∼ 1 s . (46)

One sees that the time scale associated with adhesion is
much faster. We may ask the question of by how much the
non-equilibrium shape would be different from the equi-
librium one?

6.1.2 Stationary shape

We take as a reference value for the equilibrium contact
curvature c0 =

√
2w0/κ corresponding to a homogeneous

substrate of the same mean adhesion w0. We may estimate
the deviation from the equilibrium shape by evaluating the
contact curvatures on both sides of the vesicle. The non
equilibrium contact curvature is a combination of two ef-
fects: the adhesion, and the hydrodynamical pressure. The
driving force is the adhesion gradient. The pressure distri-
bution produces a drag force slowing down the motion. So,
an overpressure ahead of the vesicle tends to decrease the
contact curvature (whereas an underpressure decreases it
at the rear). This effect is typically given by [8]

δc

c0
∼ ηV

w0(d0c0)
1
2
· (47)

On the other hand, the adhesion is larger ahead of the
vesicle and as a consequence, the curvature increases there
by an amount

δc

c0
∼ δw0

2w0
· (48)
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Fig. 11. Bottom: Morphology of a vesicle moving to the right.
Top: Membrane tension as the function of the abscissa x;
The part of the curve which is slowly increasing corresponds
to the upper part of the membrane, far from the substrate, and
the rest corresponds to the lower part. The dashed line show
the correlation between the contact point positions and the
tension extrema. Directions of the tangential hydrodynamics
forces are represented by the three arrows.

The two corrections have opposite signs and turn out to be
close to each other in absolute values for the set of param-
eters explored so far. Thus the upstream and downstream
shapes are only slightly affected. Note that the hydrody-
namical force and the adhesion one are interdependent.
Indeed, the first one is proportional to the velocity which
itself varies with δw0. The presence of these two antago-
nist effects is specific to haptotaxis. Under a shear flow, for
example, the vesicle morphology is on the contrary dras-
tically modified leading to a hydrodynamical net lift force
causing a complete unbinding from the substrate [8].

6.1.3 Out of equilibrium membrane tension

The hydrodynamical flow induces a tangential force along
the membrane contour that must be counterbalanced by
membrane forces. The only tangential component in the
membrane force (10) arises from the tension gradient
∂ζ/∂s (see Fig. 11). The mean tension value remains close
to the equilibrium one, albeit it is inhomogeneous. In-
deed, the adhesion gradient does not tend to change the
global membrane area. Tangential hydrodynamics forces
just compresse the membrane around the rear contact
point and symmetrically extends it around the fore con-
tact point, leading respectively to a smaller and a larger
tension.

6.2 Analytical and numerical results
for the translational velocity

6.2.1 Analytical approach

The following analysis can be made for any driving
force F . The power associated with the driving force F

Fig. 12. Velocity field around the vesicle. Important velocities
are observed at two places which are represented schematically
on the next picture. The rolling motion of the vesicle induces
expulsion of water at the front and pumping at the rear. As
already discussed in Section 4.4, the velocity field behavior at
long distance is irrelevant (see also remark [30]).

θ

dissipation
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Fig. 13. Schematic representation of the main dissipation
domain.

is FV and is instantaneously dissipated in hydrodynam-
ical modes. V represents the translational velocity of the
vesicle. The law for the migration velocity is obtained from
the relation FV ∼ D, with D the viscous dissipation,
which is the main quantity to be determined. The dissi-
pation is given by η(∇v)2 integrated over the volume in
which dissipation is effective.

The most important velocity gradients are localized
in a domain which is close to the contact points (see
Fig. 12). This zone is represented schematically in grey
in Figure 13. The penetration of disturbance of the ve-
locity field in the bulk due to the presence of the vesicle
is typically Ladh. The local velocity in this domain, at a
distance Ladh from the contact point is Vloc ∼ V sin θ ∼
V Ladh/R, with the angle θ defined in Figure 13. The ve-
locity gradient is thus typically of order Vloc/Ladh, leading
to ∇Vloc ∼ Vloc/Ladh ∼ V/R. Note that the result is ob-
vious: on the global scale of the vesicle size R, the vesicle
moves with velocity V , hence the induced gradients are
of order V/R. Since the local velocity gradient extends
over Ladh, the effective “volume” (surface in 2D) in which
dissipation occurs scales as L2

adh. The total dissipation is
thus given by:

D ∼ ηL2
adh

(
V

R

)2

· (49)

Equating the dissipation with the injected power, we ob-
tain the velocity law (with F a driving force per unit
length):

V ∼ F

η

(
R

Ladh

)2

· (50)
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This law is in a good agreement with the numerical results
presented below.

We must distinguish between two regimes discussed in
Section 3: (i) the tense one where Ladh ∼ R, in which
case the migration law given above becomes similar to the
Stokes law in 2D far away from a wall (as stated before
the Stokes law in 2D has logarithmic corrections). We also
note that the law in question differs from that of a cylinder
(Sect. 4) close to the wall. This difference will be discussed
below. (ii) The flask regime, where Ladh is given by (19).
It follows then that the velocity is given by

V ∼ F

η

(
Rc

R

)4/5

· (51)

6.2.2 The power law in 3D

We strongly expect the arguments used in the derivation
of the velocity power law in 2D to remain valid in 3D.
For a vesicle in a shear flow, the full 3D simulation has
been recently performed [10]. It leads to results very sim-
ilar to the 2D results, even if the shear flow induces a
prolate/oblate transition, obviously not observable in 2D.
This transition should not appear in haptotaxis. Indeed
the adhesion potential favors the oblate shape and, in
contrast with the previous situation, no hydrodynamical
effect tends to induce a prolate shape. Of course the geo-
metrical constraints on volume and area in 3D are much
less restrictive than the constraint on area and perimeter
in 2D. Complex velocity fields on the membrane itself are
especially expected in 3D with no equivalence in 2D. Nev-
ertheless, the characteristic length R and the equilibrium
radius of curvature Rc remain robust and well defined in
3D and play similar roles in the dissipative processes. For
our purpose, the only difference is thus that the effective
volume of dissipation is L3

adh and the local velocity gradi-
ent remains proportional to V/R. We obtain the following
dissipation rate:

D ∼ ηL3
adh

(
V

R

)2

, (52)

leading to the velocity scaling law:

V ∼ η
F

R

(
R

Ladh

)3

· (53)

Using the scaling law Ladh ∼ R4/3R
−1/3
c (Eq. (21)) for the

adhesion radius in the small adhesion regime, we obtain
the following relation for the velocity:

V ∼ η
FRc

R2
· (54)

The Stokes law for a sphere moving in a viscous fluid is
V ∼ ηF/R, and remains valid close to a wall up to log-
arithmic corrections [39]. The new power law 1/R2 is in-
trinsically related to the vesicle deformability and to its
ability to spread on the substrate. This deviation from
the Stokes law is strong enough and is thus not devoid of
experimental testability.
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Fig. 14. Variation of the vesicle size R. The ratio Rs/R is
kept fixed. (Numerical values: R = 0.5 → 10, Rs/R = 0.96,
Rc = 0.4, d0 = 0.06.)
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Fig. 15. Variation of the reduced volume. (Numerical values:
Rs/R = 0.78 → 0.95, R = 1.1, Rc = 0.5, d0 = 0.06.)
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Fig. 16. Variation of the potential range. (Numerical values:
Rs/R = 0.88, R = 1.1, Rc = 0.6, d0 = 0.05 → 2.)

6.2.3 Numerical determination of the translational velocity

We explored numerically the parameter space (R, Rs

and Rc) (recall that Rs is proportional to the square root
of the enclosed area; see Sect. 3). The results are presented
in Figures 14, 15 and 16. In the analytical analysis above
we have made our reasoning for a given swelling factor,
and in addition we did not evoke the lubricated film be-
neath. Dimensionally R and Rs are the same, but their
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Fig. 17. Schematic view of the different velocities.

ratio fixes the swelling and it is of great importance to
analyze its effect. The numerical part allows one to deter-
mine the dependence of the migration velocity as a func-
tion of these quantities, and thus a complete analysis can
be achieved.

We have confronted our analytical results with the nu-
merical ones and one arrives to the conclusion that the
migration velocity (in 2D) takes the following form

V ∼ F

η

(
R

Ladh

)2 √
d0

Rc

(
1 − Rs

R

)0.4

· (55)

The exponents are determined within ±0.1 accuracy. The
first factor of this law is the analytical prediction (51). The
third factor contains the swelling effect. For an increasing
vesicle area, we found that the velocity varies approxi-
mately as (1 − Rs/R)0.4/L2

adh (see Fig. 15). In fact the
numerator accounts for a direct swelling effect: the larger
is the swelling the smaller is the velocity. Indeed a larger
swelling corresponds to a greater volume and thus to a
stronger dissipation. The denominator contains L2

adh and
this term creates an antagonist effect. Indeed the higher
is the swelling the smaller is the adhesion area (for a
sphere that area goes to zero). We have seen before that
in the tense regime Ladh varies in 2D as (1 − Rs/R)1/3

(see Eq. (13)). Thus the denominator variation dominates
entailing, amazingly, that the velocity decreases when the
vesicle total area increases, for a given driving force.

Finally the factor
√

d0/Rc in (55) is valid in the small
adhesion regime (the only regime explored numerically).
In the limit of vanishing Rc (strong adhesion or small
rigidity) the velocity should become independent of Rc

(which must scale out of the problem). Thus the diver-
gent term R−0.5

c is not relevant and we suggest that it
must be substituted by R−0.5 (R is the only length scale
we are left with). In this way our result would agree with
the solution of cylinder close to a wall (Eq. (40)). So far,
exploring numerically the cross-over to the tense regime
has proven to be difficult.

6.3 Analytical and numerical results for the rotational
velocity

6.3.1 Analytical scaling law

The sliding ratio τs = 1 − Vr/V (where Vr is the rotation
velocity) is governed by an interplay between dissipation
in the fluid gap between the membrane and the substrate,
and the dissipation around the vesicle. For a vanishingly
small gap, we expect τs → 0. On the other hand, far from
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Fig. 18. Variation of the vesicle size at constant reduced
volume. (Numerical values: R = 0.5 → 10, Rs/R = 0.96,
Rc = 0.4, d0 = 0.06.)

the wall a purely sliding motion minimizes the dissipa-
tion and τs = 1. The question is how does sliding vanish
by decreasing the gap, whose width is given by d0. In or-
der to estimate τs, we assume that dissipated powers un-
der the vesicle and that on the global scale of the vesicle
have a given ratio. That means that the rotational velocity
adapts itself in order to keep the two dissipations in the
same ratio when the size changes. This condition ensures
a global stationary motion.

The local velocity in the thin fluid film under the vesi-
cle is V − Vr and the velocity vanishes on a distance d0.
This leads to the following local dissipation (see Fig. 17)

Dloc ∼ η Ladh d0

(
V − Vr

d0

)2

· (56)

Equating this dissipation with that given in (49) we
obtain:

1 − Vr

V
∼

√
Ladhd0

R
· (57)

A remark is in order, however. If we use the law
Ladh ∼ R

−2/5
c valid in 2D and small adhesion regime (19),

one would get that 1−Vr/V ∼ R
−1/5
c . This means that ro-

tation would increase with rigidity (Rc ∼ √
κ/w0). Since

an increase of κ reduces Ladh, we see from equation (57)
that rotation would be higher on decreasing Ladh, which
is in contradiction with expectation. In order to remedy
this apparent contradiction one must keep in mind that,
as for the translational velocity (51), our scaling relation
holds if the other parameters are fixed. In other words,
the scaling law contains a dimensionless prefactor of the
form f(d0/Rc, Rs/R), the determination of which is per-
formed numerically as presented below.

6.3.2 Numerical results

We have made an extensive numerical analysis (see Figs.
18, 19 and 20), and arrived to the conclusion that the
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quantity measuring the rotation rate takes the form

τs ∼ F

η

√
Ladhd0

R

(
1 − Rs

R

)−0.25

h

(
d0

Rc

)
· (58)

The first factor is the one given in equation (57). The
dependence in d0 does not appear clearly in this equation.
The remaining unknown function h seems not to have a
simple analytical expression. Nevertheless we were able to
determine the scaling behavior of the rotation rate 1 − τs

for the parameter d0 (Eq. (59)). The result is the same as
for a cylinder

1 − τs ∼ 1√
d0

· (59)

A quite large region of parameter space has been explored
numerically, leading to a very good agreement with the
analytical predictions.

7 Summary and conclusion

In this section we summarize the main findings of this
paper and discuss some future issues.

– We have solved the full 2D problem including hydro-
dynamics. This has allowed us to study various situ-
ations, though here most of our reasoning has been
exemplified for haptotaxis.

– We have shown that during motion the vesicle moves
with a translational velocity and has a rotation
component.

– We have developed a general analytical study based
on dimensional and scaling analyses. Firstly, we have
analyzed the adhesion area behavior, a quantity which
plays a central role in dynamics. We have distinguished
between the tense and flask regime.

– Analyzing the dissipation and the power we have de-
rived scaling laws for the migration velocity. In the
tense regime we recover the Stokes law, while in the
flask regime we discover a new scaling law. In 3D the
Stokes law is modified: instead of V ∼ 1/R we have
V ∼ 1/R2, V is the velocity and R the size.

-1.5 -1.0 -0.5 0.0 0.5
log ( d0 )

-1.5

-1.0

-0.5

0.0

lo
g

 (
 V

r 
/ V

 )

numerical results
linear fit : slope -0.6 

Fig. 20. Variation of potential range. (Numerical values:
Rs/R = 0.88, R = 1.1, Rc = 0.6, d0 = 0.05 → 2.)

– Based on the same kind of arguments we have derived
the rotation/translation ratio.

– In a generally coherent picture we have analyzed the
effect of the swelling as well as the distance from the
substrate. Our numerical results are in good agreement
with the analytical results.

Several issues have not been addressed in this paper
and they should constitute a task for future investigations.
(i) Firstly, we have disregarded dissipation due to bond
breaking and restoring with the substrate. In situations
where specific adhesion is present, this question becomes
essential. In particular one expects that the velocity be-
comes a nonlinear function with the driving force due to
the discreteness of the adhesion potential. (ii) A second
important point is the extension of the present analysis to
3D with regard to numerical calculations. (iii) In order to
mimic the dynamics of more sophisticated entities in bi-
ology, one must go further beyond in the complexity. For
example, in order to take into account the cytoskeletton
we need to take into consideration the appropriate rheo-
logical law for the membrane (for example the rheological
law of the type of Mooney [40] used to model the red blood
cell). (iv) In general not only the membrane rheology mat-
ters, but also the interior of the cell. For example the cell
responds according to a viscoelastic law of non Newtonian
type. These questions must be progressively incorporated
if one wishes to have a more realistic description of com-
plex objects. Of course the integral formulation can not be
used in general due to the nonlinearity of the constitutive
equations, and one has to resort to a new method, namely
the advected-field (or phase-field) approach as recently in-
troduced [11].
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