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Abstract. We study theoretically vesicle locomotion due to haptotaxis. Haptotaxis is referred to motion
induced by an adhesion gradient on a substrate. The problem is solved within a local approximation where
a Rayleigh-type dissipation is adopted. The dynamical model is akin to the Rousse model for polymers. An
invariant formulation is used to solve a dynamical model which includes a kind of dissipation due to bond
breaking/restoring with the substrate. For a stationary situation where the vesicle acquires a constant drift
velocity, we formulate the propulsion problem in terms of a nonlinear eigenvalue (the a priori unknown
drift velocity) one of Barenblat-Zeldovitch type. A counting argument shows that the velocity belongs
to a discrete set. For a relatively tense vesicle, we provide an analytical expression for the drift velocity
as a function of relevant parameters. We find good agreement with the full numerical solution. Despite
the oversimplification of the model it allows the identification of a relevant quantity, namely the adhesion
length, which turns out to be crucial also in the nonlocal model in the presence of hydrodynamics, a
situation on which we have recently reported (I. Cantat and C. Misbah, Phys. Rev. Lett. 83, 235 (1999))
and which constitutes the subject of a forthcoming extensive study.

PACS. 87.16.-b Subcellular structure and processes – 87.19.-j Properties of higher organisms – 47.55.Dz
Drops and bubbles

1 Introduction

Phospholipidic vesicles constitute a simple model of cyto-
plasmic membranes of real cells. A simple model due to
Helfrich [1] based on curvature energy has accounted for
a variety of equilibrium shapes. The model is based on
a minimal energy principle [2]. Some of the shapes (the
so-called discocytes) bear strong resemblance with that of
an erythrocyte (the red blood cell). Additionally, analysis
of flickering (temporal small fluctuations around a given
shape) of an erythrocyte by Brochard and Lennon [3] has
been quite successfully described by the Helfrich model
including hydrodynamics dissipation. The vesicle model
has seemed then as a natural candidate, at least in a first
stage, for dealing with more complex entities such as those
encountered in the realm of biology. In that context, how-
ever, most of the features are of nonequilibrium dissipa-
tive nature. Very recently several theoretical [4–10] and
experimental [11] investigations have been directed along
that line.

We are interested here in vesicle migration, a question
on which we have given recently a brief account [6,7]. De-
spite the very complex biochemical behaviour of a cell,
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cells may also exhibit behaviours where simple physical
concepts may be evoked. It is well documented that, for
example, the migration of the pronephric duct cells in sala-
manders is regulated by haptotaxis. Haptotaxis is a termi-
nology that is used to express the following fact: when ad-
hesive molecules are present in increasing amounts along
an extracellular matrix (or simply on a substrate in vitro),
a cell that was constantly making and breaking adhesion
with such a molecule would migrate from a region of low
concentration to an area where that adhesive molecule was
more highly concentrated [12,13]. There are also evidences
that cell migration during embryo development may be
guided by an adhesion gradient. In other words, cell mi-
gration is here guided by a purely external physical fac-
tor, while the internal structure (the cytoskeleton) is quite
unaffected on the time scale of interest. This feature dras-
tically differs from that of a cell belonging to the immune
system where the cytoskeleton plays a decisive role [14].
Despite the fact that the cytoskeleton in pure haptotaxis
does not undergo a structural change as is the case dur-
ing cell crawling, the problem remains very much involved
since the cell cytoskeleton dissipation may come to the fore
as well as an intricate bond breaking and restoring with
the substrate. We shall consider here a pure vesicle mov-
ing in haptotaxis. Our belief is that advancement in this
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field can be achieved only by the progressive refinement
of concepts.

We consider a vesicle moving along the substrate
thanks to an adhesion gradient. As the vesicle moves, it
generates hydrodynamics flow both inside and outside.
Hydrodynamics induces nonlocal interactions leading to
an effective coupling of two distinct regions on the vesicle.
In addition, the two monolayers that form the phospholi-
pidic membrane might slide one relative to the other. Fi-
nally, during motion the vesicle forms new bonds ahead
and destroys others behind, and this process of bond
breaking and restoring may be so slow that it may domi-
nate dynamics (see later).

This paper should be regarded as using a very sim-
plistic view in the hope of introducing the concepts of
migration and to exhibit in a transparent fashion the way
the problem is addressed. We shall keep the description as
simple as possible. That is to say: i) we ignore nonlocality
due to hydrodynamics —incorporation of hydrodynamics
was briefly discussed in [7] and will be the subject of a
forthcoming paper, ii) we confine ourselves to a 2D ge-
ometry. Some kind of dissipation due to bond breaking
and restoring is introduced in our model. The adoption
of a local model (no hydrodynamics) allows one to quite
easily obtain analytical results and thus to extract some
key ingredients about migration —especially the role of
the adhesion area (length in 2D)— which turns out to be
crucial also when hydrodynamics is included.

The scheme of this paper is organized as follows. In
Section 2 we write down the equations of motion and com-
ment them. In Section 3 we present a forward time inte-
gration and present the main result. Section 4 presents
the solution of the stationary system in a form of a non-
linear eigenvalue problem, where the drift velocity is the
eigenvalue. In Section 5 we give an analytical solution. A
conclusion and a discussion are presented in Section 6.

2 Equation of motion

2.1 Parameterization

We consider an adhering vesicle, deposited on a flat sub-
stratum which is oriented by its normal vector ŷ (Fig. 1).
The x-axis is along the wall and represents the direction of
vesicle motion occurring by convention from left to right.
As stated before we confine ourselves to two dimensions.
That is to say, the vesicle morphology is invariant in the
z-direction, similar to a tubular vesicle.

The interaction between the vesicle and the substrate
is taken into account by introducing an adhesion potential.
The range of the potential in realistic situations (typically
several nm) is small in comparison to the vesicle size (sev-
eral µm), so that it is justified in practice to consider a
contact potential, unless otherwise indicated (see later).
The energy interaction is then zero if y > 0 and is nonva-
nishing only close to contact (if y = 0). At the junction
point between the free part of the vesicle (whose length is
denoted as L∗) and the adhered part (with length Ladh),
the potential undergoes an abrupt change. The contact

Fig. 1. Notations used in the text.

between the membrane and substrate occurs at two well-
defined points x1 on the left and x2 on the right. These
parameters are related to the total length of the curve L
by L = Ladh+L∗ = (x2−x1)+L∗. We use an intrinsic rep-
resentation of the vesicle contour by introducing ψ(s), the
angle between the outward normal and the y-axis, and
s the arclength, as shown in Figure 1. We only need to
consider the function ψ(s, t) from s = 0 to s = L∗ cor-
responding to the contact points x1 and x2, respectively.
Because of the contact potential character the adhesion
length is completely fixed if the two contact points x1

and x2 are known. Thus the vesicle shape and its dynam-
ical properties (like the propulsion velocity) are known if
x1, x2 and the function ψ(s, t) are determined. The de-
mand that the parametrization of the vesicle be compat-
ible with the adhesion on the substrate is fulfilled by the
two geometrical constraints : i) the distance between both
contact points, x2 − x1, must coincide with the adhesion
length Ladh = x2 − x1, ii) their vertical coordinates y1
and y2 must have the same value, y2 − y1 = 0. These two
constraints can be expressed in terms of ψ(s, t). For that
purpose we use the relations

∂x

∂s
= cosψ ,

∂y

∂s
= − sinψ , (1)

which allow us to write the two constraints in the following
form:

∫ L∗

0

∂x

∂s
ds =

∫ L∗

0

cosψ(s) ds = x2 − x1 = Ladh , (2)

∫ L∗

0

∂y

∂s
ds =

∫ L∗

0

− sinψ(s) ds = y2 − y1 = 0 . (3)

These are the geometrical constraints. In order to describe
vesicle dynamics, we need a dynamical equation for the
evolution of ψ(s, t). A movement of the vesicle (due, for
example, to an adhesion gradient) is limited by dissipation
(such as hydrodynamics etc...). The vesicle reacts to any
deviation from equilibrium by its internal forces (bending,
possible stretching —or resistance to stretching). Let us
first discuss these forces.
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2.2 Energy and forces

All the relevant membrane properties are summarized in
the following energy, expressed in 2D, with the dimension
of an energy per unit length:

E =
∫
C
κ
(c− cs)2

2
ds−

∫ x2

x1

w(x) dx+
∫
C
ζ(s)ds+ pS .

(4)

The first term is the well-known Helfrich curvature energy,
with the rigidity κ, the curvature c = ∂ψ/∂s and the spon-
taneous curvature cs [1]. Because of the 2D-specific con-
servation law

∫
cds = 2π, any curve displacement leaves

unchanged the energy terms associated to the spontaneous
curvature. We can thus omit the term associated with
cs. The second term expresses the adhesion energy and
is only integrated on the adhered part of the curve. As
we are concerned with an inhomogeneous substratum, the
contact potential depends on the variable x and is de-
noted by −w(x) (with w > 0, meaning that adhesion is
favorable). Finally, the last two terms ensure the length
and surface conservation, respectively. The membrane is
a two-dimensional incompressible fluid. The phospholipid
exchange with the solvent is virtually absent, and the area
per molecule on the vesicle remains constant. This leads
to the local length conservation (in the 2D language). The
variable ζ is a local Lagrange multiplier which enforces
the arclength ds to a constant value. The enclosed surface
S conservation is a consequence of the membrane imper-
meability and fluid incompressibility. It is ensured by the
global Lagrange multiplier p. The interpretation of ζ and
p as a tension and a pressure will be discussed later.

The functional derivative of the energy (4) provides us
with the various forces acting on the membrane.

2.2.1 Curvature forces

Under the assumption that the membrane is completely
flat on the adhered part, we reduce the integration do-
main of the first energetic term in equation (4) to [0, L∗].
Making use of the relations t = r′ and n = −(1/c)r′′
(the prime designates derivative with respect to s) which
are the membrane tangential and normal unit vectors, we
obtain for the curvature energy Ec

Ec =
κ

2

∫ L∗

0

(
∂2r
∂s2

)2

ds . (5)

When taking the functional derivative of Ec with re-
spect to the position, care must be taken. Indeed the ar-
clength element must also undergo a variation. A conve-
nient formulation avoiding confusion rests on the intro-
duction of a general parametrization a ∈ [0, 1], related
to s by the metric g = (ds/da)2. The energy expression
becomes [8,15]

Ec =
κ

2

∫ 1

0

[(
∂2r
∂a2

)2

− 1
g

(
∂2r
∂a2

∂r
∂a

)2
]
g−3/2da . (6)

Fig. 2. A geometrical explanation of the arclength variation
with time.

The functional derivative, though straightforward, may be
too lengthy if one does not take care in regrouping ade-
quately various terms as explained in [8]. The result can
be written in a simple form:

fc = − δEc

δr(s)
= κ

(
∂2c

∂s2
+
c3

2

)
n . (7)

The curvature force is, as expected, free of any tangen-
tial contribution. The first term in equation (7), involving
the second derivative of the curvature, tends to keep cur-
vature repartition as homogeneous as possible. It is also
present in 3D under the more complicated form of the
Laplace-Beltrami operator. The second term proportional
to c3 is in contrast 2D-specific. It tends to increase the
size of any convex shape. Note that in 3D the curvature
energy is scale invariant, which implies a vanishing curva-
ture force of this type on a sphere. The difference between
2D and 3D can be explained in the following way. Let us
consider a finite cylinder of length H and radius R � H,
which constitutes a good approximation for an infinitely
long cylinder. In order to make the cylinder “closer” to a
sphere, which is the corresponding 3D equilibrium shape,
the curvature force would tend to increase the radius and
decrease the length so as to bring the cylinder shape as
close as possible to a sphere. This gives an intuitive picture
of the c3 term in 2D.

In the discussion above we did omit the boundary con-
tribution when taking the functional derivative. Since this
point is a bit subtle we have postponed it to the end of
this section.

2.2.2 Length and surface constraints

On the free part of the curve, the force which is associ-
ated to the first Lagrange multiplier ζ is obtained upon
functional derivation of El =

∫
ζds. The result is

fl = −δEl/δr(s) = −c ζ(s)n +
dζ
ds

t . (8)

The normal component is easily identified as a Laplace
pressure, whereas the tangential one looks like a
Marangoni force (which is encountered when surface ten-
sion is inhomogeneous). However, ζ is not exactly similar
to a surface tension as for an interface between two flu-
ids. The “tension” ζ is not an intrinsic property of the
membrane. It adapts itself to the other forces in order to
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maintain the local length fixed. In other words, the prob-
lem is implicitly written in a thermodynamical ensemble
with fixed length. This differs from the usual problem for
fluid or solid surfaces where the surface tension is fixed
instead. Thus ζ is a variable that must be determined
self-consistently as a Lagrange multiplier, by use of the
constraint equation (see appendix in Ref. [16]):

0 =
∂(ds)
∂t

=
(
∂vt
∂s

+ cvn

)
ds . (9)

This relation (9) simply expresses the condition of van-
ishing velocity divergence on the curved contour of the
vesicle, which is precisely the incompressibility condition
in the 2D fluid constituting the membrane (written here
in one dimension). A more intuitive way of viewing ex-
pression (9) is presented in Figure 2. The Marangoni term
is the only tangential term among all membrane forces
(see Eqs. (7,8,10)). It is seen from (8) that the Lagrange
multiplier must be uniform at equilibrium. For the sake
of simplicity and in order to get more insight into analyt-
ical understanding, a uniform value will be assigned to ζ,
even out of equilibrium. A discussion of this point will be
presented in Section 6. This assumption implies some con-
sequences on dynamics (and especially on the tangential
velocity) which will be presented in Section 2.3.

Finally, we have to consider the force associated to
Es = pS:

fs = −δEs/δr(s) = −pn . (10)

The Lagrange multiplier p depends only on time; it en-
forces a constant area. Two physical interpretations can
be invoked depending on the situation under considera-
tion. Either we consider an impermeable membrane, and
p would be the hydrostatic pressure difference between
outside and inside; or we choose a model of permeable
membrane and p would play the role of an osmotic pres-
sure. Both models are equivalent as long as we do not
consider hydrodynamic flows.

2.2.3 Adhesion forces and boundary terms

The functional derivative induces boundary terms at each
contact point. The additional variation δEb

c and δEb
w,l for

the curvature, adhesion and tension energies, associated
with a small displacement δr of the contact points is given
by (see [8,15])

δEb
c =

[
δṙ ·

(
− κc√

g
n
)]L∗

0

+
[
δr ·

(
κ
∂c

∂s
n − κc2

2
t
)]L∗

0

(11)

δEb
w,l =

[
δr ·

(
ζt + (ζ − w(x))x̂

)]L∗

0
. (12)

Following the definition of these boundary points, they re-
main on the substrate. Thus, the accessible values for δr is
then reduced to δr ∝ x̂. Additionally, in order to keep the
curvature energy finite, we impose a vanishing value for

Fig. 3. Force equilibrium at the fore contact point in the small
rigidity limit.

the contact angle φ between the membrane and the sub-
strate (see Fig. 3). Within our formulation, this constraint
does not follow from the energy minimization and has thus
to be added into the physical model. More precisely, at the
discontinuity point (say x2) one has to add to the Helfrich
energy a term of the form κ(∆ψ/∆s)2 which informs us
on how would the vesicle on the adhered part feel, so to
speak, the behavior of the vesicle at the junction point
on the right side. Across the contact point of a vanishing
extent, ∆s→ 0, while the angle, if it had to have another
value than zero, would make a jump leading to an abnor-
mally increasing curvature energy. We must then impose
a vanishing contact angle. These various conditions (mo-
tion along the wall and a vanishing contact angle) lead to
n = −ŷ, t = −x̂ and δṙ ∝ x̂. It follows then that the
term proportional to δṙ in equation (11) vanishes auto-
matically. The second term becomes κ/2

(
c22δx2 − c21δx1

)
with c1 and c2 the curvatures on the left and right contact
points. These terms are counterbalanced by adhesion and
tension terms (eq. (12)) leading to the relation

δE

δxi
= ∓

(
κ
c2i
2

− w(xi)
)

x̂ , (13)

where the − and + signs refer to the rear and fore contact
points represented by the subscript i = 1, 2. At equilib-
rium, we recover here the relation c =

√
2w/κ [17].

The energy variation given by equation (13) cannot
really be identified as a physical force. It corresponds in-
deed to a geometrical point displacement. The “force” ori-
entation is here parallel to the substrate, whereas the real
force acting on the contact point, considered as a material
point, is expected to be normal to the substrate. As we
have seen above, the curvature forces are indeed normal
when applied to a an adjacent piece of the membrane (see
eq. (7)). The present “force” has the meaning of how much
energy would be involved in displacing the contact point
from one position to another. That geometrical point is by
its very nature sitting on the substrate, so that the “force”
associated with its displacement is naturally tangential.

We find it worthwhile to make a short digression. Sup-
pose that the angle is not fixed to zero as we did above.
More precisely, suppose that the rigidity is so small or
the adhesion is so large (see below what this does mean)
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then the vesicle will be so tense that it would look like a
droplet outside some length scale � to be determined be-
low (of course, within that scale, which is sufficiently close
to the substrate, the matching must be tangential). If we
do not assume a value for the angle (that is no relation
between n or t with x̂ and ŷ), and set δr ∝ x̂ we find from
(13) that c = 0 at the contact (which means a straight line
at the contact) and that the angle between that line and
the substrate obeys

wi = (1− cos(φi)) ζ ,

φi ∼
√

2wi

ζ
(for small angles) (14)

which is nothing but the Young condition [2,18]. We have
neglected κ∂c/∂s in comparison to w. The justification is
as follows. κ∂c/∂s ∼ κc0/�, where c0 is the true contact
curvature given by

√
2w/κ. The approximation is legit-

imate provided that the length scale � 
 √
κ/w. The

length
√
κ/w is the radius of curvature at contact. If the

scale of interest is outside that internal region, then the
droplet limit is justified. It must be emphasized however
that the effective contact angle is not an intrinsic prop-
erty of the adhered membrane, as for a droplet, but it is
linked to other parameters (rigidity, the vesicle scale —on
which ζ depends— etc...). In particular, the tension ζ is
fixed by the reduced volume, which is a global property
of the vesicle: different vesicles of the same phospholipid
composition, but with different sizes, may have different
contact angle on the same substrate.

2.3 Dynamical equation

An important point which must be emphazised when deal-
ing with dynamics is the identification of the dissipation
sources. These are the following: i) the dissipation in the
membrane via molecule rotations (very much like liquid
crystals where dissipation is characterized by the Leslie
coefficient); ii) hydrodynamics flows inside and outside the
vesicle; iii) friction between the monolayers; and iv) bond
breaking and restoring with the substrate. It is well known
that dissipation associated with rotation (internal dissipa-
tion) is negligible in practice [3], and for free vesicles (no
substrate) hydrodynamics seems to be the most impor-
tant dissipation. Hydrodynamics induces nonlocal inter-
actions [7] and this will be dealt with extensively in a
forthcoming paper. Our wish in this paper is to present
a pedestrian model, namely a local one, which allows for
a complete analytical solution that will help to identify
some key ingredients in the migration process. A specific
dissipation with the substrate will be introduced later.
For the moment we confine our description to the free
vesicle case. The local model to be presented here is sim-
ilar to the so-called Rousse model [19] in the community
of polymers. Indeed, for a one-dimensional contour in a
three-dimensional space dynamics becomes local even in
the presence of hydrodynamics [20].

Within a simplistic picture of local dynamics, the nat-
ural choice for the dissipation function is

Fd =
η

2

∫
|v|2ds . (15)

The coefficient η is here an effective viscosity and has
the dimension of a viscosity per unit length. Its numer-
ical value is estimated by η = ηwat/R ∼ 102kgm−2s−1,
with ηwat the water viscosity and R a typical vesicle size.

Neglecting inertial terms, the Euler-Lagrange equa-
tions become then

−δE
δr

=
δFd

δv
⇒ ηv = f . (16)

As expected, we find a local proportionality between the
membrane velocity v and the membrane force f , which
is a nonlinear function of position. In the present picture
where the effective tension ζ is space independent no tan-
gential force appears so that physics will only fix the nor-
mal velocity, while the tangential velocity has no physical
meaning as described below.

2.3.1 Normal velocity

The normal membrane force is (see Eqs. (7, 8, 10)):

fn = κ

(
∂2c

∂s2
+
c3

2

)
− cζ − p . (17)

From the dynamical law (16) and the membrane forces
expression (17) we obtain the normal velocity as a function
of ψ(s):

vn(s) = fn =
κ

η

[
∂3ψ

∂s3
+

1
2

(
∂ψ

∂s

)3

− ζ

κ

∂ψ

∂s
− p

κ

]
. (18)

It is convenient to write the dynamical equation in terms
of the angle ψ and not the curvature c. The reason is
that the boundary conditions are written naturally as a
function of ψ (tangential matching, ψ = ±π, and contact
curvature ∂ψ/∂s =

√
2w/κ).

2.3.2 Tangential velocity

There is only one tangential contribution to the membrane
forces, ∂ζ/∂s, which is zero with the assumption of a uni-
form tension (see Eq. (8)). This implies that only the total
length is conserved, and not the local one. A dilatation
of a part of the membrane is then permitted, as long as
the remaining part of the vesicle is contracted in order to
keep the total length unchanged (see Fig. 4). Within this
approximation, there is no energy variation associated to
tangential motion, and therefore no forces. In other words,
we consider the vesicle contour as a mathematical curve,
loosing the concept of density: only the shape matters,
independently of the points distribution on the curve.
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Fig. 4. Translation of a circle obtained with a purely normal
motion. The right part is dilated, whereas the left part is con-
tracted.

We could equivalently assume that only the nor-
mal velocity contributes to dissipation. In that case, the
dissipation function (15) would take the form Fdn =
η/2

∫ |vn|2ds and the equation of motion (16) becomes
f = ηvnn. The tangential force ∂ζ/∂s must then vanish
and we get automatically that ζ = constant. Thus our
assumption of a global Lagrange multiplier can also be
viewed as the result of a dissipation due uniquely to nor-
mal displacements.

As we have already mentioned, tangential displace-
ments do not induce a geometrical change. We are thus at
liberty to choose one which is convenient, without physical
meaning, interpreted as a reparametrization of the curve.

In the present model the most convenient parametriza-
tion requires a homogeneous points distribution along
the free part of the curve, which is expressed as
d/dt (s(a)/L∗) = 0. This provides the expression for the
“nonphysical tangential velocity” that can be seen as a
gauge, without influence on the motion (see appendix in
Ref. [16]):

vt(s) = vt(0)−
∫ s

0

c vn ds

+
s

L∗

(∫ L∗

0

c vn ds+ vt(L∗)− vt(0)

)
. (19)

If the free length L∗ remains constant during the motion,
as happens for a stationary regime, equation (19) imposes
nothing but a constant distance between two consecu-
tive points on the vesicle. The local length conservation
(9), which is physical, seems then surprisingly to be full-
filled. In reality, once we have adopted a contant tension
—implying a vanishing tangential physical velocity— any
point distribution is of purely geometrical nature, and we
could impose another gauge than the above one, without
affecting the physics. On the other hand, had we consid-
ered ζ to be nonconstant, we would then have obtained a
physical tangential velocity, which would act on the nor-
mal one through the Lagrange multiplier. Indeed, use of
equation (9) fixes ζ(s) which in turn acts on the value of
vn, and then on physics. In the simplistic model we adopt,

the tangential velocity is determined a posteriori, inde-
pendently of the normal velocity. That is why it is only
a nonphysical reparametrization, a “gauge”. A remark is
in order: in this situation the question of a rolling or slid-
ing motion does not make sense, since both motions differ
only by a tangential velocity.

The membrane velocity is given as a function of ψ(a),
a being the auxiliary parametrization of the free part of
the vesicle, running from one contact point to the other. In
order to obtain a closed system we need a relation between
the evolution of ψ(a) and the velocities. The temporal
derivative of ψ, for a given a, is presented in the appendix
of reference [16]:

∂ψ

∂t

)
a

= c vt − ∂vn
∂s

. (20)

The last step is the determination of the boundary
conditions at the contact with the substrate.

2.3.3 Contact points velocity

The motion of the contact point is governed by a bind-
ing/unbinding mechanism, implying a dissipation law that
differs from the bulk dissipation. The most natural way
for introducing a dissipation law is the following (with Γ
a phenomenological dissipation coefficient):

Γ
dxi

dt
= − δE

δxi
. (21)

Using the energy variation (13) we get the following dy-
namical law, with wi = w(xi) and vi = dxi/dt,

c1 =

√
2w1 + Γv1

κ
, c2 =

√
2w2 − Γv2

κ
, (22)

which constitute the dynamical boundary conditions.
These out-of-equilibrium values for the curvature are quite
intuitive: the unbinding delay at the rear point induces a
larger curvature than at equilibrium, whereas the binding
delay at the fore point induces a smaller curvature.

3 Transient behavior

The formalism presented in the first part lends itself very
well to analytical computation and stationary shape deter-
mination, as will appear in the following paragraphs. Nev-
ertheless, having access to the transient process is highly
desirable. In particular, it checks the dynamical stability
of an eventual stationary behavior, obtained after a relax-
ation. The successive vesicle profiles are determined by a
direct numerical implementation of the dynamical equa-
tions (18), (19) and (20). Unfortunately, numerical insta-
bilities are difficult to avoid around each contact point
(due to a contact adhesion potential). A smoother model,
without discontinuities, is more convenient for such an ap-
proach. For this reason, in this paragraph devoted to tran-
sient processes, the adhesion potential will be supposed to
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be of small, but nonvanishing, range. We rapidly summa-
rize below the small technical changes arising from this
model modification. The chosen potential profile is

w(r) = w0(1 + u0x)
(
y4
0

y4
− 2y2

0

y2

)
, (23)

with the new length y0 fixing the characteristic distance
between the substrate and the membrane, and ŵ(x) =
−w0(1 + u0x) the minimum of the potential interaction,
occurring for y = y0. It plays the role of the previous
w(x). It depends linearly on x with an adhesion gradient
u0. The distance y0 is chosen of the order of 10 nm, which
is small enough with respect to the vesicle size to intro-
duce only small variations between both models. In this
case the parametrization is performed on the whole closed
curve, and the boundary terms (Eqs. (22)) are no more rel-
evant. The adhesion forces fw are obtained by functional
derivation of

∫
w(r)ds leading to

fw = −(cw +∇w · n)n . (24)

Additionally, the gauge condition fixing the tangen-
tial velocity equation (19) is simplified: the velocity vt(0)
is supposed to be zero, without loss of generality, so the
first term disappears; the last term is proportional to the
length variation of the total parametrized curve, which is
zero because we consider the complete profile and no more
the free part of the curve. Thus we obtain for the gauge,
replacing equation (19)

vt = −
∫ s

0

dsvnc . (25)

Using equations (24) and (25) we finally get the dynamical
equation for r:

∂r(a, t)
∂t

=
[
κ

(
∂2c

∂s2
+

1
2
c3

)
− cw

− (∇w · n)− p− ζc

]
n + vtt . (26)

The Lagrange multipliers are determined from the follow-
ing constraint equations:

dL
dt

=
∫
cvnds = 0 , (27)

dS
dt

=
∫
vnds = 0 . (28)

The normal component of the velocity in equation (26)
will be denoted by convention as vn = v0

n − p − cζ. With
this notation, equations (27, 28) appear as a very simple
linear equation system in ζ and p. Its solution provides
the pressure and tension values:

ζ =
〈cv0

n〉 − 〈c〉〈v0
n〉

〈c2〉 − 〈c〉2 , (29)

p = −ζ〈c〉+ 〈v0
n〉 . (30)

Fig. 5. Successive vesicle profiles. The first one with open
circles is an arbitrarily chosen initial shape. It relaxes to a
permanent shape marked by filled circles on an inhomogeneous
substrate.

with the average defined by

〈· · · 〉 ≡ 1
L

∫ L

0

ds · · · . (31)

We are now in a position to deal with the numerical
anlysis. The dynamics is overdamped and for this rea-
son local in time. Starting from an arbitrary profile, for-
ward time integration provides us with the vesicle evolu-
tion. We have checked that i) for a free vesicle (no sub-
strate) the shape (with no external force) tends towards
that obtained by direct energy minimization; ii) we have
also checked that for a homogeneous substrate an arbi-
trary initial shape evolves after some time to the shapes
obtained in [17] by direct energy minimization.

Let us now turn to the nonequilibrium situation en-
sured by an adhesion gradient. Starting from an initial
shape, the vesicle acquires a nonsymmetric shape and
moves in the gradient direction. After transients have de-
cayed the vesicle acquires a permanent regime with a con-
stant velocity. Figure 5 shows the shape evolution.

4 Stationary motion: direct numerical solution

The formulation of our problem in terms of a direct sta-
tionary problem is very convenient for a systematic study
of the velocity evolution as a function of various param-
eters. It will also allow us to present a simple analytical
solution. It is convenient here to come back to the contact
potential model. For a vesicle which has attained a sta-
tionary shape and velocity V the equations become steady
with V as an unknown parameter.

For a stationary motion along the x-axis, normal and
tangential velocities can be written as functions of the
angle ψ and of the translational velocity V :

vn = V x̂ · n̂ = V sinψ , (32)

vt = V x̂ · t̂ = V cosψ . (33)
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Fig. 6. Geometrical constraint on the curve.

The shape and velocity are entirely determined from the
relation between normal velocities and forces. The equa-
tion of motion is obtained from equations (18,32):

V sinψ =
κ

η

[
∂3ψ

∂s3
+

1
2

(
∂ψ

∂s

)3

− ζ

κ

∂ψ

∂s
− p

κ

]
. (34)

Let us present briefly a counting argument showing
that the problem is well defined. Equation (34) is a non-
linear third-order differential equation for ψ, with 3 pa-
rameters to be determined: ζ, p and V . So we need 6
“pieces of information”.

We have the following equations at our disposal:

– 2 geometrical constraints (eqs. (2) and (3)):

∫ L∗

0

cosψ(s) ds = Ladh ,

∫ L∗

0

− sinψ(s) ds = 0 ;

(35)

– 4 boundary equations corresponding to the contact an-
gles and their first derivatives (the dynamical contact
curvatures c1 and c2 given by equation (22))

ψ1 ≡ ψ(s = 0) = −π , ψ2 ≡ ψ(s = L∗) = π , (36)

∂ψ

∂s

)
s=0

= c1 ,
∂ψ

∂s

)
s=L∗

= c2 ; (37)

– 1 equation ensuring that the enclosed surface is equal
to the prescribed area;

– 1 equation ensuring that the total length of the curve
is precisely the prescribed one, L, which is related to
the two other lengths by

L = L∗ + Ladh . (38)

There are thus 8 conditions, for only 6 pieces of infor-
mation needed. The system seems then to be overdeter-
mined. This is not the case. Indeed it must be noted that
the problem involves additional unknowns which are L∗
and Ladh. So in reality we have 8 unknown parameters as
well. The problem is thus well defined.

Once the shape is determined we must in principle
evaluate the area and change the parameter p until the
area coincides with the prescribed one. But since the area
is a conjugate variable to p we can fix p —which is more

Fig. 7. Out of equilibrium adhering vesicle profiles. V is mea-
sured in units of 100µm/s and W in units of 10−4 mJ/m2.

convenient— and this will fix some area that is treated
as free (not imposed in advance). Additionally, we are at
liberty to prescribe L (that fixes some length scale). Ladh

can then be determined if L∗ is known; Ladh can thus be
removed from the problem upon using equation (38). The
first constraint (35) becomes then∫ L∗

0

cosψ(s) ds = L− L∗ . (39)

In other words, prescribing the total length to L and the
pressure to p lowers the number of unknowns by two. This
is so because we do not want to have a specific area, and
that L∗ and Ladh are not independent if we treat the to-
tal length as known. That is to say, we have finally 6 fixed
boundary conditions or constraints (35-37) and six param-
eters which are L∗, V and ζ, plus three constants of inte-
gration due to the third-order differential equation (34).

Once the problem is solved the vesicle shape is ob-
tained by making use of equations (1).

If w1 = w2, the vesicle is at equilibrium on a homo-
geneous substrate and one obviously expects a vanishing
velocity. This comes out automatically from the above for-
mulation. If we were interested from the beginning in an
equilibrium problem, we would then not have introduced
V as an unknown parameter. In that case because the
profile is symmetric the second condition (35) is automat-
ically satisfied.

When w1 �= w2, there is no equilibrium solution for the
vesicle, which has to move towards the stronger adhesion
region. If we impose a vanishing velocity there is no way
to fulfill the second condition (35) (a typical profile would
be the one shown in Fig. 6) where starting from one end
we arrive at the other end at a different height. Arriving
at the same height can be achieved only for a specific
velocity (or at most a discrete set of solutions), the one
we are seeking. Thus the second condition of equation (35)
(which is parametrized by the set of Pi) can be viewed as
“quantization” condition. This is a nonlinear eigenvalue
problem of Barenblat-Zeldovitch type.

The numerical solution reveals an out-of-equilibrium
shape which is significantly different from the equilibrium
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one, as shown in Figure 7. We note that the curvature
in front of the vesicle is higher than the one behind it.
The reason is that the adhesion energy is higher in the
front part, so that the curvature/adhesion balance allows
a higher curvature (the vesicle looses curvature energy at
the expense of a stronger adhesion).

5 Stationary motion: an analytical solution

The advantage offered by the simplistic picture of our
model is the possibility to provide analytical results and
thus to shed light on the physical processes that are in-
volved in the problem of vesicle propulsion. It turns out
that the equation of motion (34), if multiplied by ∂2ψ/∂s2,
possesses practically a first integral:

V

∫ L∗

0

∂2ψ

∂s2
sin(ψ)ds =

κ

η

([
1
2

(
∂c

∂s

)2]1

2

+
1
8

[
c4

]1
2
− ζ

2κ
[
c2

]1
2
− p

κ
[ c ]12

)
. (40)

Each r.h.s. term has an explicit form as a function of the
contact curvatures (which are known), and of their first
derivatives, which have only negligible contribution for
swelled vesicle. The l.h.s. term can be evaluated for a vesi-
cle shape close to a circle. The calculation will be given in
the appendix and leads to∫

∂2ψ

∂s2
sin(ψ)ds = 4π2Ladh

L2
. (41)

Using the dynamical values for the contact curvature given
by equation (22), we obtain an explicit expression for the
velocity

V =
L2κ

(2π)2ηLadh

(
1
2
[ c4/4 ]12 −

ζ

κ
[ c2/2 ]12 −

p

κ
[ c ]12

)
. (42)

In the simple case where Γ = 0 (no dissipation associated
with the substrate), expression (42) becomes explicit and
provides a good agreement with numerical solution (see
Fig. 8). The analytical expression for the velocity involves
only known parameters, except Ladh and ζ. For the com-
parison between numerical and analytical results, we took
their numerical values.

Another interesting limiting case concerns the small
adhesion difference. Expansion of the numerator in equa-
tion (42) to leading order in δw yields

V � δw

η/A+ Γ
, A ≡ w

κ

R2

Ladh

[
1− p

w

√
κ

2w
− ζ

w

]
, (43)

where R = L/2π. The influence of the two dissipation co-
efficients appears then clearly. It depends on the quantity
A, proportional to the ratio R/Ladh. The bulk dissipation
increases with the adhesion length, which seems to be a
very robust result, as encountered in the model including

Fig. 8. Evolution of the vesicle velocity as a function of the
adhesion difference.

hydrodynamics dissipation [10]. The local dissipation rep-
resented by Γ does not depend on the adhesion length.
Only the two contact points matter. Note also that the
effective dissipation is η/A+ Γ . The bulk dissipation η/A
and the contact one Γ play the role of resistances (in an
electric analogy) which would be mounted in series.

6 Discussion and conclusion

This paper has given a first extensive presentation of the
problem of vesicle migration in haptotaxis. We have re-
duced as much as possible the complexity of the problem
in order to gain some analytical approximate results. For
that purpose we have neglected hydrodynamics which in-
duce nonlocal interactions, and adopted a local model of
the Rousse type. The full dynamical problem has been
solved by adopting a powerful gauge-field invariant for-
mulation. The dynamical code could account for the tran-
sient and the evolution towards a steady-state solution.
In that context the introduction of an adhesion potential
with a finite, albeit small, range has proven to be neces-
sary in order to circumvent numerical instabilities related
to the motion of the contact point. This code has the
advantage of dealing with various problems not leading
necessarily to permanent motions. For a stationary situa-
tion we could cast the problem into a standard boundary
value one where the migration velocity appeared as an
eigenvalue. This problem is akin to the nonlinear eigen-
value problem of Barenblat-Zeldovitch type. A counting
argument showed us that the velocity should belong to
a discrete set, only one solution has been identified; we
speculate that the solution is unique. The problem could
be systematically solved in a fully intrinsic representa-
tion of the contour. For a rather tense vesicle we have
provided an analytical solution which is in a good agree-
ment with the numerical one. We have identified the role
played by the adhesion length in selecting the magnitude
of the migration velocity even if no dissipation with the



412 The European Physical Journal E

substrate is included. We have also shown that the bond
breaking/restoring dissipation and the (effective) bulk one
are additive in a way which is analogous to the problem
of electrical resistances in series. Bulk dissipation domi-
nates when the ratio of the bulk dissipation coefficient to
the contact one exceeds a certain limit, which depends in
an intricate manner on various parameters. For real sit-
uations, vesicles, and cells in general, are suspended in
aqueous solutions. It is therefore highly important to in-
clude hydrodynamics. Moreover, the Lagrange multiplier
ζ is a local quantity. We have recently given a brief ac-
count on these questions [10]. An extensive discussion will
be presented in the near future.

Appendix A. Derivation of equation (41)

D =
∫ L∗

0

ψ′′ sinψds = −
∫ L∗

0

(ψ′)2 cosψds .

We write ψ = 2πs/L∗ − π+ ε, which implies to first order
in ε′

D = −
(
2π
L∗

)2∫ L∗

0

cosψds− 4π
L∗

∫ L∗

0

ε′ cos(2πs/L∗ −π + ε)ds

= −
(
2π
L∗

)2

Ladh +
4π
L∗

∫ L∗

0

ε′ cos(2πs/L∗ + ε)ds .

We then make use of the following relation:

d
ds

(sinψ) = −
(
2π
L∗ + ε′

)
cos(2πs/L∗ + ε) .

The integral between 0 and L∗ of the l.h.s. term vanishes.
We then obtain∫ L∗

0

ε′ cos(2πs/L∗ + ε)ds =
2π
L∗

∫ L∗

0

cosψds =
2π
L∗Ladh .

The sought-after relation has then the form

D =
(
2π
L∗

)2

Ladh .
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