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Dynamics and Similarity Laws for Adhering Vesicles in Haptotaxis
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We study vesicle dynamics induced by an adhesion gradient. This kind of migration is named
haptotaxis in biology. The problem is fully solved as a free boundary one, including hydrodynamics
flows. First, we analyze adhesion at equilibrium. We then determine the propulsion velocity as
a function of various parameters. We find a persistent mixture of rolling and sliding. Similarity
laws are extracted analytically both for the adhesion area and propulsion velocity by means of
dimensional and scaling arguments. Our results markedly differ from classical results of nondeformable
migrating entities.

PACS numbers: 87.16.–b, 47.55.Dz, 87.19.– j
Vesicles are closed membranes suspended in aqueous
solution. Extensive investigations have been devoted to
their equilibrium properties to date [1]. There are several
circumstances in living systems where nonequilibrium fea-
tures play a decisive role, however. Of particular inter-
est is vesicle movement under external forces. A major
leitmotiv in biological and medical science is the under-
standing of how and by which mechanisms cells of the
immune system (e.g., granulocytes) move in response to
tissue injury. This has led to the development of a number
of experiments in vitro where cells are subject to external
perturbations (e.g., shear flow). This step is essential in
identifying the energetic, and possibly the kinetic, proper-
ties that are involved in displacing cells upon application
of external forces when they are initially under adhesion
on a substrate.

In this Letter, we present analytical and numerical re-
sults on vesicle dynamics in an adhesion gradient (hapto-
taxis). Our results can also be applied to situations where
movement is due to the presence of a chemoattractant
(chemotaxis).

Vesicle mobility induces a coupling of the flow within
the membrane to the bulk fluid. With the help of Green’s
tensor techniques, we solve this free-boundary-like prob-
lem numerically and determine both the shape and veloc-
ity in haptotaxis. A close inspection of the underlying
physical mechanisms allows us to extract analytically
similarity laws for the adhesion area and vesicle veloc-
ity as functions of relevant parameters. These laws are
in good agreement with the full numerical results. They
should constitute an important basis for experimental
studies. The numerical work is performed in two dimen-
sions. The analytical scaling laws will be written, how-
ever, for both 2D and 3D.

The various sources of dissipations are the follow-
ing. First, the internal dissipation due to phospholipidic
molecules rotation characterized by the Leslie coefficient
occurs on a very small time scale (typically 1025 s),
and is then negligible. In turn hydrodynamics relax-
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ation occurs on the scale of 1021 s (this time is obtained
with the curvature rigidity, the water viscosity, and the
vesicle size), and constitutes the first noticeable slow
process for vesicle dynamics. Other sources of dissipa-
tions such as bond breaking and restoring associated with
adhesion may become important and are currently under
investigation.

Because the Reynolds number is typically small (Re �
1024), the Stokes approximation is justified. The hydro-
dynamics equations thus take the form

hDv � =p; = ? v � 0 . (1)

We require continuity of v through the membrane and
a vanishing velocity on the substratum; both demands
express the no-slip condition and impermeability. The
thin fluid film between the vesicle and the substratum is
treated as in the bulk.

Thanks to linearity of the Stokes equations we can make
use of the Green’s function method. When viscosities
inside and outside the vesicle are identical, the velocity
field takes the form
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Here T is the Oseen tensor [2] and ŷ is a unit vector.
For brevity we set v 0 � v�r0, t� and T � T �r, r0�. The
first term in Eq. (2) represents the membrane contribution,
with fmemb the membrane forces, to be specified below.
The second term accounts for the presence of the adhesion
wall parametrized by x0. It is worth mention that use
could be made of the special Green’s tensor taking into
account the presence of the substratum [3]. In that case
the second term in Eq. (2) disappears at the expense of a
more complicated tensor.
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The total force on the membrane is given by
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Here n and t are the outward normal and the tangent
to the vesicle; z is a time and space dependent Lagrange
multiplier enforcing a constant local length [whereas area
conservation in implied by Eq. (1)]; c denotes the mem-
brane curvature, and k the rigidity. Finally, w�r� is the
adhesion potential. For definiteness, if �x, y� are the coor-
dinates along and perpendicular to the wall we take

w�r� � �w0 1 �x 2 xm�=w� ��d0�y�2��d0�y�2 2 2�	 .
(4)

The potential is repulsive as 1�y4 for y ø d0 and at-
tractive as 21�y2 at long distance. The optimal distance
d0 � 50 nm between membrane and wall is constant. The
prefactor depends linearly on x with a constant gradient
=w. The mean value of the potential under the vesicle
is also a constant w0, and xm is the middle point of the
adhesion area and is thus moving in the laboratory frame.
The vesicle is moving, thanks to an adhesion gradient. If
the adhesion potential were fixed, the vesicle would ex-
perience an increasing adhesion during its movement. To
avoid this we consider that w�r� is invariant in the vesicle
frame represented by xm.

The numerical strategy is as follows. We first take the
limit on the external variable rsubs and set the left-hand
side of Eq. (2) to zero. The force on substrate is obtained
by inverting the integral equation. This determines v ev-
erywhere, and especially on the membrane. Dynamics are
treated by forward iteration in time. These steps involve
several technical points which will not be exposed here.

Thus, after transient have decayed, the vesicle acquires
a permanent regime with a constant drift velocity, a situ-
ation on which we focus now. First, our numerical results
predict velocities which lie in the range 0.1 10 mm�s
for adhesion differences on both sides of the vesicle
of about dw�w0 � 10% [R � 1 10 mm (vesicle size),
k � 20 40 kT, w � 102 104 kT�mm]. It is a bit sur-
prising that this value falls in the biological range. For
example, granulocytes move at about 50 mm�s in vivo
[4]. Another important feature is the persistent mixture
between a rolling and a sliding motion (that is, the con-
tact area has a small relative motion with respect to the
substrate) (Fig. 1). The vesicle deformability and its ad-
hesion length are crucial to capture this feature, because a
rigid cylinder pulled parallel to a wall feels no torque, and
thus only slides [5].

The type of motion (sliding and rolling) found here has
been observed by Bongrand et al. for cells under shear
flow [6]. Our results are in a marked contrast with theories
imposing nonrealistic rigid bodies for cells [7]. The ability
for the vesicle (or cell) to deform implies that the drift
velocity obeys a nontrivial scaling law R22 (in 3D) and
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R24�5 (in 2D) with the scale of the vesicle (see below
and Fig. 4). The rigid body constraint leads to a quite
different finding, namely the velocity scales as R21 for a
sphere (up to logarithmic corrections) [7], and as R21�2 for
a cylinder [5].

Because of the complexity of the present problem it is
highly desirable to have at our disposal analytical results.
This is very important in order to get insight towards the
understanding of the underlying physical ingredients which
are responsible for vesicle dynamics. This is what we
would like to sketch now.

A relevant parameter for the vesicle mobility on a sub-
strate is the contact area. Let us first consider the 2D case
as in the numerical work. The adhesion length (see Fig. 1
for definition) is well defined as long as d0 ø R and is de-
noted by Ladh. Let us evaluate this quantity. Ladh depends
only on the three characteristic lengths: R � L

2p , Rs �p
A�p corresponding to the vesicle perimeter L and area

A, respectively, and Rc �
p

k�w0 which is related to the
contact curvature [8]. We assume that Ladh has a weak
dependence on velocity, an assumption which turns out to
be quite legitimate in haptotaxis according to full numeri-
cal results. Typically three situations may occur, and we
consider them separately.

(A) R ¿ Rc: This situation is relevant in the case
of a strong adhesion, and/or small rigidity, and/or giant
vesicles. In reality, only the combination of these three
facts matters. In that case the part of vesicle which is not
in contact with the substrate is a truncated quasicircular
shape with angular contact point. Indeed if the rigidity is
negligible in comparison to the adhesion, we recover the
fluidlike droplet model [1]. Ladh can thus be expressed
analytically in the limit Rs�R ! 1 (a situation often en-
countered in real situations) as

Ladh � R�1 2 Rs�R�1�3. (5)

We have explored numerically this regime. Figure 2
shows the analytical part compared to the numerical one.
The agreement is quite satisfactory. The other limit
Rs�R ! 0 (small swelling) yields obviously Ladh � L�2.

Ladh

FIG. 1. Vesicle shape at three different times. The arrow
indicates the trajectory of a material point on the vesicle
illustrating the rolling and sliding motion.
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FIG. 2. Variation of adhesion length with the swelling. (Nu-
merical parameters: R � 1.1 and Rc � 0.6, with an arbitrary
unit of length.)

(B) Rc � R: This situation corresponds to the case of
intermediate rigidity, or more precisely when all effects
compete. This case is more subtle. At equilibrium, the
increase in curvature energy due to adhesion must be offset
by the decrease in the adhesion energy. The evaluation of
both terms will provide us with a scaling law for Ladh.
For that purpose, let dc�s� denote the curvature variation
between the free and adhering vesicle, which is supposed
swelled (Rs � R) and impermeable. The conservation of
vesicle perimeter under such a variation entails a vanishing
mean value for dc�s�. Therefore the global curvature
energy variation is proportional to

R
k�dc�2 ds. We evalu-

ate dc by means of the volume conservation condition.
Under adhesion the volume deficit (the area in 2D) which is
beneath, dy � L3

adh�R, must be redistributed elsewhere,
so as to keep the total volume constant. The estimate
for dy is performed on a portion of a disc with a radius
R and a base Ladh in the limit of small enough Ladh
as compared to the total length; see Fig. 4. That is, we
consider the equivalent disc of the real shape. Because a
disc has a larger volume, it must be truncated by a quantity
dy. This amounts to the sought after curvature increase,
since the truncated object has a smaller effective radius of
curvature. This leads to a radius increase dR � dy�R �
R2dc. This implies that the increase in curvature energy is
DEc � kL6

adh�R7. The variation of the adhesion energy
is simply given by DEw � w0Ladh. A balance between
DEc and DEw yields

Ladh �

√
w0

k

!1�5

R7�5. (6)

The same arguments can be extended to 3D providing
us with

Ladh �

√
w0

k

!1�6

R4�3. (7)

The full numerical analysis provides a good agreement
with the scaling laws (Fig. 3). Higher values of R will
cause a crossover to the behavior in Fig. 2, while smaller
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FIG. 3. Variation of adhesion length with the vesicle size.
[Numerical parameters: Rs�R � 0.9 and Rc � 1.2 (arbitrary
unit)].

values lead to vesicle unbinding (see below), so that the
validity of the scaling law is limited by these two physical
facts.

(C) Rc . R: This is the weak adhesion limit close to
the unbinding transition already analyzed in [8]. Since we
do not address here the problem of unbinding this limit
will not be considered later.

Having determined the adhesion length, we are in a po-
sition to study dynamics. In this brief exposition we shall
limit ourselves to the situation of intermediate adhesion.
Energy is injected by adhesion gradients, and is dissipated
in hydrodynamics flows. Let us first evaluate the viscous
dissipation.

The largest velocity gradients occur in the fluid influ-
enced by both the vesicle and the substrate. Note that the
dissipation in the thin fluid film between the vesicle and the
substrate is limited by the great rolling ratio. For simplicity
we assume that the vesicle is in direct contact with the sub-
strate (no fluid film beneath). The volume of dissipation
is that corresponding to the influence region, and scales as
L2

adh (as is the case with Laplacian fields—we have =2p �
0— the perturbation penetrates over a scale of order Ladh in
the two directions). In these regions (see Fig. 4) the mean
local velocity is estimated at a distance Ladh from the con-
tact point (in the fluid bulk) as Vloc � VLadh�R using a
rolling without sliding motion. This relation is geometri-
cally obvious from Fig. 4 for a small adhesion length. If

θ

dissipation
Zone of

Ladh

dv

θ

V

Ω

R

Vloc ~ V sin   ~ V Ladh/R

~V/R

FIG. 4. Definition and schematic views of several quantities
used in the analytical part.
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this is not the case, it is clear on the general ground that
since the vesicle must adhere on a length Ladh the typical
velocity gradient must be set on that range, and is equal
to Vloc�Ladh. On the global scale of the vesicle the gra-
dient is V�R. The demand that a permanent regime is es-
tablished requires the two gradients to scale in the same
manner, namely Vloc�Ladh � V�R (these correspond to
the inverse of time scales for dissipation), which is a more
profound physical view of the relation introduced above.
Note also that the greater the adhesion length, the larger is
Vloc for a given R and V . This is obvious since the vesicle
must evacuate the fluid on a larger length, and in order to
move at the same global velocity V , Vloc must be larger.

Using the dependence R7�5 for Ladh [Eq. (6)] we deduce
the functional dependence of the dissipation (in 2D):

D � hL2
adh

√
Vloc

Ladh

!2

� hV 2

√
R
Rc

!4�5

. (8)

Equating dissipation, D, and source, FdV , with Fd the
driving force, we arrive at

V �
Fd

h
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R

!4�5

�2D�, V �
Fd

h

Rc

R2 �3D� .

(9)

For 3D, dissipation occurs in a volume L3
adh, and Ladh

obeys different scaling [Eq. (7)]. This implies a different
dependence on R.

This law works for any driving force Fd . In 2D the force
is defined per unit length. In haptotaxis Fd � Ladh=w
in 2D and Fd � L2

adh=w in 3D. Comparison with full
numerics is presented on Fig. 5. The best fit provides
(over about a decade) 0.75 6 0.05, while full analytical
results predict 4�5 � 0.8. It is very important to note
that theories with rigid bodies [7] lead to V � R21 in 3D
and V � R21�2 in 2D. Allowing for vesicle deformability
leads to the nontrivial law R22 and R24�5 in 3D and 2D,
respectively.

Further increase of R leads (as for statics discussed be-
fore) to a crossover to a strongly adhering regime discussed
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FIG. 5. Variation of the ratio (velocity�driving force) with the
scale at constant swelling. [Rs�R � 0.95, Rc � 0.5, =w�w0 �
0.2, and d0 � 0.06 (arbitrary units)].
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below. In the extreme limit of tensely adhering vesicles,
and if the swelling is large, Ladh is given by Eq. (5). We
can derive the drift velocity in the same manner. Because
Ladh is proportional to the vesicle scale R, and given the
form of dissipation and source powers discussed above, we
obtain for the drift velocity

V � Fd�h �2D�, V � Fd��hR� �3D� . (10)
We obtain here for 2D and 3D similar results as for a
cylinder and a sphere (Stokes law) immersed in an infinite
medium (no substrate). We hope to report on extensive
numerical results in the future.

The next step will be to extend the numerical treatment
to 3D. In addition, the relevance of several physical points
should be clarified in the future. (i) We have taken into ac-
count the first natural dissipation associated with hydrody-
namical flow inside and outside the vesicle. This assumes
that the two monolayers form an entity, in that they do not
slide with respect to each other. It is likely [9] that this is
not always true, and the effect of the induced dissipation
should be investigated in the future. (ii) Furthermore, per-
haps the most serious point that must be emphasized with
regard to dissipation in the realm of biology concerns the
kinetics of bond breaking and restoring with the substrate.
If the time scale involved in this process is larger than
that associated with hydrodynamics, dissipation should be
dominated by chemical kinetics. The time scale depends
on the energetics involved in the adhesion, and it seems
at first sight that in the biological world the bond breaking
dynamics should be of great importance [10]. (iii) Finally,
in order to be closer to realistic situations we should relax
the assumption of equal viscosities inside and outside the
vesicle. In reality, the cytoskeleton exhibits viscoelastic
properties that are necessary to incorporate in future mod-
els which are aiming at a more elaborate theory of cell
motility.

We are very grateful to R. Bruinsma, F. Jülicher,
and U. Seifert for several enlightening and stimulating
discussions.
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